Astronaut Health and Performance

Total Page:16

File Type:pdf, Size:1020Kb

Astronaut Health and Performance Astronaut Health Human travel to Mars and beyond is no longer science fiction. Through shuttle research we know how the body changes, what we and Performance need to do to fix some of the problems or—better yet—prevent them, the importance of monitoring health, and how to determine the Introduction human body’s performance through the various sequences of launch, Helen Lane spaceflight, and landing. Basically, we understand how astronauts Laurence Young keep their performance high so they can be explorers, scientists, How Humans Adapt to Spaceflight: and operators. Physiological Changes Vision, Orientation, and Balance William Paloski Astronauts change physically during spaceflight, from their brain, Sleep heart, blood vessels, eyes, and ears and on down to their cells. Laura Barger Many types of research studies validated these changes and Charles Czeisler demonstrated how best to prevent health problems and care for the Muscle and Exercise John Charles astronauts before, during, and after spaceflight. Steven Platts Daniel Feeback During a shuttle flight, astronauts experienced a multitude of Kenneth Baldwin gravitational forces. Earth is 1 gravitational force (1 g); however, Judith Hayes during launch, the forces varied from 1 to 3 g. During a shuttl e’s Cardiovascular John Charles return to Earth, the forces varied from nearly zero to 1. 6g, over Steven Platts approximately 33 minutes, during the maneuvers to return. In all, Nutritional Needs in Space the shuttle provided rather low gravitational forces compared with Helen Lane other rocket-type launches and landings. Clarence Alfrey Scott Smith The most pervasive physiological human factor in all spaceflight, Immunology and Infectious Diseases Brian Crucian however, is microgravity. An astronaut perceives weightlessness and Satish Mehta floats along with any object, large or small. The microgravity Mark Ott physiological changes affect the human body, the functions within the Duane Pierson Clarence Sams space vehicle, and all the fluids, foods, water, and contaminants. Habitability and Environmental Health We learned how to perform well in this environment through the Habitability Janis Connolly Space Shuttle Program. This information led to improvements in David Fitts astronaut s’ health care not only during shuttle flights but also for the Dane Russo International Space Station (ISS) and future missions beyond Vickie Kloeris Environmental Health low-Earth orbit. Shuttle research and medical care led directly to John James improved countermeasures used by ISS crew members. No shuttle Thomas Limero mission was terminated due to health concerns. Mark Ott Chau Pham Duane Pierson Astronaut Health Care Philip Stepaniak 370 Major Scientific Discoveries How Humans Adapt Laurence Young, ScD to Spaceflight: Principal investigator or coinvestigator on seven space Physiological Changes missions, starting with STS-9 (1983). Alternate payload specialist on Vision, Orientation, and Balance STS-58 (1993). Change in Microgravity Founding director of the National Space Biomedical Research Institute. Gravity is critical to our existence. Apollo Program professor of As Earthlings, we have come to rely on astronautics and professor of health sciences and technology at Earth’s gravity as a fundamental Massachusetts Institute of Technology. reference that tells us which way is down. Our very survival depends on “The Space Shuttle Program provided a golden era for life sciences research. our ability to discern down so that we The difference between science capabilities on spacecraft before and after the can walk, run, jump, and otherwise Space Shuttle is enormous: it was like doing science in a telephone booth in the move about without falling. To accomplish this, we evolved specialized Gemini-Apollo era while shuttle could accommodate a school-bus-size laboratory. motion-sensing receptors in our inner This significantly added to the kind of research that could be done in space. ears—receptors that act like biological We had enormous success in life sciences, especially with the Spacelabs, for guidance systems. Among other things, quality of instrumentation, their size, and opportunity for repeated measurements these receptors sense how well our on the astronauts on different days of flight and over many different flights heads are aligned with gravity. Our including Space Life Sciences flights 1 and 2 and ending with Neurolab. brains combine these data with visual information from our eyes, pressure “Our research led to a much more complete understanding of the neurovestibular information from the soles of our feet changes in spaceflight and allowed us to know what issues require (and the seats of our pants), and countermeasures or treatment, such as space motion sickness, as well as what position and loading information from research needed to continue in Earth laboratories, such as the role of short radius our joints and muscles to continuously centrifuges for intermittent artificial gravity to support a Mars exploration mission.” track the orientation of our bodies relative to gravity. Knowing this, our brains can work out the best strategies for adjusting our muscles to move our One thing we learned during the shuttle physical activities, such as running, limbs and bodies about without losing era, though, is that astronauts’ nervous jumping, climbing ladders, driving our balance. And, we don’t even have systems adapt very quickly. By the automobiles, and flying planes. to think about it. third day of flight, most crew members The Space Shuttle––particularly At the end