Distribution and Pollen Morphology of Some Species of Grewia Linn

Total Page:16

File Type:pdf, Size:1020Kb

Distribution and Pollen Morphology of Some Species of Grewia Linn DISTRIBUTION AND POLLEN MORPHOLOGY OF SOME SPECIES OF GREWIA LINN. IN NIGERIA. 1*Shokefun, E. O., Orijemie, E. A.2 and Ayodele, A. E.3 1Department of Botany, University of Ibadan, Ibadan, Nigeria ABSTRACT The distribution and pollen morphology of some Grewia species in Nigeria were studied. These species occupy a wide range of habitats; six species (G. malacocarpa Mast., G. barombiensis K.Schum., G. brunnea K.Schum., G. coriacea Mast., G. hookerana Exell & Mendonca. and G. oligoneura Sprague) are found in the lowland rain forests of the Southern parts of the country, eight species (G. barteri Burret, G. bicolor Juss., G. cissoides Hutch&Dalz., G. flavescens Juss., G. lasiodiscus K.Schum, G. venusta Fresen., G. tenax (Forsk) Fior and G. villosa Willd) were present in the Guinnea savannah dry land of the Northern part of the country while two species (G. carpinifolia Juss. and G. mollis Juss.) occur in both ecological zones in the country. Grewia bicolor Juss. is the only species restricted to the high mountains of the Northern part of the country among the Savannah species. The pollen results reveal two pollen types: the Microcos and Grewia types. The Microcos pollen type consists of the following characters: tricolporate with short colpi, small-sized pollen of 17.5µm-21.0µm x 15.0µm-20.0µm (PA x ED); sub-prolate to prolate shape; exine is thin (0.5 µm -1.50µm) and fine reticulations; lumina shape range from round, angular and elongated. Parent plants with this pollen type are natural to the lowland rainforest zone. The Grewia type consists of pollen, parent plants of which are natural to southern Guinea savannah, as well as G. mollis and G. carpinifolia which occur in both ecological zones. The pollen grains of the Grewia type are mainly tricolporate but G. venusta is three to four colporate; they possess long colpi; are medium (30.0µm) to large (55-67.5µm x 57.5-82.5µm) in size. Pollen shapes include sub-prolate, prolate and oblate-spheroidal; exine is generally thick (0.87µm-3.0µm), exine pattern is reticulate, coarse reticulate and sometimes striato-reticulate; lumina shapes are distinctly polygonal or irregular, and contain bacules. These characters are discussed in relation to the taxonomy of the genus in Nigeria. Keywords: Grewia, Distribution, Palynology, Nigeria. INTRODUCTION Grewia Lin. (Tiliaceae) consists of about 280-300 species well represented in Tropical Africa, Asia and Australia (Cronquist, 1981; Chung et al., 2003). In West Africa, 17 species occur; sixteen of these are recorded for Nigeria (Hutchinson and Dalziel, 1954). Nigeria is a major centre of diversity for Grewia in West Tropical Africa (Czarnecka et al., 2006). Six species are known to occur in lowland rainforest, eight in dry woodland savannah while two species occupy both ecological zones (Hutchinson and Dalziel, 1954). The lowland rainforest species are distinguished by presence of panicle inflorescence while the savannah species are distinguished by the presence of cymose inflorescence (Burret, 1926; Hutchinson and Dalziel, 1954; Bayer and Kutbitzki, 2003; Cowie et al., 2011). Taxonomic studies of the genus have been carried out by many authors using morphological, anatomical, palynological and molecular data (Burret, 1926; Chattaway, 1934; Cronquist, 1981; Chang and Miau, 1989; Watson and Dallwitz, 1992; Alverson et al., 1997; Thorne,1998; Bayer et al., 1999; Judd et al., 2000; Bayer and Kutbitzki, 2003; Chung et al., 2003). In particular, morphological data have provided taxonomic information at family, subfamily, generic, subgeneric and species level for different groups of plants (Stuessy, 1990). Perveen et al. (2004), highlighted the morphological features of the pollen grains of Grewia in the study of the family Tiliaceae as follow: 3 colporate aperture; rugulate/finely reticulate to coarse reticulate tectum and prolate or subprolate pollen