Preliminary Design of a Very-Low-Thrust Geostationary Transfer Orbit to Sun-Synchronous Orbit Small Satellite Transfer

Total Page:16

File Type:pdf, Size:1020Kb

Preliminary Design of a Very-Low-Thrust Geostationary Transfer Orbit to Sun-Synchronous Orbit Small Satellite Transfer Preliminary design of a Very-Low-Thrust Geostationary Transfer Orbit to Sun-Synchronous Orbit Small Satellite Transfer Author: Chris Rampersad Advisor: Prof. C. Damaren University of Toronto Institute for Aerospace Studies 4925 Du®erin Street Toronto, ON M3H 5T6 Canada Abstract Small satellites have proven their viability for conducting meaningful missions at a fraction of the cost of larger satellites. Correspondingly, the demand for small satellite missions is increasing as is the need for more sophisticated low-cost satellites. To enable these more advanced missions, this paper analyzes the feasibility of using a low-thrust propulsion system to transfer to a mission orbit from a readily available launch opportunity. Speci¯cally, a geosynchronous transfer orbit (GTO) launch to a sun-synchronous orbit (SSO) small satellite trajectory is examined. The transfer from GTO to SSO orbit is designed using a direct optimization method. Due to the very low thrust levels, the transfer time to obtain the operational orbit is long (»360 days) with numerous orbit revolutions (1400). To solve this extremely large optimization problem, a new multiple-orbit thrust parameterization strategy was developed. This new method has proven to be very robust and capable of handling large complex problems. Preliminary trajectory design shows that mission feasibility for a 100 kg small satellite GTO-SSO transfer greatly depends on the propulsion system's speci¯c impulse. 1 Introduction geostationary transfer orbit (GTO) and then using a low-thrust propulsion system to reach the mis- Due to the high cost of satellite missions, sev- sion orbit. Since many GTO launches take place eral strategies are typically used to yield low-cost each year, there should be ample secondary pay- missions. Some of these initiatives include using load launch opportunities. Furthermore, due to the smaller satellites with lower development costs, us- availability of GTO launches, these secondary pay- ing low-thrust propulsion systems with decreased load opportunities would likely be lower in cost than fuel requirements, and using secondary payload op- a dedicated secondary launch opportunity to a tar- portunities for launch to reduce launch costs. A get orbit. combination of these three strategies could provide In this GTO launch strategy, the satellite would substantial cost savings but mission studies would perform an orbital transfer from GTO to obtain ¯rst be needed to determine the feasibility for these its operational sun-synchronous orbit (SSO). While types of missions. simple in concept, the mission analysis involved The Canadian Space Agency (CSA) has recently is extremely complicated due to the large out-of- initiated a program to support the development of plane and in-plane changes required and the very small satellites. Over the next ten years, a variety low thrust levels available for a small satellite. To of small and micro-satellite missions are expected determine the feasibility of this concept, this pa- to be launched. A main objective of this program per explores the preliminary trajectory design for a is to provide low-cost access for science and technol- GTO to SSO small satellite with low-thrust engines. ogy demonstration missions. One potential concept involves sending a small satellite into a non-ideal 1 2 Trajectory Optimization 3 Solution Procedure Averaging methods have been successfully applied There are essentially two types of strategies that in the literature to produce computationally fast so- are used to design and optimize low-thrust trajec- lutions for very large trajectory problems [5], [6], [7], tories. A continuous formulation of the optimal [8]. However, a new approach is developed here to control problem, known as the \indirect" method, solve highly complex and very large trajectory prob- uses the calculus of variations to derive the nec- lems using direct methods. In this new multiple- essary conditions for optimality. This leads to a orbit thrust parameterization strategy, the thrust two-point boundary-value problem, which is gener- pro¯le is parameterized for a single orbit and is re- ally di±cult to solve except for simple cases. This peated for multiple orbit revolutions. Thus, instead approach has the bene¯t of requiring only a small of parameterizing controls evenly over the whole number of variables. However, the indirect method trajectory, the controls are parameterized every sev- often lacks robustness and is extremely sensitive to eral orbits, greatly reducing the required number the initial guess of the optimization variables. of optimization variables. Since the thrust is not Alternatively in the \direct" method, the con- parameterized evenly throughout the transfer, the trols of the optimal control problem are discretized solution will not exhibit the same degree of opti- to yield a parameter optimization problem. Typi- mality as