of launch phase, astronauts overcame the loss of gravitational when carrying one of its Spacelab find themselves suddenly thrust into stimulation. Beyond that, most or Spacehab modules and during the microgravity environment. Gravity, exhibited few functionally significant the human-health-focused, the fundamental up/down reference side effects. The downside to this rapid extended-duration Orbiter medical these astronauts relied on throughout adaptation was that, by the time a missions (1 989 through 1995)–– their lives for orientation and shuttle mission ended and the provided unique capabilities to study movement, suddenly disappears. astronauts returned to Earth, they had neurological adaptation to space. As you might expect, there are a forgotten how to use gravity for By taking advantage of the shuttle’s number of immediate consequences. orientation and movement. So, for the ability to remove and then reintroduce Disorientation, perceptual illusions, first few days after return, they suffered the fundamental spatial orientation motion sickness, poor eye-head/eye- again from a multitude of side effects reference provided by gravity, many hand coordination, and whole-body similar to those experienced at the researchers sought to understand movements are issues each astronaut beginning of spaceflight. During the the brain mechanisms responsible for has to deal with to some degree. Earth-readaptation period, these tracking and responding to this postflight affects limited some types of Major Scientific Discoveries 371 stimulus. Other researchers used these disorientation, and motion sickness such as car sickness, sea sickness, air stimuli to investigate fundamental and symptoms. Over time, however, the sickness, or sickness caused by carnival functional aspects of neural adaptation, brain would learn not to anticipate this rides. To complicate our understanding while others focused on the operational inner-ear information during head tilts of the mechanisms of space motion impacts of these adaptive responses and the symptoms would abate. sickness further, landing-day motion with an eye toward reducing risks to sickness was not even predicted by the space travelers and enabling future How Often Do Astronauts Have incidence or severity of early in-flight missions of longer duration. Space Motion Sickness? motion sickness. The only predictable aspect was that repeat flyers usually had Many astronauts report motion sickness Space Motion Sickness fewer and less severe symptoms with symptoms just after arrival in space and each subsequent flight. What Is Space Motion Sickness? again just after return to Earth. For example, of the 400 crew members who Many people experience motion How Do Astronauts Deal With flew on the shuttle between 1981 and sickness while riding in vehicles ranging Space Motion Sickness? 1998, 309 reported at least some motion from automobiles to airplanes to boats sickness symptoms, such as stomach Crew members can limit head to carnival rides. Its symptoms include awareness, headache, drowsiness, movements during the first few days of headache, pallor, fatigue, nausea, and pallor, sweating, dizziness, and, of microgravity and during return to Earth vomiting. What causes motion sickness course, nausea and vomiting. For most to minimize the symptoms of space is unknown, but it is clearly related to astronauts, this was a short-term motion sickness. For some astronauts, the nervous system and almost always problem triggered by the loss of gravity drugs are used to reduce the symptoms. involves the specialized motion-sensing stimuli during ascent to orbit and, again, Promethazine-containing drugs receptors of the inner ear, known as the by the return of gravity stimuli during emerged as the best choice during the vestibular system. descent back to Earth. It usually lasted early 1990s, and were frequently used The most popular explanation for only through the few days coinciding throughout the remaining shuttle
Recommended publications
  • Charles Bolden, NASA Administrator Science and Technology Policy Institute Washington, DC August 14, 2012 • Thank You, Mark [D
    Charles Bolden, NASA Administrator Science and Technology Policy Institute Washington, DC August 14, 2012 Thank you, Mark [Dr. Mark Lewis] for that gracious introduction and for the opportunity to talk with you about some of the many exciting things that are happening at NASA. This is my first public speaking opportunity since last week’s historic landing of the Curiosity rover on the surface of Mars – so I can’t help but begin by sharing our excitement about this success and what it means going forward. I hope you all got a chance to see this historic achievement and are following the steady flow of stunning pictures on NASA.gov. 1 As you may know, Curiosity is the most sophisticated rover ever built and sent to another planet. For the next two years, it will seek to answer ago-old questions about whether life ever existed on Mars – or if the planet can sustain life in the future. The landing, which was dubbed “Seven Minutes of Terror,” was the most difficult and challenging mission in the history of robotic planetary exploration. New technologies previously unused or proven were created for this journey. Quite frankly, we did not know if we would make it, but we went for the gold and scored a perfect 10. This was an amazing achievement, made possible by a team of scientists and engineers from around the world and led by the extraordinary men and women of NASA and our Jet Propulsion Lab in Pasadena, California. 2 I know that this group is very interested in the cost-benefit analysis of the nation’s investment in science and technology.