shapes. El-Husseini (2006) reported the importance of the colpi ends, pollen size, muri ridge shape, equatorial view and size of lumina and stated that spheroidal pollen grains are peculiar to the Grewia type. Perveen and Qaiser (2007) recognized two pollen types: Corchorus depressus type and Corchorus tridens type in their study of the subfamily Grewioideae. Pollen data have been used effectively at generic and subgeneric or sectional levels on numerous occasions within tribes (Vezey et al., 1994). Although considerable works have been done on the species of the genus, data on Nigerian species are sparse. The aim of this study was to investigate the ecological distribution and pollen morphology of some species of Grewia in Nigeria with a view to providing additional information for the delimitation of the species. The results would provide a better understanding of the relationship between and among the species in Nigeria. MATERIALS AND METHODS Specimens of Grewia species were collected during field trips to different locations within Nigeria. Flower buds and floral specimens were preserved in 50% ethanol. Voucher specimens were made for all collections using standard herbarium procedures and deposited in the Herbarium of the Department of Botany, University of Ibadan, Ibadan, Nigeria (UIH). The various locations visited are shown in Figure 1. The herbarium specimens were studied for their distributional data in the Forest Herbarium Ibadan (FHI), Ibadan, and the University of Ibadan Herbarium (UIH). DISTRIBUTION AND ECOLOGY Data obtained during the study of specimens in the herbarium and notes taken during field trips provided useful information for the distributional ecology of the genus in Nigeria. Pollen Morphology: Flower and floral buds preserved in 50% ethanol from the field collections and in the case of species that were not collected from the field, flower and floral buds from well identified herbarium specimens were assessed for pollen morphology using acetolysis method according to the procedures described by Erdtman (1952, 1960) and Ayodele (2005). The floral buds were crushed with a glass rod in centrifuge tube. Three millilitre of freshly prepared acetolysis mixture (9 parts acetic anhydride to 1 part concentrated Tetraoxosulphate VI acid) was added to the content in the tubes. The content was heated in a water bath from 700C to boiling point, stirring occasionally. The centrifuge tubes and content were left in boiling water for 3 minutes and then centrifuged at 4,000 r.p.m. for 5 minutes while still hot. The supernatant was decanted into Acetolysis waste bottle. Some water was then added to the sediments in the tubes and shaken vigorously using a whirl mixer. Few drops of methylated spirit were added to remove the foam formed and centrifuged again. The supernatant was decanted. The washing with water and centrifuging were repeated four times. Fifty per cent glycerine was added and left to stand for two hours. The tubes were shaken vigorously using a whirl mixer and centrifuged at 4,000 r.p.m. for 10 minutes. The supernatant was decanted off finally and the tube was inverted over filter paper and left overnight. One hundred per cent glycerol was added to the tubes and shaken. This was then poured into labeled storage vials. The pollen grains were mounted in unstained glycerin jelly and observations were made with a Fisher scientific illumination microscope at (E 40; 0.65) and oil immersion (E 100; 1.25) using 10x eye piece. The measurement was based on 20 readings from each specimen. Photomicrographs were taken using Leica CME with Digital Microscope Eyepiece attachment and Photo Explorer 8.0 SE Basic software. Terminologies used were in accordance with Erdtman (1952), Moore et al. (1991) and Perveen et al. (2004). All slides are deposited in the Herbarium of the Department of Botany, University of Ibadan, Ibadan, Nigeria. RESULTS Distribution and Ecology Nigerian lowland rainforests and Guinea Savannah provided suitable habitats for the sixteen species in the genus Grewia. Six