solutions with thousands of optimization cally, the thrust magnitude and direction is param- variables or continuous thrust formulations. How- eterized at discrete points (spaced evenly in time ever, due to the slowly changing nature of low- or angle) throughout the trajectory. Numerical op- thrust transfers, this strategy provides a reasonable timization routines are then used to determine the approximation to the optimal solution and greatly optimal set of parameterized controls for the spe- reduces the computational load. ci¯c transfer problem. The direct method is signif- One bene¯t of the multiple-orbit thrust param- icantly more robust than the indirect method since eterization strategy is that lunar and solar grav- it does not require the solutions to the control and itational e®ects can be readily modeled. Thus, adjoint equations. Instead, the objective function is this strategy could also be used to design very- minimized through a sequence of control updates. low-thrust small satellite lunar missions. Addition- The drawback of the direct method is that it re- ally, this strategy could be used to perform high- quires a large number of optimization variables to ¯delity mission planning if perturbations due to parameterize the controls and generally its results the Earth's non-sphericity were also included. An- are slightly less accurate than the indirect formula- other potential bene¯t of this approach is that it tion. produces minimum-fuel transfers as opposed to the For the current mission study, the transfer from minimum-time transfers that are typically associ- GTO to SSO is highly complex. As a result, this ated with averaging methods. Minimum-fuel trans- transfer problem would be extremely di±cult to fers using averaging methods have been solved in optimize by indirect methods. Furthermore, us- the literature, but they involve optimizing a non- ing a standard direct method approach to compute linear switching function to determine the thrust this transfer would present an overwhelming com- and coast phases. This switching function increases putational burden due to the large number of op- the complexity of the trajectory optimization; thus, timization variables that are required. One of the minimum-fuel averaging methods may be incapable largest direct method low-thrust satellite transfer of solving a GTO-SSO small satellite transfer. problems found in the literature required over 578 orbit revolutions to complete and 416,000 variables 3.1 Satellite model to solve [1]. Other direct methods in the literature In the present study, the initial mass of the satellite had transfers with 100 orbit revolutions and less is taken to be 100 kg. The low-thrust propulsion [2], [3], [4]. The current small-satellite problem is system was modelled as variable thrust with the signi¯cantly more complicated and requires many magnitude of the thrust, T , given by: more revolutions to complete the transfer. In the present study, a new approach is employed, whereby T = 2´P=c (1) a multiple-orbit thrust parameterization strategy is used in order to solve this very-low-thrust transfer where ´ is the engine e±ciency, P is the input problem. power, c = gslIsp is the exhaust velocity, gsl is the 2 gravity at sea-level. The thrust was allowed to vary tion are signi¯cantly more complex and compu- between zero and 25 mN and the Isp was assumed tationally demanding than the cartesian counter- to be ¯xed. parts. However, the cartesian equations are not The propellant mass flow rate,m _ , for the low- necessarily the preferred choice for modeling a satel- thrust engines is calculated as follows: lite's trajectory. Since the cartesian equations of motion change very quickly with time, small step T 2´P sizes are needed to numerically propagate the equa- m_ = = 2 (2) c c tions. Alternatively, equinoctial elements change 3.2 State Representation much more slowly with time, which allows large step sizes to be used for numerical propagation. To de- A satellite's trajectory can be modeled with one of termine the most appropriate state representation, several state representations (i.e., classical orbital the equinoctial and cartesian coordinates were com- elements, cartesian coordinates or equinoctial ele- pared through a many-revolution transfer test case. ments). Due to the large problem size of the GTO- The test case involves a satellite which begins in SSO satellite transfer, it is imperative that the most a geostationary orbit (GEO) and uses constant cir- e±cient state representation be chosen in order to cumferential thrusting for a 130-day period. Due to reduce computational cost. Classical orbital ele- the low thrust, the transfer consists of many orbit ments have a convenient intuitive representation; revolutions, which makes it sensitive to step size. however, they are not suitable for all satellite simu- Tables 1 and 2 below, present the ¯nal state (given lations due to the singularities in circular (e=0) and in orbital elements for consistency) as a function fundamental-plane (i=0) orbits. To accommodate of integration steps for equinoctial and cartesian these types of orbits, a modi¯ed set of equinoctial states, respectively.