    [Show full text]
  • Spacex Launch Manifest - a List of Upcoming Missions 25 Spacex Facilities 27 Dragon Overview 29 Falcon 9 Overview 31 45Th Space Wing Fact Sheet
    COTS 2 Mission Press Kit SpaceX/NASA Launch and Mission to Space Station CONTENTS 3 Mission Highlights 4 Mission Overview 6 Dragon Recovery Operations 7 Mission Objectives 9 Mission Timeline 11 Dragon Cargo Manifest 13 NASA Slides – Mission Profile, Rendezvous, Maneuvers, Re-Entry and Recovery 15 Overview of the International Space Station 17 Overview of NASA’s COTS Program 19 SpaceX Company Overview 21 SpaceX Leadership – Musk & Shotwell Bios 23 SpaceX Launch Manifest - A list of upcoming missions 25 SpaceX Facilities 27 Dragon Overview 29 Falcon 9 Overview 31 45th Space Wing Fact Sheet HIGH-RESOLUTION PHOTOS AND VIDEO SpaceX will post photos and video throughout the mission. High-Resolution photographs can be downloaded from: http://spacexlaunch.zenfolio.com Broadcast quality video can be downloaded from: https://vimeo.com/spacexlaunch/videos MORE RESOURCES ON THE WEB Mission updates will be posted to: For NASA coverage, visit: www.SpaceX.com http://www.nasa.gov/spacex www.twitter.com/elonmusk http://www.nasa.gov/nasatv www.twitter.com/spacex http://www.nasa.gov/station www.facebook.com/spacex www.youtube.com/spacex 1 WEBCAST INFORMATION The launch will be webcast live, with commentary from SpaceX corporate headquarters in Hawthorne, CA, at www.spacex.com. The webcast will begin approximately 40 minutes before launch. SpaceX hosts will provide information specific to the flight, an overview of the Falcon 9 rocket and Dragon spacecraft, and commentary on the launch and flight sequences. It will end when the Dragon spacecraft separates
    [Show full text]
  • Classical Mechanics
    Classical Mechanics Hyoungsoon Choi Spring, 2014 Contents 1 Introduction4 1.1 Kinematics and Kinetics . .5 1.2 Kinematics: Watching Wallace and Gromit ............6 1.3 Inertia and Inertial Frame . .8 2 Newton's Laws of Motion 10 2.1 The First Law: The Law of Inertia . 10 2.2 The Second Law: The Equation of Motion . 11 2.3 The Third Law: The Law of Action and Reaction . 12 3 Laws of Conservation 14 3.1 Conservation of Momentum . 14 3.2 Conservation of Angular Momentum . 15 3.3 Conservation of Energy . 17 3.3.1 Kinetic energy . 17 3.3.2 Potential energy . 18 3.3.3 Mechanical energy conservation . 19 4 Solving Equation of Motions 20 4.1 Force-Free Motion . 21 4.2 Constant Force Motion . 22 4.2.1 Constant force motion in one dimension . 22 4.2.2 Constant force motion in two dimensions . 23 4.3 Varying Force Motion . 25 4.3.1 Drag force . 25 4.3.2 Harmonic oscillator . 29 5 Lagrangian Mechanics 30 5.1 Configuration Space . 30 5.2 Lagrangian Equations of Motion . 32 5.3 Generalized Coordinates . 34 5.4 Lagrangian Mechanics . 36 5.5 D'Alembert's Principle . 37 5.6 Conjugate Variables . 39 1 CONTENTS 2 6 Hamiltonian Mechanics 40 6.1 Legendre Transformation: From Lagrangian to Hamiltonian . 40 6.2 Hamilton's Equations . 41 6.3 Configuration Space and Phase Space . 43 6.4 Hamiltonian and Energy . 45 7 Central Force Motion 47 7.1 Conservation Laws in Central Force Field . 47 7.2 The Path Equation .