species, G. malacocarpa, G. barombiensis, G. brunnea, G. coriacea, G. hookerana and G. oligoneura are confined to the high rainforest of the Southern part of Nigeria while eight species (G. barteri, G. bicolor, G. cissoides, G. flavescens, G. lasiodiscus, G. venusta, G. tenax and G. villosa) are found in the Guinea Savannah in the Northern part of Nigeria. Two species (G. carpinifolia and G. mollis) occupy both ecological zones (Fig.1). Some of the Nigerian species have narrow distributional range, e.g., G. villosa and G. tenax occur in the drier regions of Northern Guinea Savannah while G. hookerana and G. oligoneura are found only in the South-West and south-East high forests, respectively (Table.1). The 16 species studied are tentatively divided into three groups based on their ecological preferences viz: Group A: G. malacocarpa, G. barombiensis, G. brunnea, G. coriacea, G. hookerana and G. oligoneura all distributed in the rainforest ecological zone; Group B: G. barteri, G. bicolor, G. cissoides, G. flavescens, G. bicolor, G. lasiodiscus, G. tenax, G. venusta, G. villosa distributed in the savannah zone and Group C consisting of G. carpinifolia and G. mollis found in both ecological zones. Pollen analysis: Two pollen types and 5 subtypes are recognized for the Nigerian species of Grewia based on light microscopy (Fig. 2.). Grewia type This is typical of the savanna species and the two species occupying both ecological zones. The pollen grains are large to medium in size, isopolar and radially symmetrical; Polar view (30.0 - 67.5 µm); Equatorial diameter (18.8 – 82.5µm). Polar/Equatorial diameter ratio: 89 – 175% (Table 3); oblate spheroidal, subprolate and prolate; Ambient circular, trilobed or triangular; 3-colporate except G. venusta 3-4 colporate (Table 2); Colpi long (20.0 – 45.0) µm, colpi ends acute, open or acute/open; Ora(endoaperture) lalongate, 6.0 -15.0µm broad, rectangular; Sexine thicker than nexine; Nexine 0.50 – 2.5µm; Exine 1.06 – 2.75µm thick. The pollen grains are elliptic, circular, oblong and oval in equatorial view; striate, reticulate or coarse reticulate sculpture with bacules; lumina small or large (0.90-13.1)µm in diameter, distinct; lumina shape polygonal to irregular, muri ridge entire or wavy, with or without bacules (Table 2& 3).
Recommended publications
  • Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi
    YIKA-VWAZA TRUST RESEARCH STUDY REPORT N (2017/18) Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi By Sopani Sichinga ([email protected]) September , 2019 ABSTRACT In 2018 – 19, a survey on vascular plants was conducted in Vwaza Marsh Wildlife Reserve. The reserve is located in the north-western Malawi, covering an area of about 986 km2. Based on this survey, a total of 461 species from 76 families were recorded (i.e. 454 Angiosperms and 7 Pteridophyta). Of the total species recorded, 19 are exotics (of which 4 are reported to be invasive) while 1 species is considered threatened. The most dominant families were Fabaceae (80 species representing 17. 4%), Poaceae (53 species representing 11.5%), Rubiaceae (27 species representing 5.9 %), and Euphorbiaceae (24 species representing 5.2%). The annotated checklist includes scientific names, habit, habitat types and IUCN Red List status and is presented in section 5. i ACKNOLEDGEMENTS First and foremost, let me thank the Nyika–Vwaza Trust (UK) for funding this work. Without their financial support, this work would have not been materialized. The Department of National Parks and Wildlife (DNPW) Malawi through its Regional Office (N) is also thanked for the logistical support and accommodation throughout the entire study. Special thanks are due to my supervisor - Mr. George Zwide Nxumayo for his invaluable guidance. Mr. Thom McShane should also be thanked in a special way for sharing me some information, and sending me some documents about Vwaza which have contributed a lot to the success of this work. I extend my sincere thanks to the Vwaza Research Unit team for their assistance, especially during the field work.
