URBAN (SOIL) BIOREMEDIATION of Some Plants Form to Another, and Are Made Available to Plants and to Other Soil Organisms

Total Page:16

File Type:pdf, Size:1020Kb

URBAN (SOIL) BIOREMEDIATION of Some Plants Form to Another, and Are Made Available to Plants and to Other Soil Organisms Know Your Urban Soil Restoring Urban Soils: How Can Bioremediation Help? What is Soil? Soil performs a number of essential life-supporting functions: →→ Habitat for soil organisms: Sustaining biological activity, diversity, and productivity Soil is alive and (hopefully) well in our cities! Although we generally think of soil in ‘natural’ fields and forests, The skin of the Earth. Soil exists as the exterior surface layer of our planet. The first living organisms may have originated Our actions are not only a cause of urban soil degradation, but are also capable of helping to restore urban soil →→ Water supply and purification: Regulating and partitioning water and solute flow in Earth’s oceans billions of years ago, but for at least 500 million years life has been evolving on land. Soil provides the it also exists beneath and between all the cracks of our paved and built environments. Some of our city soils quality, particularly within the context of environmental movements and greening cities. We have tremendous →→ Recycling nutrients and organic wastes: Filtering, buffering, degrading, immobilizing and detoxifying substrate for all five kingdoms of life to thrive on land, to take up nutrients, to grow in place and move through the world. have been formed by naturally occurring parent materials, while the rest of have developed on human-altered or opportunities to promote the sustainability of our urban areas by focusing on the health of our soils. organic and inorganic materials transported materials. →→ A restoration technique called bioremediation has been gaining interest in recent years. Bioremediation is Soil allows for new forms of life to come into being, as they incorporate the nutrients left there by organisms of the past. It Medium for plant growth: Storing and cycling nutrients and other elements Did you know? Approximately 9% of NYC is covered by soils formed in natural materials and approximately 28% the use of natural processes involving microorganisms, plants, and fungi, or their enzymes to clean and restore supplies the space for nutrients locked in living organisms to break down, while microbes like bacteria and fungi facilitate →→ Engineering Medium: Providing support for our built environment is covered by soils formed in human-altered or human-transported materials.1 polluted sites. Remediation, whether by biological means, chemical means or a combination of both, is of the decomposition of life. In soil, nutrients are released, stored in the Earth, and made available for new forms of life to particular interest because it both addresses problems of pollution and paves the way for a more ecologically continue to emerge. Soil Formation Soil Properties sustainable future. It presents humans with an opportunity to interact with nature in a way that is proactive and Urban Soil Issues Where do we find soil in the city? promotes ecological health in sites which are most in need of attention. Soil functions to protect the Earth and keep its many processes going, almost like organs in the body. As the Earth’s Soil is constantly forming and reforming from How do we understand and describe our highly surface it protects the land like skin and as gases move through soil it breathes like lungs. Water circulates materials a number of local and regional materials and diverse and complex soils? Each soil has a range Why should we care about our city soils? Urban soil is There are numerous methods for bioremediation, and each one has strengths and limitations. Soil remediation through the soil system and like a digestive tract, soil releases nutrients and supplies energy to the organisms of our →→ Gardens processes. It can take thousands of years for a few of easily observable (and less easily observable) capable of performing all of the essential life-supporting techniques can be either in situ or ex situ. Ex situ methods involve removing soil from the site or excavating soil for planet. →→ Front and back yards inches of soil to form naturally. properties that allow us to categorize them and functions that its suburban and rural counterparts treatment while in situ methods involve direct treatment, keeping soil in place and essentially enhancing natural →→ Athletic fields identify their forms and functions. The materials provide, such as cleaning water, supporting plant growth, remediation processes. Soil may appear to be a uniform dirty mass, but it is truly dynamic and complex. It is a constantly changing mix of minerals, →→ Playgrounds in soil and the ways soil forms largely shape these and storing carbon and other greenhouse gases. But our In situ treatments have many benefits, including minimal costs and disruption to the site, and minimal human and living organisms, decaying organic matter, air and water. Soil is bursting with life and can be vastly different from one inch →→ Parks Soil Forming Factors: properties. These properties, in turn, enable the soil urban soils are often highly disturbed by human