Piper Species: a Comprehensive Review on Their Phytochemistry, Biological Activities and Applications

Total Page:16

File Type:pdf, Size:1020Kb

Piper Species: a Comprehensive Review on Their Phytochemistry, Biological Activities and Applications Review Piper Species: A Comprehensive Review on Their Phytochemistry, Biological Activities and Applications Bahare Salehi 1, Zainul Amiruddin Zakaria 2, Rabin Gyawali 3, Salam A. Ibrahim 3, Jovana Rajkovic 4, Zabta Khan Shinwari 5, Tariq Khan 5, Javad Sharifi-Rad 6,*, Adem Ozleyen 7, Elif Turkdonmez 7, Marco Valussi 8,*, Tugba Boyunegmez Tumer 9,*, Lianet Monzote Fidalgo 10, Miquel Martorell 11,* and William N. Setzer 12,13,* 1 Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran; [email protected] 2 Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; [email protected] 3 Department of Food and Nutritional Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA; [email protected] (R.G.); [email protected] (S.A.I.) 4 Institute of Pharmacology, Clinical Pharmacology and Toxicology, Medical Faculty, University of Belgrade, 11129 Belgrade, Serbia; [email protected] 5 Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan; [email protected] (Z.K.S.); [email protected] (T.K.) 6 Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan 35198-99951, Iran 7 Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey; [email protected] (A.O.); [email protected] (E.T.) 8 European Herbal and Traditional Medicine Practitioners Association (EHTPA), 25 Lincoln Close, GL20 5TY Tewkesbury, UK 9 Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey 10 Parasitology Department, Institute of Tropical Medicine “Pedro Kouri”, 10400 Havana, Cuba; [email protected] 11 Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, 4070386 Concepcion, VIII-Bio Bio Region, Chile 12 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA 13 Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA * Correspondence: [email protected] (J.S.-R.); [email protected] (M.V.); [email protected] (T.B.T.); [email protected] (M.M.); [email protected] (W.N.S.); Tel.: +98-21-8820-0104 (J.S.-R.); +39-04592517561 (M.V.); +90-2862180018 ext. 1844 (T.B.T.); +56-41-266-1671 (M.M.); +1-256-824-6519 (W.N.S.) Received: 13 March 2019; Accepted: 3 April 2019; Published: 7 April 2019 Abstract: Piper species are aromatic plants used as spices in the kitchen, but their secondary metabolites have also shown biological effects on human health. These plants are rich in essential oils, which can be found in their fruits, seeds, leaves, branches, roots and stems. Some Piper species have simple chemical profiles, while others, such as Piper nigrum, Piper betle, and Piper auritum, contain very diverse suites of secondary metabolites. In traditional medicine, Piper species have been used worldwide to treat several diseases such as urological problems, skin, liver and stomach ailments, for wound healing, and as antipyretic and anti-inflammatory agents. In addition, Piper species could be used as natural antioxidants and antimicrobial agents in food preservation. The phytochemicals and essential oils of Piper species have shown strong antioxidant activity, in comparison with synthetic antioxidants, and demonstrated antibacterial and antifungal activities against human pathogens. Moreover, Piper species possess therapeutic and preventive potential against several chronic disorders. Among the functional properties of Piper plants/extracts/active Molecules 2019, 24, 1364; doi:10.3390/molecules24071364 www.mdpi.com/journal/molecules Molecules 2019, 24, 1364 2 of 117 components the antiproliferative, anti-inflammatory, and neuropharmacological activities of the extracts and extract-derived bioactive constituents are thought to be key effects for the protection against chronic conditions, based on preclinical in vitro and in vivo studies, besides clinical studies. Habitats and cultivation of Piper species are also covered in this review. In this current work, available literature of chemical constituents of the essential oils Piper plants, their use in traditional medicine, their applications as a food preservative, their antiparasitic activities and other important biological activities are reviewed. Keywords: pepper; essential oil; antimicrobial; traditional medicine; anticancer; anti-inflammatory Table of Contents 1. Introduction ......................................................................................................................................6 2. Habitat and cultivation of Piper plants ...........................................................................................7 2.1. Habitat of Piper nigrum L. .........................................................................................................7 2.2. Cultivation of Piper nigrum L. ..................................................................................................8 3. Chemical constituents of the essential oils of Piper species ...........................................................9 3.1. Piper aduncum L. ...................................................................................................................... 11 3.2. Piper amalago L. ....................................................................................................................... 15 3.3. Piper betle L. ............................................................................................................................. 