2019 Cascadia International Wine Competition Kennewick, WA April 09, 2019
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Forest Regions of Washington
What are the Major Geographic Regions of Washington? Geographic Regions of Washington Okanogan Highlands Puget Basin Columbia Plateau The Rivers of WA & the 5 Geographic Regions Okanogan Highlands Columbia Puget Basin Plateau Direction of flow for WA rivers? Direction of flow for WA the rivers: Okanogan Highlands Puget Basin Columbia Plateau Where does the water end up? All water in WA eventually makes it into the Pacific, but there are 5 main drainage points in WA. The 5 Drainage Points Puget Columbia Pacific Ocean Pacific Sound River Snake River Columbia River Describe: 5 Drainage Points of Washington 1. Snake River -drains rivers in SE WA before it empties into Columbia 2. Columbia River -drains rivers E of Cascades and in S WA, and flows to the Pacific 3. Pacific Ocean - drains rivers W of Coast Range 4. Strait of Juan de Fuca – drains rivers N of Coast Range 5. Puget Sound - drains rivers E of Coast Range & W of Cascade Crest Where does the water end up? Puget Columbia Pacific Ocean Pacific Sound River Snake River Columbia River 5 Regions Descriptions Okanogan Highlands • Forested hills, grassy lowlands – Dry, inland forest. • Climate: Moderately hot, dry summers; cold winters with measurable snowfall • Elevation: 1,000‘ – 6,000’. – Cities: Spokane, Okanogan, Colville – Rivers: Okanogan, Kettle River, Okanogan Spokane, Pend Oreille, Highlands Upper Columbia Okanogan Highlands Okanogan Highlands Columbia Plateau • Semi-desert – Shrub & grasslands. Trees along some stretches of local rivers • Climate: Hot, dry summers; cold winters with occasional snowfall. – Rivers: Columbia, Snake, Yakima, Wenatchee, Palouse – Cities: Yakima, Wenatchee, Tri-Cities, Moses Lake, Ephrata – Hanford Nuclear Reservation Columbia Plateau Columbia Plateau Columbia Plateau Coast Range Olympic Mtns Black Hills Willapa Hills Coast Range • Olympic Mountains, Black Hills, & Willapa Hills – Rain forest on western side of range. -
Wsgs-2002-Gn-74.Pdf (5.967Mb)
WWyyoommiinngg GGeeoo--nnootteess NNuummbbeerr7744 In this issue: Hoback Basin and northern Overthrust Belt 3-D interactive images: Landscapes and Wyoming State Geological Survey landslides Lance Cook, State Geologist The Blue Trail Slide Laramie, Wyoming July, 2002 Wyoming Geo-notes No. 74 July, 2002 Featured Articles Hoback Basin and northern Overthrust Belt . 2 3-D interactive images: Landscapes and landslides . 28 The Blue Trail Slide in the Snake River Canyon . 30 Contents Minerals update ...................................................... 1 Geologic hazards update .................................. 27 Overview............................................................... 1 Highway-affecting landslides of the Snake Calendar of upcoming events ............................ 5 River Canyon–Part III, Blue Trail Slide........ 30 Oil and gas update............................................... 6 Publications update .............................................. 34 Coal update......................................................... 13 New publications available from the Coalbed methane update.................................. 18 Wyoming State Geological Survey ............... 34 Industrial minerals and uranium update....... 19 Ordering information ........................................ 35 Metals and precious stones update ................. 22 Location maps of the Wyoming State Rock hound’s corner: Calcite and onyx .......... 23 Geological Survey ........................................... 36 Geologic mapping and hazards update ............ -
Oxygen Isotope Analysis of Mineralized Fault Planes, Five Springs Region, Bighorn Mountains, Wyoming