    [Show full text]
  • Review Article Pharmaceutical Properties and Applications of a Natural Polymer from Grewia Mollis
    Hindawi Publishing Corporation Journal of Polymers Volume 2013, Article ID 938726, 8 pages http://dx.doi.org/10.1155/2013/938726 Review Article Pharmaceutical Properties and Applications of a Natural Polymer from Grewia mollis Elijah I. Nep, Patricia O. Odumosu, Ndidi C. Ngwuluka, Patrick O. Olorunfemi, and Nelson A. Ochekpe Biomaterials and Drug Delivery Research Group, Faculty of Pharmaceutical Sciences, University of Jos, PMB 2084, Jos 930001, Nigeria Correspondence should be addressed to Elijah I. Nep; [email protected] Received 22 March 2013; Accepted 16 June 2013 Academic Editor: Alain Durand Copyright © 2013 Elijah I. Nep et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The use of naturally occurring biocompatible materials has been the focus of recent research activity in the design of dosage forms for immediate and controlled release formulations. Grewia gum is an intracellular gum obtained by extraction from the inner stem bark of the shrub Grewia mollis (Malvaceae). It grows abundantly (wild or cultivated) in the middle belt region of Nigeria, andthemucilagehasbeenusedbyindigenesofthisbeltasthickenerinsoups.Grewiagumhasbeeninvestigatedforpotential applications in pharmaceutical dosage forms. The industrial extrapolation of the applications of the gum has, however, been slowed by the limited structural, toxicological, and stability data available on the gum. This paper highlights ethnobotanical uses of G. mollis shrub and discusses the structural features, functional properties, and applications of grewia gum with emphases on its pharmaceutical potentials. 1. Introduction 2. Grewia mollis Plant Plant materials are playing increasing role as alternatives to G.
    [Show full text]
  • Corchorus L. and Hibiscus L.: Molecular Phylogeny Helps to Understand Their Relative Evolution and Dispersal Routes
    Corchorus L. and Hibiscus L.: Molecular Phylogeny Helps to Understand Their Relative Evolution and Dispersal Routes Arif Mohammad Tanmoy1, Md. Maksudul Alam1,2, Mahdi Muhammad Moosa1,3, Ajit Ghosh1,4, Waise Quarni1,5, Farzana Ahmed1, Nazia Rifat Zaman1, Sazia Sharmin1,6, Md. Tariqul Islam1, Md. Shahidul Islam1,7, Kawsar Hossain1, Rajib Ahmed1 and Haseena Khan1* 1Molecular Biology Lab, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh. 2Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, Richardson, TX 75080, USA. 3Graduate Studies in Biological Sciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. 4Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India. 5Department of Pathology and Cell Biology, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA. 6Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan. 7Breeding Division, Bangladesh Jute Research Institute (BJRI), Dhaka 1207, Bangladesh. ABSTRACT: Members of the genera Corchorus L. and Hibiscus L. are excellent sources of natural fibers and becoming much important in recent times due to an increasing concern to make the world greener. The aim of this study has been to describe the molecular phylogenetic relationships among the important members of these two genera as well as to know their relative dispersal throughout the world. Monophyly of Corchorus L. is evident from our study, whereas paraphyletic occurrences have been identified in case of Hibiscus L.
    [Show full text]
  • Grewia Hispidissima Wahlert, Phillipson & Mabb., Sp. Nov
    Grewia hispidissima Wahlert, Phillipson & Mabb., sp. nov. (Malvaceae, Grewioideae): a new species of restricted range from northwestern Madagascar Gregory A. WAHLERT Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri 63166-0299 (USA) [email protected] Peter B. PHILLIPSON Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri 63166-0299 (USA) and Institut de systématique, évolution, et biodiversité (ISYEB), Unité mixte de recherche 7205, Centre national de la recherche scientifique/Muséum national d’Histoire naturelle/ École pratique des Hautes Études, Université Pierre et Marie Curie, Sorbonne Universités, case postale 39, 57 rue Cuvier, F-75231 Paris cedex 05 (France) [email protected]/[email protected] David J. MABBERLEY Wadham College, University of Oxford, Parks Road Oxford, OX1 3PN (United Kingdom) and Universiteit Leiden and Naturalis Biodiversity Center Darwinweg 2, 2333 CR Leiden (The Netherlands) and Macquarie University and The Royal Botanic Gardens & Domain Trust, Mrs Macquaries Road, Sydney NSW 2000 (Australia) [email protected] Porter P. LOWRY II Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri 63166-0299 (USA) and Institut de systématique, évolution, et biodiversité (ISYEB), Unité mixte de recherche 7205, Centre national de la recherche scientifique/Muséum national d’Histoire naturelle/ École pratique des Hautes Études, Université Pierre et Marie Curie, Sorbonne Universités, case postale 39, 57 rue Cuvier, F-75231 Paris cedex 05 (France) [email protected]/[email protected] Published on 24 June 2016 Wahlert G. A., Phillipson P. B., Mabberley D. J. & Lowry II P. P. 2016. — Grewia hispidissima Wahlert, Phillipson & Mabb., sp. nov. (Malvaceae, Grewioideae): a new species of restricted range from northwestern Madagascar.