16 3.4. Piper cubeba Bojer .................................................................................................................... 18 3.5. Piper nigrum L. ........................................................................................................................ 20 3.6. Piper longum L. ........................................................................................................................ 24 3.7. Piper arboreum Aubl. ............................................................................................................... 24 3.8. Piper auritum Kunth ................................................................................................................ 26 3.9. Piper cernuum Vell. .................................................................................................................. 26 3.10. Piper dilatatum Rich. .............................................................................................................. 28 3.11. Piper gaudichaudianum Kunth ............................................................................................... 29 3.12. Piper hispidum Sw. (including references to the synonym Piper hispidinervum C.DC.) ..... 31 3.13. Piper guineense Schumach. & Thonn .................................................................................... 34 3.14. Piper marginatum Jacq. .......................................................................................................... 34 3.15. Piper umbellatum L. ................................................................................................................ 36 3.16. Piper tuberculatum Jacq. ......................................................................................................... 36 3.17. Other Piper species ................................................................................................................ 39 4. Traditional uses of Piper species ................................................................................................... 55 4.1. Piper abbreviatum Opiz ............................................................................................................ 55 Molecules 2019, 24, 1364 3 of 117 4.2. Piper aduncum L. ...................................................................................................................... 55 4.3. Piper boehmeriifolium (Wall. ex Miq.) C.DC. ........................................................................... 56 4.4. Piper sylvaticum Roxb. ............................................................................................................. 56 4.5. Piper capense L.f. ...................................................................................................................... 56 4.6. Piper cubeba L. .......................................................................................................................... 56 4.7. Piper gibbilimbum C.DC. .......................................................................................................... 56 4.8. Piper guineense Schum and Thonn ......................................................................................... 56 4.9. Piper longum L. (syn. P. latifolium Forst.; P. chaba Hunter) .................................................... 57 4.10. Piper nigrum L........................................................................................................................ 57 4.11. Piper cavalcantei Yunck. ......................................................................................................... 58 4.12. Piper marginatum Jacq. .......................................................................................................... 58 4.13. Piper umbellatum L. ...............................................................................................................
Recommended publications
  • INKAMATICO Rev 1: July 11Th, 2014
    PI-100-08 INKAMATICO Rev 1: July 11th, 2014 INKA MATICO is a unique Natural Ingredient, preservative free, organic certifiable, obtained from selected leaves of Piper aduncum (matico), native plant to Peru with a millenary tradition of use to clean the skin of impurities, as skin protector, to healing wounds, as an antiseptic, astringent, and to treat skin problems. INCI Denomination: Propanediol (and) Water (and) Piper Angustifolium Leaf Extract Description of the plant: Family: Piperaceae Botanical name: Piper aduncum Synonyms: Arthante adunca Miq., Piper celtidifolium Kunth., Piper elongatum Vahl. Other names: soldier’s herb, condorcillo, matico, mocco mocco, moho moho (Peru); condorcillo negro, anisillo, potoima rao (which means remedy for indigestion), guayayo, gusanillo, mucumucu, pepper of hooky fruit, black santa maria, shiatani; falso jaborandi; aperta-ruao, longa pepper, or bamboo piper Matico is a shrub up to 5 meters high; the stem is green, knotty, and branched; leaves are alternate, petiolated and simple; axillary or terminal inflorescences in spikes of up to 15 cm. Small flowers with a characteristic odor1. All parts of the plant have a pepper odor.2 Distribution: Matico is native to the Caribbean, but it adapts to the entire tropic. In America, it grows in humid soils from Guatemala to Brazil; it is generally found in places where the climate is mild tropical, but it easily adapts to any climate. It is found up to an altitude of 1200 meters above sea level. It is a pioneer species of the secondary forest. 1 BRACK EGG, (1999), pages 391-392 2 TOPUL R. et al. (2007) Tnte.