Oxygen isotope analysis of mineralized fault planes, Five Springs region, Bighorn Mountains, Wyoming Valerie Esser Department of Geology, The Colorado College, 14 E Cache La Poudre St., Colorado Springs, CO 80903 Faculty Sponsor: Christine Siddoway, The Colorado College INTRODUCTION Laramide uplifts juxtapose old basement rock against sedimentary cover rocks across thrust faults with a significant vertical component. They are common throughout the Rocky Mountain foreland, and the structural evolution of many of the basement block uplifts has been extensively studied (Snoke, 1997; Narr, 1993; Spang and Evans, 1988). However, the detailed timing and uplift history, thermal evolution, and the role of fluids during faulting of these ranges remain to be determined. The Bighorn Mountains of northern central Wyoming form a Laramide basement-cored uplift, and offer an ideal location to investigate the details of fluid circulation along faults. The Five Springs fault zone (Figure 1), a structurally well-studied section along the northwest flank of the Bighorn Mountains (Wise and Obi, 1992), has mineralization along minor fault planes that indicates the presence of fluids related to faulting. In this study, using laser- based micro-analytical techniques, _18O values of quartz, feldspar, and epidote grains were measured to investigate the fluids involved in the faulting. The temperatures calculated from _18O fractionations are hotter than expected temperatures for Laramide faulting, prompting one to consider the possibility that mineralization along these fault planes pre-dated the Laramide, or that hot, mid-crustal fluids played a role in Laramide deformation. GEOLOGIC SETTING AND BACKGROUND In their structural review of the Five Springs area, Wise and Obi (1992) examined a section of pervasively faulted granite where continuous exposures of the fault system bounding the Bighorn uplift are exposed in new road-cuts along Wyoming Highway Alternate 14 (figure 1). -
Chapter 3 Description of the Study Area
Chapter 3 Description of the study area Paul Taucher Melissa Thompson Nikolaus Gribb 3-17 The WBRB drainage basin covers approximately 25 percent streams and elevation. Clockwise from the Pryor Mountains in of the state in north-central and northwestern Wyoming, plus Montana, the boundary runs: smaller areas of south-central Montana. Figure 3-1 is an index map of the approximately 678 townships within the WBRB 1. Northward then southeastward along a Pryor mountain in Wyoming (625) and Montana (53). As determined from ridgeline bordering drainage intoWyoming, to the the GIS database developed for this study, the WBRB covers Wyoming/Montana state line; approximately 22,883 square miles (14.65 million acres) 2. Thence eastward along the Wyoming/Montana state line in Wyoming and 894 square miles (0.57 million acres) in and along a divide in the Bighorn Mountains; Montana. The WBRB encompasses federal, state, and privately 3. Thence generally south-southeastward along the arcuate owned land in all or part of eight Wyoming counties: ridge of the Bighorn Mountains to T39N, R87W; 4. Thence generally south-southwestward along a divide on the Casper Arch from T39N, R87W to the northwestern • All of Big Horn, Park, and Hot Springs counties tip of the Rattlesnake Hills, T34N, R89W; • Approximately 95 percent of Washakie County 5. Thence a short distance southeastward along the ridgeline • Approximately 85 percent of Fremont County of the Rattlesnake Hills into T33N, R88W; • Approximately 10 percent of Teton County 6. Thence irregularly west-southwestward along the Beaver • Small, relatively undeveloped parts of northwestern Divide (Beaver Rim) – an irregular drainage divide on Natrona and western Johnson counties the Casper arch north and west of the Granite Mountains – to T30N, R101W, where it meets the Continental Approximately 80 percent of Yellowstone National Park (in Divide; Park and Teton counties) is included in the drainage basin, as is 7. -
Download PDF Here
Chapter 4 Geologic overview Andrea M. Loveland 4-39 he Northeast River Basins (NERB) study area covers tuations until the final retreat of the seaway in the Late Tapproximately 14.86 million acres in northeast- Cretaceous. ern Wyoming, southeastern Montana, western South Dakota, and western Nebraska. The geologic setting of The Laramide orogeny commenced in the Late the NERB includes Precambrian-cored uplifts formed Cretaceous and continued through the Early Eocene. during the Laramide orogeny and adjacent basins filled Crustal shortening was accommodated by displacement with Phanerozoic clastic and carbonate rocks. The fol- of Precambrian crystalline basement rocks and the over- lowing information regarding the NERB study