activities environmental exposure to contaminated soil. The suitability of each bioremediation technology is determined to the next. →→ Woods to perform its invaluable life-supporting functions. and land use. by several factors, which may include site conditions, indigenous populations of microorganisms, and the types, →→ Tree pits Only half of soil is solid material. Healthy soils contain about 50% solid matter (45% mineral, 5% organic matter) and Parent Materials: Rocks, minerals, decaying Identifying soil properties allows us to determine quantities and potential toxicities of specific pollutants in the soil. Here, we will offer brief summaries of various organic matter soil quality. While it may take hundreds or thousands of years for →→ Traffic islands bioremediation techniques which can be performed in situ.3 about 50% pore space (with changing levels of air and water content). fertile topsoil to form naturally, it can be eroded away →→ School yards Climate: Sunlight, temperature, rain, wind Helps us understand soil mineral and almost instantly. Building on top of soils and walking →→ Rooftops Contained within just a few feet of this fragile surface, rocks, air, and water all meet and mix to support life on earth. Color: Organisms: Bacteria, archaea, fungi, nematodes, organic matter content or driving over them can cause soils to compact, which →→ Vacant lots Bioremediation Methods Bioremediation terms to know protozoa, insects, worms, mammals also limits their functions. We are constantly mixing or →→ Planting pots Texture: Indicates the percentage of sand, silt, removing our city soils, cutting into them, or filling them →→ Air particulates (e.g. dust) Compost & Compost Tea Topography: Steep slopes, shallow valleys and clay in soil, which impacts pore space and the with new materials, waste products, or construction →→ Beneath buildings and roads The application of compost and compost tea to soil can help Biodegradation: Breakdown of materials by Time: Years to millennia ability of air and water to move through soil debris. These actions make urban soils different from remediate sites polluted with certain types of contaminants bacteria, fungi, or other biological means. Soil Biology through bioaugmentation of soil to increase its capacity to Structure: Pertains to how mineral and organic soils in non-urban areas in some important ways: *Humans are also being recognized as a sixth soil →→ Display greater variability biodegrade contaminants. Compost is a mixture of living Biostimulation: Modification of the environment matter come together to form stable aggregates, What about Phytoremediation? Billions of organisms and thousands of different species can be found in a handful of healthy soil. The presence of these forming factor. Our actions can significantly affect →→ May have little or no organic matter soil organisms and decomposing organic matter which to stimulate existing bacteria capable of which also determines how well air, water and organisms is what sets soil apart from the nonliving rocks, minerals, and dust around us. It is the activities of these creatures what is added to soil, what is lost from soil, and →→ Have altered soil temperatures Some plants may potentially remove or break down can be made at home with substances like leaves, grass bioremediation. This can be done by addition of roots can move through soil →→ Are likely to contain human artifacts that enable soil to perform its vital functions, and each organism provides its own essential role in soil ecosystems. reactions within soil on very short time scales and certain chemical and biological contaminants in clippings, wood shavings and paper, among others. Compost phosphorus, nitrogen, oxygen, or carbon. →→ Have high probabilities of compaction An incredible diversity of organisms make up the soil food web. They range in size from the tiniest one-celled bacteria, with extremely large volumes. Human materials soil through a process known as phytoremediation. tea is essentially liquid fertilizer that is rich in beneficial Consistency: Refers to the stability of the soil →→ Display more contamination Bioaugmentation: Adding cultured algae, fungi, archaea and protozoa, to the more complex nematodes and micro-arthropods, to the visible earthworms, can also be the source of soil parent materials both However, this method of urban soil treatment microbes. The tea helps build soil structure by supplying structure microorganisms to assist in the breakdown of insects, small vertebrates, and plants. intentionally and unconsciously. While overall quality is an important concern for is not recommended for heavy metals such as vital nutrients, microorganisms and organic matter to pH: A ‘master variable’ that tells us how acidic contaminants. As these organisms eat, grow, and move through the soil, they make it possible to have clean water, clean air, healthy urban soils, an evaluation of soil quality wouldn’t be lead. Lead does not readily enter plants when soil. It can also increase soil porosity and water retention, or basic a soil is, and regulates organism activity, complete without assessing soil contamination.2 The the soil’s pH level is neutral or near neutral (pH of encourage biodiversity, and prevent plant diseases.