Recommended publications
  • AAS 13-250 Hohmann Spiral Transfer with Inclination Change Performed
    AAS 13-250 Hohmann Spiral Transfer With Inclination Change Performed By Low-Thrust System Steven Owens1 and Malcolm Macdonald2 This paper investigates the Hohmann Spiral Transfer (HST), an orbit transfer method previously developed by the authors incorporating both high and low- thrust propulsion systems, using the low-thrust system to perform an inclination change as well as orbit transfer. The HST is similar to the bi-elliptic transfer as the high-thrust system is first used to propel the spacecraft beyond the target where it is used again to circularize at an intermediate orbit. The low-thrust system is then activated and, while maintaining this orbit altitude, used to change the orbit inclination to suit the mission specification. The low-thrust system is then used again to reduce the spacecraft altitude by spiraling in-toward the target orbit. An analytical analysis of the HST utilizing the low-thrust system for the inclination change is performed which allows a critical specific impulse ratio to be derived determining the point at which the HST consumes the same amount of fuel as the Hohmann transfer. A critical ratio is found for both a circular and elliptical initial orbit. These equations are validated by a numerical approach before being compared to the HST utilizing the high-thrust system to perform the inclination change. An additional critical ratio comparing the HST utilizing the low-thrust system for the inclination change with its high-thrust counterpart is derived and by using these three critical ratios together, it can be determined when each transfer offers the lowest fuel mass consumption.
    [Show full text]
  • Low-Energy Lunar Trajectory Design
    LOW-ENERGY LUNAR TRAJECTORY DESIGN Jeffrey S. Parker and Rodney L. Anderson Jet Propulsion Laboratory Pasadena, California July 2013 ii DEEP SPACE COMMUNICATIONS AND NAVIGATION SERIES Issued by the Deep Space Communications and Navigation Systems Center of Excellence Jet Propulsion Laboratory California Institute of Technology Joseph H. Yuen, Editor-in-Chief Published Titles in this Series Radiometric Tracking Techniques for Deep-Space Navigation Catherine L. Thornton and James S. Border Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation Theodore D. Moyer Bandwidth-Efficient Digital Modulation with Application to Deep-Space Communication Marvin K. Simon Large Antennas of the Deep Space Network William A. Imbriale Antenna Arraying Techniques in the Deep Space Network David H. Rogstad, Alexander Mileant, and Timothy T. Pham Radio Occultations Using Earth Satellites: A Wave Theory Treatment William G. Melbourne Deep Space Optical Communications Hamid Hemmati, Editor Spaceborne Antennas for Planetary Exploration William A. Imbriale, Editor Autonomous Software-Defined Radio Receivers for Deep Space Applications Jon Hamkins and Marvin K. Simon, Editors Low-Noise Systems in the Deep Space Network Macgregor S. Reid, Editor Coupled-Oscillator Based Active-Array Antennas Ronald J. Pogorzelski and Apostolos Georgiadis Low-Energy Lunar Trajectory Design Jeffrey S. Parker and Rodney L. Anderson LOW-ENERGY LUNAR TRAJECTORY DESIGN Jeffrey S. Parker and Rodney L. Anderson Jet Propulsion Laboratory Pasadena, California July 2013 iv Low-Energy Lunar Trajectory Design July 2013 Jeffrey Parker: I dedicate the majority of this book to my wife Jen, my best friend and greatest support throughout the development of this book and always.