area is lying sedimentary cover rocks (Brown, 1993). Basement- provided in this chapter: cored Laramide structures border the NERB on three sides: 1) the Bighorn Mountains to the west, 2) the • An overview of the geologic history Black Hills to the east, and 3) the Rattlesnake Hills and Hartville Uplift to the south (fig. 4-1). • A summary of the structural geology • An outline of significant mineral and energy The geologic setting of the NERB study area is illustrated resources on the bedrock geologic map in plate 1. This map also displays surface water, highways, political boundaries, • Geologic cross sections and state and county data. Inset maps on plate 1 show the distribution of lineaments and a structure-contour map of the top of the Precambrian basement. Nine cross sec- 4.1 GENERAL GEOLOGIC HISTORY tions show subsurface structure in the NERB (figs. 4-2 through 4-11). Descriptions of the Precambrian- through During the Paleozoic Era, the area that is now the Tertiary-aged stratigraphic units exposed in the study NERB was located on the western margin of the North area are included in appendix A, and are not addressed American craton in a shelfal environment. -
Evaluating River Profile Geometries to Identify Evidence of Active Deformation Associated with the Doty Fault Zone in Southwest Washington
Evaluating River Profile Geometries to Identify Evidence of Active Deformation Associated with the Doty Fault Zone in Southwest Washington Varqa Tavangar A report prepared in partial fulfillment of the requirements for the degree of Master of Science Earth and Space Sciences: Applied Geosciences University of Washington June, 2019 Project mentor: Dr. Lydia Staisch, United States Geological Survey Reading committee: Dr. Alison Duvall, University of Washington Dr. Juliet Crider, University of Washington MESSAGe Technical Report Number: 076 ©Copyright 2019 Varqa Tavangar Page 2 of 45 Executive Summary In 1996, 2007, and 2009, flooding of the Chehalis River near the Town of Chehalis in southwest Washington severely impacted infrastructure and property. Damage was such that Interstate 5, the major transportation throughway in this region, was closed for several days. In 2012, the Washington State Geological Survey and United States Geological Survey began an assessment of the seismic hazards posed by the regional and local geologic systems on proposed construction of a dam near the Town of Pe Ell, Washington. Of these structural systems, the Doty Fault Zone is of interest as; (1) its level of activity is not well known, (2) its geometry is not described in detail, (3) it extends along a portion of the Chehalis River, and (4) would pose a hazard to the construction of the dam if it were active. The Doty Uplift (DU) is one of several basement uplifts in southwest Washington, and the western extent of the Doty Fault Zone bounds the southern boundary of the DU. In this report, the morphology of streams draining the DU are studied and characterized to identify topographic evidence of active deformation associated with the Doty Fault Zone. -
Yakima-Valley-Wineries-Map-Web.Pdf
TO CHINOOK PASS Oak Creek Bron Yr Aur Brewstillery 410 Brewing Co. Gard Ellensburg Vintners NACHES Canyon 12 Winery 821 TO WHITE PASS TIETON Yakima Rive S. Naches Road Southard Winery YAKIMA AND PACKWOOD TO ELLENSBURG Rowe Hill Dr Rowe Fontaine Estates AND SEATTLE NACHES 82 HEIGHTS 12 SELAH 823 AVA McGonagle Rd Goodlander Rd Rider Thompson Rd Nache Rive N Cellars AREA The Yakima Valley grows more hops, grapes and fruit than anywhere else in the Pacific Northwest. Cowiche Creek Valley The Bier Den Brewing Company Wherry Rd Brewing Co. AntoLin Cellars Come experience award-winning wine, unique craft beer and hand-crafted cider straight from the source. Naches Heights Weikel Rd Tieton Cider Works 5th Line Brewing Company Vineyard Visitor Information Center Fruitvale Blvd Wilridge Vineyard, 2 River Rd Winery & Distillery Hop Capital Single Hill Brewing Company Brewing Marble Rd The Distillarium YAKIMA ZILLAH PROSSER RED MOUNTAIN COLUMBIA GORGE BREWERY/CIDERY/DISTILLERY Bale Breaker Brewing Co. Swede Hill Distillery Wandering Hop Kana Winery YAKIMA Zier Rd Brewing Co. Yakima Air Terminal 24 Draper Rd MOXEE Gilbert 1 ZILLAH Cellars The KilnUNION GAP Winery Taproom Owen Roe 24 Wiley Rd Treveri Cellars RED MOUNTAIN AREA Knight Hill Winery PROSSER VanArnam Vineyards Freehand Cellars Hyatt Vineyards AREA Masset Two Mountain Winery Hightower Hamilton Ruby Magdalena Purple Star Cellars Winery Vineyards Dineen Vineyards Winery Cellars HopTown Tapteil Vineyard Wood Fired Pizza J.Bell Whitman Hill Winery 225 YAKIMA VALLEY Cellars NE Roza Road E. Corral Creek Road Silver Lake Winery/Vitis Spirits N. Whitmore PR NW E. 583 PR NE Col Solare Red Clark Rd Lombard Loop Sheridan Vineyard E. -