    [Show full text]
  • Patchouli Essential Oil Extracted from Pogostemon Cablin (Blanco) Benth
    Advances in Environmental Biology, 8(7) May 2014, Pages: 2301-2309 AENSI Journals Advances in Environmental Biology ISSN-1995-0756 EISSN-1998-1066 Journal home page: http://www.aensiweb.com/aeb.html Characterization and Antimicrobial Activity of Patchouli Essential Oil Extracted From Pogostemon cablin [Blanco] Benth. [lamiaceae] Ahmad Karimi Ph.D. in pharmacy, University of Santo Tomas, Philippines ARTICLE INFO ABSTRACT Article history: The physico-chemical properties of Philippine patchouli oil, hydro-distilled from fresh Received 25 March 2014 leaves and young shoots of Pogostemon cablin were characterized and found to be Received in revised form 20 April within the specifications set by the United States Essential Oils Society. Philippine 2014 patchouli oil and commercial patchouli oil have the same major components as shown Accepted 15 May 2014 by GC-MS analyses: patchouli alcohol, d-guaiene, a-guaiene, a-patchoulene, Available online 10 June 2014 seychellene, [3-patchoulene, and transcaryophylene, with slightly lower concentrations in the Philippine oil. Using the disk diffusion method patchouli oil was found to be Key words: active against the gram-positive bacteria: Staphylococcus, Bacillus, and Streptococcus Pogostemon cablin, patchouli oil, species. Fifty five percent [11/20] of community and only 14.8% [9/61] of hospital- essential oil, antimierobial activity, Staphylococcus aureus isolates were susceptible to an MIC of 0.03% [v/v.] and Sixty- physico-chemical properties four percent or 23/36 of methicillin-resistant Staphylococcus aureus [MRSA] isolates was sensitive to patchouli oil at 0.06%, as opposed to only 44% or 11/25 of the sensitive strains. Philippine patchouli essential oil was also active against several dermatophytes at 0.25%.
    [Show full text]
  • Abstracts of 107Th ISC Environmental Sciences
    Section VII : Environmental Sciences PROCEEDINGS OF THE 107TH INDIAN SCIENCE CONGRESS Bangalore, 2020 PART II SECTION OF ENVIORNMENTAL SCIENCES President: Dr. Ranbeer Singh Rawal CONTENTS I. Presidential Address 5 II. Abstract of Platinum Jubilee Lecture 27 III. Abstracts of Symposium/Invited Lectures 31 IV. Abstract of Oral Presentations 67 V. Abstract of Poster Presentations 119 VI. List of Past Sectional Presidents 269 VII. Authors Index 273 (1) (2) Section VII : Environmental Sciences 107TH INDIAN SCIENCE CONGRESS January 3-7, 2020, Bangalore I PRESIDENTIAL ADDRESS President: Dr. Ranbeer Singh Rawal (3) (4) Section VII : Environmental Sciences PRESIDENTIAL ADDRESS A01: INTEGRATING SCIENCE & TECHNOLOGY IN RURAL TRANSFORMATION -CASE IN POINT INDIAN HIMALAYAN REGION Ranbeer S. Rawal Director, G.B. Pant National Institute of Himalayan Environment & Sustainable Development (GBPNIHESD), Kosi-Katarmal, Almora 263 643, Uttarakhand Email: [email protected] Dignitaries, colleagues, dear students, ladies and gentlemen, on behalf of the Environmental Sciences Section, thank you for taking the time and effort to join us here in this 107th session of Indian Science Congress. Am privileged and honoured to deliver this presidential address to make a justice with the purpose that has attracted all of us here. My attempt here is not to take a deep-dive in science and technology that is the domain of you all, rather I wish to emphasize upon possibilities of integrating S&T for Rural Transformation. I admit, this address does not include any new idea, but it attempts to highlight that path for improved quality of life of India’s rural people passes through S&T interventions.