    [Show full text]
  • Astrodynamics
    Politecnico di Torino SEEDS SpacE Exploration and Development Systems Astrodynamics II Edition 2006 - 07 - Ver. 2.0.1 Author: Guido Colasurdo Dipartimento di Energetica Teacher: Giulio Avanzini Dipartimento di Ingegneria Aeronautica e Spaziale e-mail: [email protected] Contents 1 Two–Body Orbital Mechanics 1 1.1 BirthofAstrodynamics: Kepler’sLaws. ......... 1 1.2 Newton’sLawsofMotion ............................ ... 2 1.3 Newton’s Law of Universal Gravitation . ......... 3 1.4 The n–BodyProblem ................................. 4 1.5 Equation of Motion in the Two-Body Problem . ....... 5 1.6 PotentialEnergy ................................. ... 6 1.7 ConstantsoftheMotion . .. .. .. .. .. .. .. .. .... 7 1.8 TrajectoryEquation .............................. .... 8 1.9 ConicSections ................................... 8 1.10 Relating Energy and Semi-major Axis . ........ 9 2 Two-Dimensional Analysis of Motion 11 2.1 ReferenceFrames................................. 11 2.2 Velocity and acceleration components . ......... 12 2.3 First-Order Scalar Equations of Motion . ......... 12 2.4 PerifocalReferenceFrame . ...... 13 2.5 FlightPathAngle ................................. 14 2.6 EllipticalOrbits................................ ..... 15 2.6.1 Geometry of an Elliptical Orbit . ..... 15 2.6.2 Period of an Elliptical Orbit . ..... 16 2.7 Time–of–Flight on the Elliptical Orbit . .......... 16 2.8 Extensiontohyperbolaandparabola. ........ 18 2.9 Circular and Escape Velocity, Hyperbolic Excess Speed . .............. 18 2.10 CosmicVelocities
    [Show full text]
  • Optimisation of Propellant Consumption for Power Limited Rockets
    Delft University of Technology Faculty Electrical Engineering, Mathematics and Computer Science Delft Institute of Applied Mathematics Optimisation of Propellant Consumption for Power Limited Rockets. What Role do Power Limited Rockets have in Future Spaceflight Missions? (Dutch title: Optimaliseren van brandstofverbruik voor vermogen gelimiteerde raketten. De rol van deze raketten in toekomstige ruimtevlucht missies. ) A thesis submitted to the Delft Institute of Applied Mathematics as part to obtain the degree of BACHELOR OF SCIENCE in APPLIED MATHEMATICS by NATHALIE OUDHOF Delft, the Netherlands December 2017 Copyright c 2017 by Nathalie Oudhof. All rights reserved. BSc thesis APPLIED MATHEMATICS \ Optimisation of Propellant Consumption for Power Limited Rockets What Role do Power Limite Rockets have in Future Spaceflight Missions?" (Dutch title: \Optimaliseren van brandstofverbruik voor vermogen gelimiteerde raketten De rol van deze raketten in toekomstige ruimtevlucht missies.)" NATHALIE OUDHOF Delft University of Technology Supervisor Dr. P.M. Visser Other members of the committee Dr.ir. W.G.M. Groenevelt Drs. E.M. van Elderen 21 December, 2017 Delft Abstract In this thesis we look at the most cost-effective trajectory for power limited rockets, i.e. the trajectory which costs the least amount of propellant. First some background information as well as the differences between thrust limited and power limited rockets will be discussed. Then the optimal trajectory for thrust limited rockets, the Hohmann Transfer Orbit, will be explained. Using Optimal Control Theory, the optimal trajectory for power limited rockets can be found. Three trajectories will be discussed: Low Earth Orbit to Geostationary Earth Orbit, Earth to Mars and Earth to Saturn. After this we compare the propellant use of the thrust limited rockets for these trajectories with the power limited rockets.
    [Show full text]
  • Up, Up, and Away by James J
    www.astrosociety.org/uitc No. 34 - Spring 1996 © 1996, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. Up, Up, and Away by James J. Secosky, Bloomfield Central School and George Musser, Astronomical Society of the Pacific Want to take a tour of space? Then just flip around the channels on cable TV. Weather Channel forecasts, CNN newscasts, ESPN sportscasts: They all depend on satellites in Earth orbit. Or call your friends on Mauritius, Madagascar, or Maui: A satellite will relay your voice. Worried about the ozone hole over Antarctica or mass graves in Bosnia? Orbital outposts are keeping watch. The challenge these days is finding something that doesn't involve satellites in one way or other. And satellites are just one perk of the Space Age. Farther afield, robotic space probes have examined all the planets except Pluto, leading to a revolution in the Earth sciences -- from studies of plate tectonics to models of global warming -- now that scientists can compare our world to its planetary siblings. Over 300 people from 26 countries have gone into space, including the 24 astronauts who went on or near the Moon. Who knows how many will go in the next hundred years? In short, space travel has become a part of our lives. But what goes on behind the scenes? It turns out that satellites and spaceships depend on some of the most basic concepts of physics. So space travel isn't just fun to think about; it is a firm grounding in many of the principles that govern our world and our universe.