    [Show full text]
  • IMPLICATIONS for FUNCTION in MICROGRAVITY Introduction
    Journal of Vestibular Research. Vol. 8. No.1. pp. 81-94.1998 Copyright I!:I 1998 Elsevier Science Inc. Printed in the USA. All rights reserved 0957-4271/98 $19.00 + .00 ELSEVIER PIT S0957-4271(97)00055-4 Review SLEEP AND VESTIBULAR ADAPTATION: IMPLICATIONS FOR FUNCTION IN MICROGRAVITY J. Allan Hobson, Robert Stickgold, Edward F. Pace-Schott, and Kenneth R. Leslie Laboratory of Neurophysiology. Massachusetts Mental Health Center, Harvard Medical School, Boston, Massachusetts : : ,. "" .. 1>.. .. I. II ~ ,... "" ,... " - r' - .... .. ,... .. ... ,. .. ~ 'f''''' .. .... p .... - - • .. _.... • - _ E-mail: [email protected] o Abstract - Optimal human performance de­ Introduction pends upon integrated sensorimotor and cognitive functions, both of which are known to be exquis­ The functions of sleep remain unknown. The itely sensitive to loss of sleep. Under the micro­ compelling idea that sleep subserves neuronal gravity conditions of space flight, adaptation of plasticity was first clearly articulated by Giuseppe both sensorimotor (especially vestibular) and cog­ nitive functions (especially orientation) must occur Moruzzi (1). This hypothesis has been tested in quickly-and be maintained-despite any concur­ many ways, induding the systematic perturba­ rent disruptions of sleep that may be caused by tion of the vestibular system. The close interre­ microgravity itself, or by the uncomfortable sleep­ lationship between the vestibular nuclei and the ing conditions of the spacecraft. It is the three-way sleep inducing structures of the pontine brain interaction between sleep quality, general work ef­ stem has been extensively studied by Moruzzi's ficiency, and sensorimotor integration that is the colleagues, especially Ottavio Pompeiano (2). It subject of this paper and the focus of new work in is the purpose of this paper to discuss the con­ our laboratory.
    [Show full text]
  • Introduction to Astronomy from Darkness to Blazing Glory
    Introduction to Astronomy From Darkness to Blazing Glory Published by JAS Educational Publications Copyright Pending 2010 JAS Educational Publications All rights reserved. Including the right of reproduction in whole or in part in any form. Second Edition Author: Jeffrey Wright Scott Photographs and Diagrams: Credit NASA, Jet Propulsion Laboratory, USGS, NOAA, Aames Research Center JAS Educational Publications 2601 Oakdale Road, H2 P.O. Box 197 Modesto California 95355 1-888-586-6252 Website: http://.Introastro.com Printing by Minuteman Press, Berkley, California ISBN 978-0-9827200-0-4 1 Introduction to Astronomy From Darkness to Blazing Glory The moon Titan is in the forefront with the moon Tethys behind it. These are two of many of Saturn’s moons Credit: Cassini Imaging Team, ISS, JPL, ESA, NASA 2 Introduction to Astronomy Contents in Brief Chapter 1: Astronomy Basics: Pages 1 – 6 Workbook Pages 1 - 2 Chapter 2: Time: Pages 7 - 10 Workbook Pages 3 - 4 Chapter 3: Solar System Overview: Pages 11 - 14 Workbook Pages 5 - 8 Chapter 4: Our Sun: Pages 15 - 20 Workbook Pages 9 - 16 Chapter 5: The Terrestrial Planets: Page 21 - 39 Workbook Pages 17 - 36 Mercury: Pages 22 - 23 Venus: Pages 24 - 25 Earth: Pages 25 - 34 Mars: Pages 34 - 39 Chapter 6: Outer, Dwarf and Exoplanets Pages: 41-54 Workbook Pages 37 - 48 Jupiter: Pages 41 - 42 Saturn: Pages 42 - 44 Uranus: Pages 44 - 45 Neptune: Pages 45 - 46 Dwarf Planets, Plutoids and Exoplanets: Pages 47 -54 3 Chapter 7: The Moons: Pages: 55 - 66 Workbook Pages 49 - 56 Chapter 8: Rocks and Ice:
    [Show full text]
  • Solar System Exploration
    Theme: Solar System Exploration Cassini, a robotic spacecraft launched in 1997 by NASA, is close enough now to resolve many rings and moons of its destination planet: Saturn. The spacecraft has now closed to within a single Earth-Sun separation from the ringed giant. In November 2003, Cassini snapped the contrast-enhanced color composite pictured above. Many features of Saturn's rings and cloud-tops now show considerable detail. When arriving at Saturn in July 2004, the Cassini orbiter will begin to circle and study the Saturnian system. Several months later, a probe named Huygens will separate and attempt to land on the surface of Titan. Solar System Exploration MAJOR EVENTS IN FY 2005 Deep Impact will launch in December 2004. The spacecraft will release a small (820 lbs.) Impactor directly into the path of comet Tempel 1 in July 2005. The resulting collision is expected to produce a small impact crater on the surface of the comet's nucleus, enabling scientists to investigate the composition of the comet's interior. Onboard the Cassini orbiter is a 703-pound scientific probe called Huygens that will be released in December 2004, beginning a 22-day coast phase toward Titan, Saturn's largest moon; Huygens will reach Titan's surface in January 2005. ESA 2-1 Theme: Solar System Exploration OVERVIEW The exploration of the solar system is a major component of the President's vision of NASA's future. Our cosmic "neighborhood" will first be scouted by robotic trailblazers pursuing answers to key questions about the diverse environments of the planets, comets, asteroids, and other bodies in our solar system.