    [Show full text]
  • Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity
    toxins Article Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity Massimo Picardo 1 , Oscar Núñez 2,3 and Marinella Farré 1,* 1 Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Spain; [email protected] 2 Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08034 Barcelona, Spain; [email protected] 3 Serra Húnter Professor, Generalitat de Catalunya, 08034 Barcelona, Spain * Correspondence: [email protected] Received: 5 October 2020; Accepted: 26 November 2020; Published: 28 November 2020 Abstract: This study presents the application of a suspect screening approach to screen a wide range of natural toxins, including mycotoxins, bacterial toxins, and plant toxins, in surface waters. The method is based on a generic solid-phase extraction procedure, using three sorbent phases in two cartridges that are connected in series, hence covering a wide range of polarities, followed by liquid chromatography coupled to high-resolution mass spectrometry. The acquisition was performed in the full-scan and data-dependent modes while working under positive and negative ionisation conditions. This method was applied in order to assess the natural toxins in the Ter River water reservoirs, which are used to produce drinking water for Barcelona city (Spain). The study was carried out during a period of seven months, covering the expected prior, during, and post-peak blooming periods of the natural toxins. Fifty-three (53) compounds were tentatively identified, and nine of these were confirmed and quantified. Phytotoxins were identified as the most frequent group of natural toxins in the water, particularly the alkaloids group.
    [Show full text]
  • Volatiles of Black Pepper Fruits (Piper Nigrum L.)
    molecules Article Volatiles of Black Pepper Fruits (Piper nigrum L.) Noura S. Dosoky 1 , Prabodh Satyal 1, Luccas M. Barata 2 , Joyce Kelly R. da Silva 2 and William N. Setzer 1,3,* 1 Aromatic Plant Research Center, Suite 100, Lehi, UT 84043, USA; [email protected] (N.S.D.); [email protected] (P.S.) 2 Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; [email protected] (L.M.B.); [email protected] (J.K.R.d.S.) 3 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA * Correspondence: [email protected]; Tel.: +1-256-824-6519 Academic Editor: Francesca Mancianti Received: 4 October 2019; Accepted: 5 November 2019; Published: 21 November 2019 Abstract: Black pepper (Piper nigrum) is historically one of the most important spices and herbal medicines, and is now cultivated in tropical regions worldwide. The essential oil of black pepper fruits has shown a myriad of biological activities and is a commercially important commodity. In this work, five black pepper essential oils from eastern coastal region of Madagascar and six black pepper essential oils from the Amazon region of Brazil were obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry. The major components of the essential oils were α-pinene, sabinene, β-pinene, δ-3-carene, limonene, and β-caryophyllene. A comparison of the Madagascar and Brazilian essential oils with black pepper essential oils from various geographical regions reported in the literature was carried out. A hierarchical cluster analysis using the data obtained in this study and those reported in the literature revealed four clearly defined clusters based on the relative concentrations of the major components.