Recommended publications
  • Bioaugmentation: an Emerging Strategy of Industrial Wastewater Treatment for Reuse and Discharge
    International Journal of Environmental Research and Public Health Review Bioaugmentation: An Emerging Strategy of Industrial Wastewater Treatment for Reuse and Discharge Alexis Nzila 1,*, Shaikh Abdur Razzak 2 and Jesse Zhu 3 1 Department of Life Sciences, King Fahd University of Petroleum and Minerals (KFUPM), P.O. Box 468, Dhahran 31261, Saudi Arabia 2 Department of Chemical Engineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; [email protected] 3 Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada; [email protected] * Correspondence: [email protected]; Tel.: +966-13-860-7716; Fax: +966-13-860-4277 Academic Editors: Rao Bhamidiammarri and Kiran Tota-Maharaj Received: 12 May 2016; Accepted: 9 July 2016; Published: 25 August 2016 Abstract: A promising long-term and sustainable solution to the growing scarcity of water worldwide is to recycle and reuse wastewater. In wastewater treatment plants, the biodegradation of contaminants or pollutants by harnessing microorganisms present in activated sludge is one of the most important strategies to remove organic contaminants from wastewater. However, this approach has limitations because many pollutants are not efficiently eliminated. To counterbalance the limitations, bioaugmentation has been developed and consists of adding specific and efficient pollutant-biodegrading microorganisms into a microbial community in an effort to enhance the ability of this microbial community to biodegrade contaminants. This approach has been tested for wastewater cleaning with encouraging results, but failure has also been reported, especially during scale-up. In this review, work on the bioaugmentation in the context of removal of important pollutants from industrial wastewater is summarized, with an emphasis on recalcitrant compounds, and strategies that can be used to improve the efficiency of bioaugmentation are also discussed.
    [Show full text]
  • Mycoremediation of Hexavalent Chromium by Macrofungi
    International Journal of Chemical Studies 2019; 7(3): 2777-2781 P-ISSN: 2349–8528 E-ISSN: 2321–4902 IJCS 2019; 7(3): 2777-2781 Mycoremediation of hexavalent chromium by © 2019 IJCS Received: 22-03-2019 macrofungi: A novel approach Accepted: 24-04-2019 Mownitha V Mownitha V, Avudainayagam S, Sara Parwin Banu K and Department of Environmental Krishnamoorthy AS Sciences, TNAU, Coimbatore, Tamil Nadu, India Abstract Avudainayagam S In the present study the biosorption efficiency of macrofungal cultures (Pleurotus florida, Pleurotus Department of Environmental eous, Hypsizygus ulmarius, Schizophyllum sp., Coprinus sp. and Ganoderma lucidum) in the removal of Sciences, TNAU, Coimbatore, hexavalent chromium (Cr (VI)) from aqueous solution was being explored. The influence of parameters Tamil Nadu, India like initial Cr (VI) concentration, macrofungal culture and contact time were studied. From the results, it was evident that maximum biosorption of Cr (VI) was observed in Schizophyllum sp. (86.24%) and Sara Parwin Banu K Ganoderma lucidum (83.97%) at the Cr (VI) concentration and contact time of 75 mg/L and 15 days Department of Environmental Sciences, TNAU, Coimbatore, respectively. The FTIR spectra of the fungal biomass before and after Cr (VI) biosorption confirmed the Tamil Nadu, India presence of functional groups and their involvement in the biosorption process. Hence, Schizophyllum sp. and Ganoderma lucidum can be utilized as a Mycoremediation tool in removing Cr (VI) from Krishnamoorthy AS contaminated water. Department of Plant Pathology, TNAU, Coimbatore, Keywords: Cr (VI), biosorption, macrofungal cultures, mycoremediation Tamil Nadu, India Introduction Heavy metal pollution is an overarching environmental problem which we are facing today.