Staff Report
COUNTY COMMISSIONERS Cathy Wolfe District One Sandra Romero District Two Karen Valenzuela District Three DEPARTMENT OF RESOURCE STEWARDSHIP Cliff Moore Director MEMORANDUM Date: March 2, 2009 To: Thurston County Roads and Transportation From: Mark Biever, L.P.G., L.P.E.G. Water Resources Unit Nadine Romero, L.P.G., L.P.H.G. Environmental Health Subject: Rock Candy Mountain Landslide – Kennedy Creek North Fork, January 9, 2009 Purpose On Friday, January 16, 2009, Thurston County personnel Mark Biever, Ryan Langan and Nadine Romero of The Department Environmental Stewardship and Environmental Health, assisted Roads and Transportation staff on a preliminary landslide assessment of the Rocky Candy Mountain area above State Highway 8 in the Capitol Forest. It was a fact finding mission to evaluate the slide and to determine if additional failures were possible and discuss impacts to Kennedy Creek Road (County Road) at the lower limits of the slide debris. The initial site visit revealed an unexpectedly massive slide of a very complex and violent nature. On January 23, 2009 a second site visit was conducted by representatives of Washington Department of Natural Resources (DNR), Washington State Department of Transportation (WSDOT), Washington Department of Fish and Wildlife (WDFW), Thurston County and GeoEngineers (private consultant). The purpose of the second site visit was to assess the area in a broad scope and discuss options among the multiple parties involved with landslide in one way or another. The second visit involved walking the failure surface from the midway point of the slide (approx El. 1200 ft) to the head scarp and discuss the potential for future slides and the potential impairment of the highways and businesses. -
Washington's Not-So-Common Loon
Black Hills Audubon Society Olympia, Washington Volume 40, Number 1 January/February 2009 Participate in In this issue of The Echo Environmental Lobby Day .............................. 1 Environmental Lobby Thurston Co Mineral Lands, Asphalt Plants .... 2 Dave McNett–In Memoriam ........................... 3 Day, February 19 Dave McNett Education Award ....................... 3 Black Hills Audubon is a co-sponsor of the eighteenth Spring Birding Class ....................................... 4 annual Environmental Priorities Lobby Day, Thurs- BHAS Annual Dinner ...................................... 4 day, February 19, 2009, in Olympia. We have joined Field Trips and Events .................................... 5 other leading conservation groups and hundreds of Summit for Planning Field Trips ...................... 5 citizen lobbyists across Washington State to push for New WDFW Wildlife Website ........................ 6 the passage of the Environmental Priorities legislative Observations from the Window ...................... 7 package. These four priorities are legislation for: BHAS Calendar ............................................... 8 Birding in Earnest ........................................... 9 • Cap greenhouse gas emissions by setting real limits Conservation Updates ...................................10 on global warming pollution Bird Book Review........................................... 11 • Promote super-efficient, low-energy-use buildings BHAS Roster ................................................. 12 • To create -
Shoreline Analysis Report