    [Show full text]
  • Lecture 6 OTC GERD/Heartburn Meghji
    Lecture 6 OTC GERD/Heartburn Meghji GASTROESOPHAGEAL REFLUX DISEASE: ALARM SYMPTOMS & WHEN TO REFER: • “A condition that develops when the reflux • Chest pain: radiating pain to shoulders, neck, arm, SOB, sweating of stomach contents causes troublesome • Vomiting: continuous/recurrent symptoms and/or complications” • GI blood loss: hematemesis, melena WHY CHECK FOR ALARM SX? (Montreal Classification) • Dysphagia (difficulty swallowing), especially solids Symptoms could be due or lead to: • Most common symptoms for mild GERD: • Odynophagia (severe pain on swallowing) • Cardiac disease o Heartburn (burning sensation along • Unexplained weight loss > 5% • PUD esophagus) • Unexplained cough, wheezing, choking, hoarseness • Malignancy o Regurgitation (acid/bile that rises to • Age > 50 years old with new symptoms • Functional dyspepsia the back of the throat) • Severe symptoms (frequency, rating) • Biliary disease • Features: • Nocturnal symptoms • Other o May wax and wane • Failure of 2 week H2RA/PPI therapy o Worse when lying down, bending over, or after a meal NON-PHARMACOLOGICAL TX: GOALS OF THERAPY: • Avoid foods/beverages that worsen or trigger symptoms • Treat symptoms CAUSE IS MULTIFACTORIAL: • Eat small meals and chew food well (reduce/eliminate) • Relaxation/decreased integrity of the • Avoid exercise after meals • Reduce or prevent recurrence lower esophageal sphincter • Don’t lie down for 2-3 hours after eating • Prevent structural damage and • Increased lower abdominal pressure • Avoid tight clothing thus complications (e.g. ulcers)
    [Show full text]
  • Edible Leafy Plants from Mexico As Sources of Antioxidant Compounds, and Their Nutritional, Nutraceutical and Antimicrobial Potential: a Review
    antioxidants Review Edible Leafy Plants from Mexico as Sources of Antioxidant Compounds, and Their Nutritional, Nutraceutical and Antimicrobial Potential: A Review Lourdes Mateos-Maces 1, José Luis Chávez-Servia 2,* , Araceli Minerva Vera-Guzmán 2 , Elia Nora Aquino-Bolaños 3 , Jimena E. Alba-Jiménez 4 and Bethsabe Belem Villagómez-González 2 1 Recursos Genéticos y Productividad-Genética, Colegio de Posgraduados, Carr. México-Texcoco Km. 36.5, Montecillo, Texcoco 56230, Mexico; [email protected] 2 CIIDIR-Oaxaca, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico; [email protected] (A.M.V.-G.); [email protected] (B.B.V.-G.) 3 Centro de Investigación y Desarrollo de Alimentos, Universidad Veracruzana, Xalapa-Enríquez 1090, Mexico; [email protected] 4 CONACyT-Centro de Investigación y Desarrollo de Alimentos, Universidad Veracruzana, Xalapa-Enríquez 1090, Mexico; [email protected] * Correspondence: [email protected] Received: 15 May 2020; Accepted: 13 June 2020; Published: 20 June 2020 Abstract: A review of indigenous Mexican plants with edible stems and leaves and their nutritional and nutraceutical potential was conducted, complemented by the authors’ experiences. In Mexico, more than 250 species with edible stems, leaves, vines and flowers, known as “quelites,” are collected or are cultivated and consumed. The assessment of the quelite composition depends on the chemical characteristics of the compounds being evaluated; the protein quality is a direct function of the amino acid content, which is evaluated by high-performance liquid chromatography (HPLC), and the contribution of minerals is evaluated by atomic absorption spectrometry, inductively coupled plasma-optical emission spectrometry (ICP-OES) or ICP mass spectrometry. The total contents of phenols, flavonoids, carotenoids, saponins and other general compounds have been analyzed using UV-vis spectrophotometry and by HPLC.