    [Show full text]
  • Bioremediation of Groundwater: an Overview
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 24 (2018) pp. 16825-16832 © Research India Publications. http://www.ripublication.com Bioremediation of Groundwater: An Overview Shivam Mani Tripathi 1, Shri Ram2 1 ,2 Civil Engineering Department, MMMUT Gorakhpur, India Abstract can be treated on site, thus reducing exposure risks for clean- In past, we have large open area and abundant land resources up personnel, or potentially wider exposure as a result of and groundwater. But after the industrialization the use of transportation accidents. Methodology of this process is not hazardous chemicals increased due to unmanageable technically difficult, considerable experience and knowledge conditions. The chemical disposed on the ground surface & may require implementing this process, by thoroughly many other anthropogenic activities by humans like use of investigating the site and to know required condition to pesticides and oil spillage contaminated the soil and achieve. groundwater. The different type of contaminant by percolation The usual technique of remediation is to plow up through the ground reach to the aquifer and get affected which contaminated soil and take away to the site, or to cover or cap causes serious problem. We spend lot of money and use many the contaminated area. There are some drawbacks. The first technologies to extract and remediate the contamination. In method simply transport the contaminated materials which spite of different methods, bioremediation is a technology create major risks is excavation, handling, and transport of which is cost efficient and effective by using natural microbes hazardous material. It is very difficult to find the new landfill and degrades the contaminants the conditions and different sites for disposal.
    [Show full text]
  • Mycoremediation by Oyster Mushroom
    Acta Scientific AGRICULTURE (ISSN: 2581-365X) Volume 5 Issue 5 May 2021 Perspective Mycoremediation by Oyster Mushroom Nidhi Akkin* Received: March 15, 2021 Plant Pathology, University of Agricultural Sciences Bangalore, Bangalore, Published: April 16, 2021 Karnataka, India © All rights are reserved by Nidhi Akkin. *Corresponding Author: Nidhi Akkin, Plant Pathology, University of Agricultural Sciences Bangalore, Bangalore, Karnataka, India. Oyster mushroom is the Pleurotus species, which is a well- parts, it is found that different species have different accumulation known fungus that can be used in bioremediation of the soil con- capacity for various metals like copper, zinc, molybdenum, manga- taminated by pesticides and heavy metals in ecosystem. Cultiva- nese and iron. When Pleurotus sajor-caju is grown on duckweed tion of this mushroom is an age-old practice. Though the biological which is rich in metals elements, it is found that there is accumula- remediation properties were known from a very long time, as long tion of cadmium ions above the permissible limits. Concentration as the period of world war one, but only a little was done to com- of mercury and cadmium is found to be high in basidium of P. os- mercialize it or incorporate it in our daily lives. The absorption po- treatus when grown in polluted areas. The uptake of copper and tential of Pleurotus species is still to be known to the fullest extent. cadmium ions is higher as compared to cobalt and mercuric ions by P. sajor-caju. Decomposition rate of DDVP in the soil was high in Mycoremediation is a method of clarifying heavy metals by the presence of Pleurotus pulmonarius.
    [Show full text]
  • Biodegradation and Bioremediation of Organic Pesticides
    Chapter 12 Biodegradation and Bioremediation of Organic Pesticides Jesús Bernardino Velázquez-Fernández, Abril Bernardette Martínez-Rizo, Maricela Ramírez-Sandoval and Delia Domínguez-Ojeda Additional information is available at the end of the chapter http://dx.doi.org/10.5772/46845 1. Introduction Pesticides can be used to control or to manage pest populations at a tolerable level. The suffix “-cide” literally means “kill”, therefore, the term pesticide refers to a chemical substance that kills pests. It is incorrect to assume that the term pesticide refers only to insecticides. Pesticides include many different types of products with different functions or target (Table 1). The pesticide designation is formed by combining the name of the pest (e.g., insect or mite) with the suffix “-cide” (1). Pesticides could be classified according to their toxicity, chemical group, environmental persistence, target organism, or other features. According to the Stockholm Convention on Persistent Organic Pollutants, 9 of the 12 persistent organic chemicals are pesticides. Classes of organic pesticides (consisting of organic molecules) include organochlorine, organophosphate, organometallic, pyrethroids, and carbamates among others (2, 3). Most pesticides cause adverse effects when reaching organisms. The intensity of the toxic effect varies with time, dose, organism characteristics, environmental presence or pesticide characteristics. Their presence in environment determines the dose and time at which an organism is exposed and could represent a hazard for worldwide life due to their mobility. Hence, the persistence in the environment leads to a risk for life: the more persistent a pesticide is, the worse its environmental impact. Pesticide persistence in environment is caused by either their physico-chemical properties or the lack of organisms able to degrade them.