    [Show full text]
  • Microcos Antidesmifolia (Malvaceae-Grewioideae), a Poorly Known Species in Singapore
    Gardens' Bulletin Singapore 72(2): 159–164. 2020 159 doi: 10.26492/gbs72(2).2020-04 Microcos antidesmifolia (Malvaceae-Grewioideae), a poorly known species in Singapore S.K. Ganesan1, R.C.J. Lim2, P.K.F. Leong1 & X.Y. Ng2 1Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, 259569 Singapore [email protected] 2 Native Plant Centre, Horticulture and Community Gardening Division, National Parks Board, 100K Pasir Panjang Road, 118526 Singapore ABSTRACT. A poorly known species in Singapore, Microcos antidesmifolia (King) Burret, is described and illustrated for the first time. In Singapore, it is known from the type variety, Microcos antidesmifolia (King) Burret var. antidesmifolia. Notes on distribution, ecology and conservation status are given. This species is assessed as Critically Endangered for Singapore. A key is given for the fiveMicrocos L. species in Singapore. Keywords. Conservation assessment, distribution, ecology, flora Introduction The genus Microcos L. comprises about 80 species that are distributed in tropical Africa (not in Madagascar), India, Sri Lanka, Myanmar, Indochina, south China and throughout Malesia (except the Lesser Sunda Islands) (Chung & Soepadmo, 2011). Until about 2007, Microcos was placed in the family Tiliaceae. However, phylogenetic analysis using both molecular and morphological data has led to the recognition of an expanded Malvaceae, composed of the formerly recognised families Malvaceae s.s., Tiliaceae, Bombacaceae and Sterculiaceae, and for the Malvaceae s.l. to be divided into nine sub-families (Alverson et al., 1999; Bayer et al., 1999; Bayer & Kubitzki, 2003). This classification was adopted by the Angiosperm Phylogeny Group (APG, 2009, 2016). Here we follow APG and consider Microcos in Malvaceae, subfamily Grewioideae Dippel.
    [Show full text]
  • LEAF ARCHITECTURE of SELECTED SPECIES of MALVACEAE Sensu APG and ITS TAXONOMIC SIGNIFICANCE
    Philippine Journal of Systematic Biology Vol. IV (June 2010) LEAF ARCHITECTURE OF SELECTED SPECIES OF MALVACEAE sensu APG AND ITS TAXONOMIC SIGNIFICANCE ALLEN ANTHONY P. LARAÑO, AND INOCENCIO E. BUOT JR. Institute of Biological Sciences, University of the Philippines Los Baños ABSTRACT The leaf architecture of Malvaceae sensu APG was examined and characterized to determine if it can be used in classification of the family and the identification of its species. Forty species were observed, measured and described. A dichotomous key was constructed based solely on leaf architecture characters. The dichotomous key indicated that leaf architecture characters can be used in distinguishing some species of Malvaceae sensu APG. Some basic leaf architectural characters can also be used in describing certain clades within the family. It is recommended that specimens are collected personally instead on relying on available specimens in the herbarium. Preparation of leaf skeletons through clearing method can also be done in future studies. Increase of sample size is also recommended. KEYWORDS: leaf architecture, APG, classification INTRODUCTION Malvaceae Jussieu, nom. cons is a newly circumscribed family of the Angiosperm Phylogeny Group (APG, 2003). This family now comprises 243 genera and 4225 species which are mainly tropical in distribution. In the APG system, member families of Malvales like Sterculiaceae, Bombacaceae, Tiliaceae and Malvaceae sensu strictu were merged to become Malvaceae sensu APG (or lato). This lumping of families became controversial and gained criticism from some taxonomists. Cheek (2006, see also Cheek in Heywood et. al., 2007, Stevens, 2010) opts for a full dismemberment of the super family into ten separate families (Bombacaceae, Malvaceae, Sterculiaceae, Tiliaceae, Durionaceae, Brownlowiaceae Byttneriaceae, Helicteraceae, Pentapetaceae, and Sparrmanniaceae).