    [Show full text]
  • Phenology of Neotropical Pepper Plants (Piperaceae) and Their Association with Their Main Dispersers, Two Short-Tailed Fruit Bats, Cavollia Pevspidllata and C
    OIKOS 104: 362-376, 2004 Phenology of neotropical pepper plants (Piperaceae) and their association with their main dispersers, two short-tailed fruit bats, Cavollia pevspidllata and C. castanea (Phyllostomidae) Wibke Thies and Elisabeth K. V. Kalko Thies, W. and Kalko, E. K. V. 2004. Phenology of neotropical pepper plants (Piperaceae) and their association with their main dispersers, two short-tailed fruit bats, CaroUia perspicillata and C. castanea (Phyllostomidae). - Oikos 104: 362-376. To relate differences in phenological strategies of a group of closely related plants to biotic (pollinators, dispersers) and abiotic (water, light) factors, we studied leafing, flowering, and fruiting phenology of 12 species of Piper (Piperaceae) in a neotropical lowland forest in Panama for 28 months. We asked how Piper may partition time and vertebrate frugivores to minimize possible competition for dispersal agents. Based on habitat preferences and physiological characteristics we discriminate be- tween forest Piper species (eight species) and gap Piper species (four species). Forest Piper species flowered synchronously mostly at the end of the dry season. Gap Piper species had broader or multiple flowering peaks distributed throughout the year with a trend towards the wet season. Both groups of Piper species showed continuous fruit production. Fruiting peaks of forest Piper species were short and staggered. Gap Piper species had extended fruiting seasons with multiple or broad peaks. Both groups of Piper species also differed in their time of ripening and disperser spectrum. Forest Piper species ripened in late afternoon and had a narrow spectrum consisting mainly of two species of frugivorous bats: CaroUia perspicillata and C. castanea (Phyllostomidae).
    [Show full text]
  • Trees and Plants for Bees and Beekeepers in the Upper Mara Basin
    Trees and plants for bees and beekeepers in the Upper Mara Basin Guide to useful melliferous trees and crops for beekeepers December 2017 Contents Who is this guide for? .......................................................................................................................................................................................................................................................................... 1 Introduction to the MaMaSe Project .................................................................................................................................................................................................................................................. 1 Market driven forest conservation initiatives in the Upper Mara basin ............................................................................................................................................................................................. 2 Water, apiculture, forests, trees and livelihoods ................................................................................................................................................................................................................................ 3 Types of bees ....................................................................................................................................................................................................................................................................................... 4 How this
    [Show full text]
  • Show Activity
    A Cytochrome-P450-Inhibitor *Unless otherwise noted all references are to Duke, James A. 1992. Handbook of phytochemical constituents of GRAS herbs and other economic plants. Boca Raton, FL. CRC Press. Plant # Chemicals Total PPM Acacia farnesiana Huisache; Cassie; Popinac; Sweet Acacia; Opopanax 2 Achillea millefolium Yarrow; Milfoil 1 Acorus calamus Flagroot; Sweetroot; Sweet Calamus; Myrtle Flag; Calamus; Sweetflag 1 384.0 Agastache rugosa 1 Ageratum conyzoides Mexican ageratum 1 Aloysia citrodora Lemon Verbena 1 Alpinia officinarum Lesser Galangal; Chinese Ginger 1 800.0 Alpinia galanga Siamese Ginger; Languas; Greater Galangal 1 24000.0 Ammi majus Bishop's Weed 2 16000.0 Anacardium occidentale Cashew 1 Anethum graveolens Garden