    [Show full text]
  • Impact of the Age of Particulates on the Bioremediation of Crude Oil Polluted Soil
    IOSR Journal of Applied Chemistry (IOSR-JAC) e-ISSN: 2278-5736.Volume 7, Issue 11 Ver. I. (Nov. 2014), PP 24-33 www.iosrjournals.org Impact of the Age of Particulates on the Bioremediation of Crude Oil Polluted Soil 1Onakughotor Ejiro Dennis, 2Aguele Precious Osatohamhen 1Petroleum And Natural Gas Processing Department Petroleum Training Institute Effurun, Delta State, Nigeria. Abstract: This study was conducted to investigate the effect of the age of poultry manure particulate on the bioremediation process of crude oil contaminated soil. pH, Total Hydrocarbon Content(THC) and Total Microbial Count(TMC) were measured to monitor the performance of four soil samples weighing 4kg each. These samples were polluted with 0.2kg of crude oil per kilogram soil; and amended with particulates and fertilizer of 0.2kg and 0.08kg per kilogram soil respectively. The age of particulate used in each sample varied in no particular order from 3days to 126 days. The study lasted 8weeks. Results obtained showed 99.17 %(84.10-0.70mg/kg), 98.07%(82.90-1.60mg/kg), 98.69%(84.10-1.10mg/kg) and 97.72% (83.40-1.90mg/kg) drop in Total Hydrocarbon Content for samples A,B,C and D respectively.THC for all samples fell below the FEPA limit of 10mg/l on closure. Sample A had the highest TMC 3.0x106cfu/g; while D had the least, 2.2x106cfu/g. The pH of all samples at the end of the study (6.5-6.9) fell within the range specified by FEPA (6- 9). The overall data suggested that lower aged poultry manure particulates did best and be employed in the amendment of crude oil polluted soil.
    [Show full text]
  • Mycoremediation Applications for Stormwater Management
    Mycoremediation Applications for Stormwater Management Design Challenge: Airport Environmental Interactions; Innovative methods for stormwater management at airports Team Members (All Undergraduate): Gray Bender, Austin Bennett, Kevin Cooper, Melanie Dickison, Leopold Kisielinski, Erica Wiener University: University of Colorado, Boulder Advisor: Christopher Corwin, PhD Table of Contents Executive Summary ........................................................................................................................ 4 1.0 Problem Statement and Background .................................................................................... 5 2.0 Problem Solving and Design Approach ............................................................................... 7 3.0 Summaries of Literature Review ......................................................................................... 9 3.1 Bioretention ...................................................................................................................... 9 3.1.1 Background ................................................................................................................... 9 3.1.2 Case Studies ................................................................................................................ 11 3.2 Chemical Addition ......................................................................................................... 15 3.2.1 Background ................................................................................................................