    [Show full text]
  • Positioning: Drift Orbit and Station Acquisition
    Orbits Supplement GEOSTATIONARY ORBIT PERTURBATIONS INFLUENCE OF ASPHERICITY OF THE EARTH: The gravitational potential of the Earth is no longer µ/r, but varies with longitude. A tangential acceleration is created, depending on the longitudinal location of the satellite, with four points of stable equilibrium: two stable equilibrium points (L 75° E, 105° W) two unstable equilibrium points ( 15° W, 162° E) This tangential acceleration causes a drift of the satellite longitude. Longitudinal drift d'/dt in terms of the longitude about a point of stable equilibrium expresses as: (d/dt)2 - k cos 2 = constant Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF EARTH ASPHERICITY VARIATION IN THE LONGITUDINAL ACCELERATION OF A GEOSTATIONARY SATELLITE: Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF SUN & MOON ATTRACTION Gravitational attraction by the sun and moon causes the satellite orbital inclination to change with time. The evolution of the inclination vector is mainly a combination of variations: period 13.66 days with 0.0035° amplitude period 182.65 days with 0.023° amplitude long term drift The long term drift is given by: -4 dix/dt = H = (-3.6 sin M) 10 ° /day -4 diy/dt = K = (23.4 +.2.7 cos M) 10 °/day where M is the moon ascending node longitude: M = 12.111 -0.052954 T (T: days from 1/1/1950) 2 2 2 2 cos d = H / (H + K ); i/t = (H + K ) Depending on time within the 18 year period of M d varies from 81.1° to 98.9° i/t varies from 0.75°/year to 0.95°/year Orbits Supplement GEO PERTURBATIONS (CONT'D) INFLUENCE OF SUN RADIATION PRESSURE Due to sun radiation pressure, eccentricity arises: EFFECT OF NON-ZERO ECCENTRICITY L = difference between longitude of geostationary satellite and geosynchronous satellite (24 hour period orbit with e0) With non-zero eccentricity the satellite track undergoes a periodic motion about the subsatellite point at perigee.
    [Show full text]
  • Satellite Orbits
    Course Notes for Ocean Colour Remote Sensing Course Erdemli, Turkey September 11 - 22, 2000 Module 1: Satellite Orbits prepared by Assoc Professor Mervyn J Lynch Remote Sensing and Satellite Research Group School of Applied Science Curtin University of Technology PO Box U1987 Perth Western Australia 6845 AUSTRALIA tel +618-9266-7540 fax +618-9266-2377 email <[email protected]> Module 1: Satellite Orbits 1.0 Artificial Earth Orbiting Satellites The early research on orbital mechanics arose through the efforts of people such as Tyco Brahe, Copernicus, Kepler and Galileo who were clearly concerned with some of the fundamental questions about the motions of celestial objects. Their efforts led to the establishment by Keppler of the three laws of planetary motion and these, in turn, prepared the foundation for the work of Isaac Newton who formulated the Universal Law of Gravitation in 1666: namely, that F = GmM/r2 , (1) Where F = attractive force (N), r = distance separating the two masses (m), M = a mass (kg), m = a second mass (kg), G = gravitational constant. It was in the very next year, namely 1667, that Newton raised the possibility of artificial Earth orbiting satellites. A further 300 years lapsed until 1957 when the USSR achieved the first launch into earth orbit of an artificial satellite - Sputnik - occurred. Returning to Newton's equation (1), it would predict correctly (relativity aside) the motion of an artificial Earth satellite if the Earth was a perfect sphere of uniform density, there was no atmosphere or ocean or other external perturbing forces. However, in practice the situation is more complicated and prediction is a less precise science because not all the effects of relevance are accurately known or predictable.