Dill; Dill 1 Angelica dahurica Bai Zhi 2 Angelica archangelica Angelica; Wild Parsnip; Garden Angelica 2 5050.0 Apium graveolens Celery 3 Artemisia dracunculus Tarragon 2 141.0 Boronia megastigma Scented Boronia 1 Calamintha nepeta Turkish Calamint 1 Camellia sinensis Tea 2 Cananga odorata Cananga; Ylang-Ylang 1 Capsicum frutescens Tabasco; Cayenne; Chili; Hot Pepper; Spur Pepper; Red Chili 1 35800.0 Capsicum annuum Cherry Pepper; Cone Pepper; Paprika; Bell Pepper; Sweet Pepper; Green Pepper 2 8000.0 Centaurea calcitrapa Star-Thistle 1 Chenopodium album Lambsquarter 1 Cinnamomum verum Ceylon Cinnamon; Cinnamon 1 20320.0 Cinnamomum camphora Camphor; Ho Leaf 1 Cinnamomum aromaticum Cassia Lignea; Chinese Cassia; Chinesischer Zimtbaum (Ger.); Canela de la China (Sp.); 1 Saigon Cinnamon; Chinazimt (Ger.); Kashia-Keihi
    [Show full text]
  • Effects of Essential Oils from 24 Plant Species on Sitophilus Zeamais Motsch (Coleoptera, Curculionidae)
    insects Article Effects of Essential Oils from 24 Plant Species on Sitophilus zeamais Motsch (Coleoptera, Curculionidae) William R. Patiño-Bayona 1, Leidy J. Nagles Galeano 1 , Jenifer J. Bustos Cortes 1 , Wilman A. Delgado Ávila 1, Eddy Herrera Daza 2, Luis E. Cuca Suárez 1, Juliet A. Prieto-Rodríguez 3 and Oscar J. Patiño-Ladino 1,* 1 Department of Chemistry, Faculty of Sciences, Universidad Nacional de Colombia-Sede Bogotá, Bogotá 111321, Colombia; [email protected] (W.R.P.-B.); [email protected] (L.J.N.G.); [email protected] (J.J.B.C.); [email protected] (W.A.D.Á.); [email protected] (L.E.C.S.) 2 Department of Mathematics, Faculty of Engineering, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; [email protected] 3 Department of Chemistry, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; [email protected] * Correspondence: [email protected] Simple Summary: The maize weevil (Sitophilus zeamais Motsch) is a major pest in stored grain, responsible for significant economic losses and having a negative impact on food security. Due to the harmful effects of traditional chemical controls, it has become necessary to find new insecticides that are both effective and safe. In this sense, plant-derived products such as essential oils (EOs) appear to be appropriate alternatives. Therefore, laboratory assays were carried out to determine the Citation: Patiño-Bayona, W.R.; chemical compositions, as well as the bioactivities, of various EOs extracted from aromatic plants on Nagles Galeano, L.J.; Bustos Cortes, the maize weevil. The results showed that the tested EOs were toxic by contact and/or fumigance, J.J.; Delgado Ávila, W.A.; Herrera and many of them had a strong repellent effect.
    [Show full text]
  • Schinus Terebinthifolius Anacardiaceae Raddi
    Schinus terebinthifolius Raddi Anacardiaceae LOCAL NAMES English (Bahamian holly,Florida holly,christmasberry tree,broadleaf pepper tree,Brazilian pepper tree); French (poivrier du Bresil,faux poivrier); German (Brasilianischer Pfefferbaum); Spanish (pimienta de Brasil,copal) BOTANIC DESCRIPTION S. terebinthifolius is a small tree, 3-10 m tall (ocassionally up to 15 m) and 10-30 cm diameter (occasionally up to 60 cm). S. terebinthifolius may be multi-stemmed with arching, not drooping branches. Tree; taken at: Los Angeles County Arboretum - Arcadia, CA and The National Leaves pinnate, up to 40 cm long, with 2-8 pairs of elliptic to lanceolate Arboretum - Washington, DC (W. Mark and leaflets and an additional leaflet at the end. Leaflets glabrous, 1.5-7.5 cm J. Reimer) long and 7-32 mm wide, the terminal leaflet larger than lateral ones. Leaf margins entire to serrated and glabrous. Flowers white, in large, terminal panicles. Petals oblong to ovate, 1.2-2.5 mm long. Fruits globose, bright red drupes, 4-5 mm in diameter. This is a highly invasive species that has proved to be a serious weed in South Africa, Florida and Hawaii. It is also noted as invasive in other Bark; taken at: Los Angeles County Caribbean and Indian Ocean islands. Rapid growth rate, wide Arboretum - Arcadia, CA and The National environmental tolerance, prolific seed production, a high germination rate, Arboretum - Washington, DC (W. Mark and seedling tolerance of shade, attraction of biotic dispersal agents, possible J. Reimer) allelopathy and the ability to form dense thickets all contribute to this species' success in its exotic range.
    [Show full text]