    [Show full text]
  • Nasa Langley Research Center 2012
    National Aeronautics and Space Administration NASA LANGLEY RESEARCH CENTER 2012 www.nasa.gov An Orion crew capsule test article moments before it is dropped into a An Atlantis flag flew outside Langley’s water basin at Langley to simulate an ocean splashdown. headquarters building during NASA’s final space shuttle mission in July. Launching a New Era of Exploration Welcome to Langley NASA Langley had a banner year in 2012 as we helped propel the nation toward a new age of air and space. From delivering on missions to creating new technologies and knowledge for space, aviation and science, Langley continued the rich tradition of innovation begun 95 years ago. Langley is providing leading-edge research and game-changing technology innovations for human space exploration. We are testing prototype articles of the Orion crew vehicle to optimize designs and improve landing systems for increased crew survivability. Langley has had a role in private-industry space exploration through agreements with SpaceX, Sierra Nevada Corp. and Boeing to provide engineering expertise, conduct testing and support research. Aerospace and Science With the rest of the world, we held our breath as the Curiosity rover landed on Mars – with Langley’s help. The Langley team performed millions of simulations of the entry, descent and landing phase of the Mars Science Laboratory mission to enable a perfect landing, Langley Center Director Lesa Roe and Mark Sirangelo, corporate and for the first time made temperature and pressure vice president and head of Sierra Nevada Space Systems, with measurements as the spacecraft descended, providing the Dream Chaser Space System model.
    [Show full text]
  • The Space Race
    The Space Race Aims: To arrange the key events of the “Space Race” in chronological order. To decide which country won the Space Race. Space – the Final Frontier “Space” is everything Atmosphere that exists outside of our planet’s atmosphere. The atmosphere is the layer of Earth gas which surrounds our planet. Without it, none of us would be able to breathe! Space The sun is a star which is orbited (circled) by a system of planets. Earth is the third planet from the sun. There are nine planets in our solar system. How many of the other eight can you name? Neptune Saturn Mars Venus SUN Pluto Uranus Jupiter EARTH Mercury What has this got to do with the COLD WAR? Another element of the Cold War was the race to control the final frontier – outer space! Why do you think this would be so important? The Space Race was considered important because it showed the world which country had the best science, technology, and economic system. It would prove which country was the greatest of the superpowers, the USSR or the USA, and which political system was the best – communism or capitalism. https://www.youtube.com/watch?v=xvaEvCNZymo The Space Race – key events Discuss the following slides in your groups. For each slide, try to agree on: • which of the three options is correct • whether this was an achievement of the Soviet Union (USSR) or the Americans (USA). When did humans first send a satellite into orbit around the Earth? 1940s, 1950s or 1960s? Sputnik 1 was launched in October 1957.