    [Show full text]
  • Sun-Synchronous Satellites
    Topic: Sun-synchronous Satellites Course: Remote Sensing and GIS (CC-11) M.A. Geography (Sem.-3) By Dr. Md. Nazim Professor, Department of Geography Patna College, Patna University Lecture-3 Concept: Orbits and their Types: Any object that moves around the Earth has an orbit. An orbit is the path that a satellite follows as it revolves round the Earth. The plane in which a satellite always moves is called the orbital plane and the time taken for completing one orbit is called orbital period. Orbit is defined by the following three factors: 1. Shape of the orbit, which can be either circular or elliptical depending upon the eccentricity that gives the shape of the orbit, 2. Altitude of the orbit which remains constant for a circular orbit but changes continuously for an elliptical orbit, and 3. Angle that an orbital plane makes with the equator. Depending upon the angle between the orbital plane and equator, orbits can be categorised into three types - equatorial, inclined and polar orbits. Different orbits serve different purposes. Each has its own advantages and disadvantages. There are several types of orbits: 1. Polar 2. Sunsynchronous and 3. Geosynchronous Field of View (FOV) is the total view angle of the camera, which defines the swath. When a satellite revolves around the Earth, the sensor observes a certain portion of the Earth’s surface. Swath or swath width is the area (strip of land of Earth surface) which a sensor observes during its orbital motion. Swaths vary from one sensor to another but are generally higher for space borne sensors (ranging between tens and hundreds of kilometers wide) in comparison to airborne sensors.
    [Show full text]
  • Spacex Rocket Data Satisfies Elementary Hohmann Transfer Formula E-Mail: [email protected] and [email protected]
    IOP Physics Education Phys. Educ. 55 P A P ER Phys. Educ. 55 (2020) 025011 (9pp) iopscience.org/ped 2020 SpaceX rocket data satisfies © 2020 IOP Publishing Ltd elementary Hohmann transfer PHEDA7 formula 025011 Michael J Ruiz and James Perkins M J Ruiz and J Perkins Department of Physics and Astronomy, University of North Carolina at Asheville, Asheville, NC 28804, United States of America SpaceX rocket data satisfies elementary Hohmann transfer formula E-mail: [email protected] and [email protected] Printed in the UK Abstract The private company SpaceX regularly launches satellites into geostationary PED orbits. SpaceX posts videos of these flights with telemetry data displaying the time from launch, altitude, and rocket speed in real time. In this paper 10.1088/1361-6552/ab5f4c this telemetry information is used to determine the velocity boost of the rocket as it leaves its circular parking orbit around the Earth to enter a Hohmann transfer orbit, an elliptical orbit on which the spacecraft reaches 1361-6552 a high altitude. A simple derivation is given for the Hohmann transfer velocity boost that introductory students can derive on their own with a little teacher guidance. They can then use the SpaceX telemetry data to verify the Published theoretical results, finding the discrepancy between observation and theory to be 3% or less. The students will love the rocket videos as the launches and 3 transfer burns are very exciting to watch. 2 Introduction Complex 39A at the NASA Kennedy Space Center in Cape Canaveral, Florida. This launch SpaceX is a company that ‘designs, manufactures and launches advanced rockets and spacecraft.
    [Show full text]
  • Results of Long-Duration Simulation of Distant Retrograde Orbits
    aerospace Article Results of Long-Duration Simulation of Distant Retrograde Orbits Gary Turner Odyssey Space Research, 1120 NASA Pkwy, Houston, TX 77058, USA; [email protected] Academic Editor: Konstantinos Kontis Received: 31 July 2016; Accepted: 26 October 2016; Published: 8 November 2016 Abstract: Distant Retrograde Orbits in the Earth–Moon system are gaining in popularity as stable “parking” orbits for various conceptual missions. To investigate the stability of potential Distant Retrograde Orbits, simulations were executed, with propagation running over a thirty-year period. Initial conditions for the vehicle state were limited such that the position and velocity vectors were in the Earth–Moon orbital plane, with the velocity oriented such that it would produce retrograde motion about Moon. The resulting trajectories were investigated for stability in an environment that included the eccentric motion of Moon, non-spherical gravity of Earth and Moon, gravitational perturbations from Sun, Jupiter, and Venus, and the effects of radiation pressure. The results indicate that stability may be enhanced at certain resonant states within the Earth–Moon system. Keywords: Distant Retrograde Orbit; DRO; orbits-stability; radiation pressure; orbits-resonance; dynamics 1. Introduction 1.1. Overview The term Distant Retrograde Orbit (DRO) was introduced by O’Campo and Rosborough [1] to describe a set of trajectories that appeared to orbit the Earth–Moon system in a retrograde sense when compared with the motion of the Earth/Moon around the solar-system barycenter. It has since been extended to be a generic term applied to the motion of a minor body around the three-body system-barycenter where such motion gives the appearance of retrograde motion about the secondary body in the system.