    [Show full text]
  • Use of Nanotechnology for the Bioremediation of Contaminants: a Review
    processes Review Use of Nanotechnology for the Bioremediation of Contaminants: A Review Edgar Vázquez-Núñez 1,* , Carlos Eduardo Molina-Guerrero 1, Julián Mario Peña-Castro 2, Fabián Fernández-Luqueño 3 and Ma. Guadalupe de la Rosa-Álvarez 1 1 Departamento de Ingenierías Química, Electrónica y Biomédica, División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Lomas del Bosque 103, Lomas del Campestre, León, Guanajuato C.P. 37150, Mexico; cmolina@fisica.ugto.mx (C.E.M.-G.); [email protected] (M.G.d.l.R.-Á.) 2 Laboratorio de Biotecnología Vegetal, Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec, Oaxaca C.P. 68333, Mexico; [email protected] 3 Programas en Sustentabilidad de los Recursos Naturales y Energía, Cinvestav Saltillo Industrial, Parque Industrial, Ramos Arizpe, Coahuila C.P. 25900, Mexico; [email protected] * Correspondence: edgarvqznz@fisica.ugto.mx Received: 22 May 2020; Accepted: 8 July 2020; Published: 13 July 2020 Abstract: Contaminants, organic or inorganic, represent a threat for the environment and human health and in recent years their presence and persistence has increased rapidly. For this reason, several technologies including bioremediation in combination with nanotechnology have been explored to identify more systemic approaches for their removal from environmental matrices. Understanding the interaction between the contaminant, the microorganism, and the nanomaterials (NMs) is of crucial importance since positive and negative effects may be produced. For example, some nanomaterials are stimulants for microorganisms, while others are toxic. Thus, proper selection is of paramount importance. The main objective of this review was to analyze the principles of bioremediation assisted by nanomaterials, nanoparticles (NPs) included, and their interaction with environmental matrices.
    [Show full text]
  • Evaluation of Fungcoal As a Bioprocess Technology for Self-Cladding of Waste Coal Dumps
    Evaluation of Fungcoal as a bioprocess technology for self-cladding of waste coal dumps A thesis submitted in fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY (Environmental Biotechnology) of Rhodes University By Lerato M. Sekhohola FEBRUARY 2015 1 Abstract Low-grade coal, a poor source of energy, has long been regarded as waste material by the coal mining industry. Biological degradation of this coal material by ligninolytic fungal strains presents a viable strategy towards eliminating this unusable fossil fuel. To this end, a novel and patented bioprocess termed Fungcoal was developed. Fungcoal is a biological process utilised in the in situ treatment of waste coal and is based on the mutualistic relationship between the fungus Neosartorya fischeri and the graminaceous species Cynodon dactylon. The process facilitates the rapid conversion of waste coal into soil-like material that stimulates establishment of vegetation for eventual coal dump rehabilitation. While a number of in vitro studies have identified various fungal strains as efficient coal degraders, the mechanisms involved in the Fungcoal-stimulated degradation process have not been fully elucidated. Furthermore, implementation of Fungcoal at both pilot and commercial scale has not been achieved. Thus the objective of this work was to investigate Fungcoal as a bioprocess via examining the role of coal degrading fungi (CDF) and grasses as biocatalysts in coal biodegradation and for the self-cladding of waste coal dumps. Initially, waste coal degradation by N. fischeri, strain ECCN 84, was investigated, specifically focusing on the mechanisms underpinning the process. In vitro studies showed the addition of waste coal induced active fungal colonisation resulting in increased fungal biomass.
    [Show full text]
  • Reference Guide to Non-Combustion Technologies for Remediation of Persistent Organic Pollutants in Soil, Second Edition – 2010
    Reference Guide to Non-combustion TechnologiesTechnologies for Remediation of Persistent Organic PollutantsPollutants in Soil, SecondS Edition - 2010 ts B an ii ta oa llu ac ll cc o u P m iic u n lla a t g tii rr o O n O tt g a yc llii n n ll c y attii on n e na orra d tt sso ap a ev ss e d B ii ss nd ee a ss udd nn ii r iitt u tiioo oo r tt siit HighHiHig latitudes e ll a a os m e -- po iidd ep DepositionDDe > evaporation PP e a M dd a ff ff o gg o oo nn t r t ii ss r High mobility oo High mobility ff ii ee pp ss cc cc ee nn aa gg aa rr Relatively high mobility rr Long-range Relatively high mobility n t Long-range n t t t aa uu i r cc i r i oceanic i oceanic o - - o rr o o gg ee transport Low mobility n transport n n n h h S o S o p p L L s s o o m m m m m m m m t t t t t t t t t a a a a a a Low latitudes t t Deposition > evaporation c Deposition > evaporation c ee ff ff ee ”” gg iinn p pp op sh as Grr ll ““G a iic T m h e e h n e C iio rm ll-C tt a a a ll iic ad ys ra h eg P De B iiore ogy med hnoll diiatiion Phytotech RR eemme giieess eddiiaattiioonn TTeecchhnnoolloog Solid Waste EPA 542-R-09-007 and Emergency Response September 2010 (5203P) www.clu-in.org/POPs Reference Guide to Non-combustion Technologies for Remediation of Persistent Organic Pollutants in Soil, Second Edition – 2010 Internet Address (URL) http://www.epa.gov Recycled/Recyclable.