PACIFIC COUNTY Grant No. G1400525 Shoreline Analysis Report for Shorelines in Pacific County Prepared for: Pacific County 1216 W. Robert Bush Drive PO Box 68 South Bend, WA 98586 Prepared by: STRATEGY | ANALYSIS | COMMUNICATIONS 2025 First Avenue, Suite 800 Seattle WA 98121 110 Main St # 103 Edmonds, WA 98020 Drafted June 2014, Public Draft September 2014, Revised January 2015, This report was funded in part Final June 2015 through a grant from the Washington Department of Ecology. The Watershed Company Reference Number: 130727 Cite this document as: The Watershed Company, BERK, and Coast and Harbor Engineering. June 2015. Shoreline Analysis Report for Shorelines in Pacific County. Prepared for Pacific County, South Bend, WA. Acknowledgements The consultant team wishes to thank the Pacific County Shoreline Planning Committee, who contributed significant comments and materials toward the development of this report. The Watershed Company June 2015 T ABLE OF C ONTENTS Page # Readers Guide .................................................................................. i 1 Introduction ................................................................................ 1 1.1 Background and Purpose ............................................................................. 1 1.2 Shoreline Jurisdiction ................................................................................... 1 1.3 Study Area ..................................................................................................... 4 2 Summary of Current Regulatory Framework -
Wsgs-2016-Ofr-04.Pdf
WYOMING STATE GEOLOGICAL SU RVEY OPEN FILE REPORT 2016-4 Th omas A. Drean, Director and State Geolog ist Ervay Basin SW 1:24,000-scale Laramie, Wyoming Bedrock Geolog ic Map (M Interpreting the past, providing for the future E R A IL R A E ) N S C P C M A H ( G ) (ERVAY BASIN) Qal 46 Qls ^cr EXPLANATION ^cr Kf Kmr CORRELATION OF MAP U NITS Qp 21 45 DESCRIPTION OF MAP U NITS Cenozoic Qal Holocene Qls Qve Qp ? QU AT ERNARY Kt Pleistocene Qal ^Pg Qal ? ? ? j Alluvium (Holocene)— U nconsolida ted to poorly consolida ted sa nd, silt, cla y, coa rse gra vels, a nd 34 Pliocene 31 20 ? cobbles, m a inly a long loca l interm ittent strea m courses; loca lly interm ixed with colluvium . T hickness Qp Jm Kcv U nconform ity T NEOGENE less tha n 8 m (26 ft) ^cp Js 24 ^ca E Qls Tsr Miocene Landslide deb ris (Holocene and Pleistocene[?])— Blocks a nd slum ps of loca lly derived bedrock from 29 10 R steep a nd unsta ble slopes; m ost com m on in Cloverly Form a tion a s well a s Wa gon Bed Form a tion Qp U nconform ity *t 19 a long Bea ver Rim . T hickness less tha n 122 m (400 ft) 11 T CENOZ OIC 20 ^cr Twr Oligocene Qve I Volcanic eluvium (Holocene and Pleistocene[?])— U nconsolida ted rem na nts derived from in situ *Ma *t R U nconform ity wea thering of Ra ttlesna ke Hills volca nic rocks; gra des into Ra ttlesna ke Hills volca nics a nd volca nic *t A A conglom era tes within Wa gon Bed Form a tion. -
My Name Is Rob Ahlschwede and I Live at 3726 Wesley Loop NW, Olympia
From: Shoreline Update To: Nancy Lenzi Subject: SMP RECORD -- FW: Comment to the Planning Commission on the SMP draft Date: Tuesday, November 30, 2010 11:04:53 AM From: robert ahlschwede [mailto:[email protected]] Sent: Sunday, November 28, 2010 9:02 AM To: Shoreline Update Subject: Comment to the Planning Commission on the SMP draft My name is Rob Ahlschwede and I live at 3726 Wesley Loop NW, Olympia. Living outside of the city limits and the UGA, I have concerns about what this draft suggests Olympia may allow to happen on the shorelines within the city. The city that I consider my city!! My main area of concern is the listed setback distances and the heights allowed within those distances. The setbacks and heights in the draft are completely out of line with what the community and the council have indicated they want. In fact, the city council recently voted and you dealt with the down zoning to the historic 35' within the first 200 feet. The 42' in the first 100' and 65' in the next 100 is not what this community is trying to do. In fact, if you allow these figures to go forward, you are, in effect, allowing a rezone of the whole waterfront to what was just down zoned. If you allow these setbacks and heights to remain at those values it is more than possible the council will send it back to you expecting that change anyway. They did vote 7-0 on the above mentioned down zone. The other thing I am concerned about is that even at 35' the document allows(current zoning does also) for "sheds" and the like atop buildings .