    [Show full text]
  • PHYSICS of ARTIFICIAL GRAVITY Angie Bukley1, William Paloski,2 and Gilles Clément1,3
    Chapter 2 PHYSICS OF ARTIFICIAL GRAVITY Angie Bukley1, William Paloski,2 and Gilles Clément1,3 1 Ohio University, Athens, Ohio, USA 2 NASA Johnson Space Center, Houston, Texas, USA 3 Centre National de la Recherche Scientifique, Toulouse, France This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented. Figure 2-01. Artist's concept of one of NASA early (1962) concepts for a manned space station with artificial gravity: a self- inflating 22-m-diameter rotating hexagon. Photo courtesy of NASA. 1 ARTIFICIAL GRAVITY: WHAT IS IT? 1.1 Definition Artificial gravity is defined in this book as the simulation of gravitational forces aboard a space vehicle in free fall (in orbit) or in transit to another planet. Throughout this book, the term artificial gravity is reserved for a spinning spacecraft or a centrifuge within the spacecraft such that a gravity-like force results. One should understand that artificial gravity is not gravity at all. Rather, it is an inertial force that is indistinguishable from normal gravity experience on Earth in terms of its action on any mass. A centrifugal force proportional to the mass that is being accelerated centripetally in a rotating device is experienced rather than a gravitational pull.
    [Show full text]
  • STS-134 Press
    CONTENTS Section Page STS-134 MISSION OVERVIEW ................................................................................................ 1 STS-134 TIMELINE OVERVIEW ............................................................................................... 9 MISSION PROFILE ................................................................................................................... 11 MISSION OBJECTIVES ............................................................................................................ 13 MISSION PERSONNEL ............................................................................................................. 15 STS-134 ENDEAVOUR CREW .................................................................................................. 17 PAYLOAD OVERVIEW .............................................................................................................. 25 ALPHA MAGNETIC SPECTROMETER-2 .................................................................................................. 25 EXPRESS LOGISTICS CARRIER 3 ......................................................................................................... 31 RENDEZVOUS & DOCKING ....................................................................................................... 43 UNDOCKING, SEPARATION AND DEPARTURE ....................................................................................... 44 SPACEWALKS ........................................................................................................................
    [Show full text]
  • Pioneers in Optics: Christiaan Huygens
    Downloaded from Microscopy Pioneers https://www.cambridge.org/core Pioneers in Optics: Christiaan Huygens Eric Clark From the website Molecular Expressions created by the late Michael Davidson and now maintained by Eric Clark, National Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306 . IP address: [email protected] 170.106.33.22 Christiaan Huygens reliability and accuracy. The first watch using this principle (1629–1695) was finished in 1675, whereupon it was promptly presented , on Christiaan Huygens was a to his sponsor, King Louis XIV. 29 Sep 2021 at 16:11:10 brilliant Dutch mathematician, In 1681, Huygens returned to Holland where he began physicist, and astronomer who lived to construct optical lenses with extremely large focal lengths, during the seventeenth century, a which were eventually presented to the Royal Society of period sometimes referred to as the London, where they remain today. Continuing along this line Scientific Revolution. Huygens, a of work, Huygens perfected his skills in lens grinding and highly gifted theoretical and experi- subsequently invented the achromatic eyepiece that bears his , subject to the Cambridge Core terms of use, available at mental scientist, is best known name and is still in widespread use today. for his work on the theories of Huygens left Holland in 1689, and ventured to London centrifugal force, the wave theory of where he became acquainted with Sir Isaac Newton and began light, and the pendulum clock. to study Newton’s theories on classical physics. Although it At an early age, Huygens began seems Huygens was duly impressed with Newton’s work, he work in advanced mathematics was still very skeptical about any theory that did not explain by attempting to disprove several theories established by gravitation by mechanical means.
    [Show full text]
  • India and China Space Programs: from Genesis of Space Technologies to Major Space Programs and What That Means for the Internati
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2009 India And China Space Programs: From Genesis Of Space Technologies To Major Space Programs And What That Means For The Internati Gaurav Bhola University of Central Florida Part of the Political Science Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Bhola, Gaurav, "India And China Space Programs: From Genesis Of Space Technologies To Major Space Programs And What That Means For The Internati" (2009). Electronic Theses and Dissertations, 2004-2019. 4109. https://stars.library.ucf.edu/etd/4109 INDIA AND CHINA SPACE PROGRAMS: FROM GENESIS OF SPACE TECHNOLOGIES TO MAJOR SPACE PROGRAMS AND WHAT THAT MEANS FOR THE INTERNATIONAL COMMUNITY by GAURAV BHOLA B.S. University of Central Florida, 1998 A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Arts in the Department of Political Science in the College of Arts and Humanities at the University of Central Florida Orlando, Florida Summer Term 2009 Major Professor: Roger Handberg © 2009 Gaurav Bhola ii ABSTRACT The Indian and Chinese space programs have evolved into technologically advanced vehicles of national prestige and international competition for developed nations. The programs continue to evolve with impetus that India and China will have the same space capabilities as the United States with in the coming years.
    [Show full text]