    [Show full text]
  • Floating Treatment Wetlands and Plant Bioremediation: Nutrient Treatment in Eutrophic Freshwater Lakes
    Floating Treatment Wetlands and Plant Bioremediation: Nutrient treatment in eutrophic freshwater lakes AN IISD-ELA AND PELICAN LAKE, MANITOBA CASE STUDY Richard Grosshans Kimberly Lewtas Geoffrey Gunn Madeline Stanley © 2019 International Institute for Sustainable Development | IISD.org/ela October 2019 Floating Treatment Wetlands and Plant Bioremediation: Nutrient treatment in eutrophic freshwater lakes © 2019 International Institute for Sustainable Development Published by the International Institute for Sustainable Development International Institute for Sustainable Development The International Institute for Sustainable Development (IISD) is an Head Office independent think tank championing sustainable solutions to 21st–century 111 Lombard Avenue, Suite 325 problems. Our mission is to promote human development and environmental Winnipeg, Manitoba sustainability. We do this through research, analysis and knowledge products Canada R3B 0T4 that support sound policy-making. Our big-picture view allows us to address the root causes of some of the greatest challenges facing our planet today: Tel: +1 (204) 958-7700 ecological destruction, social exclusion, unfair laws and economic rules, a Website: www.iisd.org changing climate. IISD’s staff of over 120 people, plus over 50 associates and Twitter: @IISD_news 100 consultants, come from across the globe and from many disciplines. Our work affects lives in nearly 100 countries. Part scientist, part strategist—IISD delivers the knowledge to act. IISD is registered as a charitable organization in Canada and has 501(c)(3) status in the United States. IISD receives core operating support from the Province of Manitoba and project funding from numerous governments inside and outside Canada, United Nations agencies, foundations, the private sector and individuals. About IISD-ELA IISD Experimental Lakes Area (IISD-ELA) is the world’s freshwater IISD-ELA laboratory.
    [Show full text]
  • Oil Spills Bioremediation in Marine Environment-Biofilm Characterization Around Oil Droplets
    Oil spills bioremediation in marine environment-biofilm characterization around oil droplets Βιοαποδόμηση πετρελαιοειδών σε θαλάσσιο περιβάλλον - Χαρακτηρισμός σχηματισμού βιοστιβάδας σε σταγονίδια υδρογονανθράκων i ii Examination Committee Nicolas Kalogerakis – Supervisor Professor, Division II: Environmental Process Design and Analysis, School of Environmental Engineering, Technical University of Crete, Chania, Greece Nikos Pasadakis – Advisory Committee Associate Professor School of Mineral Resources Engineering, Technical University of Crete, Chania, Greece Dr. Thomas R. Neu – Advisory Committee Head of Group - Microbiology of Interfaces, Department River Ecology, Helmholtz Centre for Environmental Research – UFZ, Magdeburg, Germany Evangelos Gidarakos Professor, Division I: Environmental Management School of Environmental Engineering, Technical University of Crete, Chania, Greece Elia Psillakis Associate Professor, Division II: Environmental Process Design and Analysis School of Environmental Engineering, Technical University of Crete, Chania, Greece Danae Venieri Assistant Professor, Division II: Environmental Process Design and Analysis School of Environmental Engineering, Technical University of Crete, Chania, Greece Marina Pantazidou Associate Professor Department of Geotechnical Engineering, School of Civil Engineering, National Technical University of Athens, Athens, Greece iii iv Acknowledgments This work was funded by FP-7 PROJECT No. 266473 “Unravelling and exploiting Mediterranean Sea microbial diversity and ecology for xenobiotics’ and pollutants’ clean up” – ULIXES and by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund. First I would like to express my gratitude to my supervisor professor N. Kalogerakis for his support, advice and guidance in completing this study.
    [Show full text]