    [Show full text]
  • ORBIT MANOUVERS • Orbital Plane Change (Inclination) It Is an Orbital
    UNIVERSITY OF ANBAR ADVANCED COMMUNICATIONS SYSTEMS FOR 4th CLASS STUDENTS COLLEGE OF ENGINEERING by: Dr. Naser Al-Falahy ELECTRICAL ENGINEERING WE EK 4 ORBIT MANOUVERS Orbital plane change (inclination) It is an orbital maneuver aimed at changing the inclination of an orbiting body's orbit. This maneuver is also known as an orbital plane change as the plane of the orbit is tipped. This maneuver requires a change in the orbital velocity vector (delta v) at the orbital nodes (i.e. the point where the initial and desired orbits intersect, the line of orbital nodes is defined by the intersection of the two orbital planes). In general, inclination changes can take a very large amount of delta v to perform, and most mission planners try to avoid them whenever possible to conserve fuel. This is typically achieved by launching a spacecraft directly into the desired inclination, or as close to it as possible so as to minimize any inclination change required over the duration of the spacecraft life. When both orbits are circular (i.e. e = 0) and have the same radius the Delta-v (Δvi) required for an inclination change (Δvi) can be calculated using: where: v is the orbital velocity and has the same units as Δvi (Δi ) inclination change required. Example Calculate the velocity change required to transfer a satellite from a circular 600 km orbit with an inclination of 28 degrees to an orbit of equal size with an inclination of 20 degrees. SOLUTION, r = (6,378.14 + 600) × 1,000 = 6,978,140 m , ϑ = 28 - 20 = 8 degrees Vi = SQRT[ GM / r ] Vi = SQRT[ 3.986005×1014 / 6,978,140 ] Vi = 7,558 m/s Δvi = 2 × Vi × sin(ϑ/2) Δvi = 2 × 7,558 × sin(8/2) Δvi = 1,054 m/s 18 UNIVERSITY OF ANBAR ADVANCED COMMUNICATIONS SYSTEMS FOR 4th CLASS STUDENTS COLLEGE OF ENGINEERING by: Dr.
    [Show full text]
  • SATELLITES ORBIT ELEMENTS : EPHEMERIS, Keplerian ELEMENTS, STATE VECTORS
    www.myreaders.info www.myreaders.info Return to Website SATELLITES ORBIT ELEMENTS : EPHEMERIS, Keplerian ELEMENTS, STATE VECTORS RC Chakraborty (Retd), Former Director, DRDO, Delhi & Visiting Professor, JUET, Guna, www.myreaders.info, [email protected], www.myreaders.info/html/orbital_mechanics.html, Revised Dec. 16, 2015 (This is Sec. 5, pp 164 - 192, of Orbital Mechanics - Model & Simulation Software (OM-MSS), Sec 1 to 10, pp 1 - 402.) OM-MSS Page 164 OM-MSS Section - 5 -------------------------------------------------------------------------------------------------------43 www.myreaders.info SATELLITES ORBIT ELEMENTS : EPHEMERIS, Keplerian ELEMENTS, STATE VECTORS Satellite Ephemeris is Expressed either by 'Keplerian elements' or by 'State Vectors', that uniquely identify a specific orbit. A satellite is an object that moves around a larger object. Thousands of Satellites launched into orbit around Earth. First, look into the Preliminaries about 'Satellite Orbit', before moving to Satellite Ephemeris data and conversion utilities of the OM-MSS software. (a) Satellite : An artificial object, intentionally placed into orbit. Thousands of Satellites have been launched into orbit around Earth. A few Satellites called Space Probes have been placed into orbit around Moon, Mercury, Venus, Mars, Jupiter, Saturn, etc. The Motion of a Satellite is a direct consequence of the Gravity of a body (earth), around which the satellite travels without any propulsion. The Moon is the Earth's only natural Satellite, moves around Earth in the same kind of orbit. (b) Earth Gravity and Satellite Motion : As satellite move around Earth, it is pulled in by the gravitational force (centripetal) of the Earth. Contrary to this pull, the rotating motion of satellite around Earth has an associated force (centrifugal) which pushes it away from the Earth.
    [Show full text]