    [Show full text]
  • Morphological and Molecular Evidence for Hybridization in Grewia Tenax Complex
    Available online freely at www.isisn.org Bioscience Research Print ISSN: 1811-9506 Online ISSN: 2218-3973 Journal by Innovative Scientific Information & Services Network RESEARCH ARTICLE BIOSCIENCE RESEARCH, 2019. 16(3):2524-2532. OPEN ACCESS Morphological and molecular evidence for hybridization in Grewia tenax complex Nausheen Ghaffar*1and Anjum Perveen2 1Centre for Plant Conservation, University of Karachi, Karachi, Pakistan. 2Centre for Plant Conservation, University of Karachi, Karachi, Pakistan. *Correspondence: [email protected] Accepted: 13 June 2019 Published online: 30 July 2019 Grewia tenax (Forsk.) Fiori widely distributed in Pakistan. Grewia tenax (Forsk.) Fiori and Grewia erythraea Schweinf., found in complex and an intermediate population also reported from the southern part of Pakistan. Grewia tenax is a polymorphic taxon some authors recognized Grewia erythraea and Grewia tenax as separate species but others considered a single taxon. This has led to confusion.To confirm the hybridization all three species were investigated by means of morphological and molecular (Random Amplified Polymorphic DNA) studies. The taxonomic relationship of all three taxa was also explored using the SPSS (Ver. 20.0) cluster analysis and UPGMA cluster analysis using the NTSYS PC. Ver. 2.01. The results suggest that both the taxa are separate species. Comparison of micro and macro morphological characters and RAPD analysis authenticate, the Grewia tenax and Grewia erythraea are completely different species and both the taxa are sympatric in distribution. While intermediate population is interspecific hybrid and hybridization between two taxa take place on a limited scale. Keywords: Hybridization; Grewia tenax; Grewia erythraea; Intermediate; RAPD; Morphology; Molecular studies. INTRODUCTION or it may be the result of any natural or Genus Grewia belongs to subfamily experimental matting or crossing between two Grewioideae of the family Malvaceae, comprising varieties.
    [Show full text]
  • SABONET Report No 18
    ii Quick Guide This book is divided into two sections: the first part provides descriptions of some common trees and shrubs of Botswana, and the second is the complete checklist. The scientific names of the families, genera, and species are arranged alphabetically. Vernacular names are also arranged alphabetically, starting with Setswana and followed by English. Setswana names are separated by a semi-colon from English names. A glossary at the end of the book defines botanical terms used in the text. Species that are listed in the Red Data List for Botswana are indicated by an ® preceding the name. The letters N, SW, and SE indicate the distribution of the species within Botswana according to the Flora zambesiaca geographical regions. Flora zambesiaca regions used in the checklist. Administrative District FZ geographical region Central District SE & N Chobe District N Ghanzi District SW Kgalagadi District SW Kgatleng District SE Kweneng District SW & SE Ngamiland District N North East District N South East District SE Southern District SW & SE N CHOBE DISTRICT NGAMILAND DISTRICT ZIMBABWE NAMIBIA NORTH EAST DISTRICT CENTRAL DISTRICT GHANZI DISTRICT KWENENG DISTRICT KGATLENG KGALAGADI DISTRICT DISTRICT SOUTHERN SOUTH EAST DISTRICT DISTRICT SOUTH AFRICA 0 Kilometres 400 i ii Trees of Botswana: names and distribution Moffat P. Setshogo & Fanie Venter iii Recommended citation format SETSHOGO, M.P. & VENTER, F. 2003. Trees of Botswana: names and distribution. Southern African Botanical Diversity Network Report No. 18. Pretoria. Produced by University of Botswana Herbarium Private Bag UB00704 Gaborone Tel: (267) 355 2602 Fax: (267) 318 5097 E-mail: [email protected] Published by Southern African Botanical Diversity Network (SABONET), c/o National Botanical Institute, Private Bag X101, 0001 Pretoria and University of Botswana Herbarium, Private Bag UB00704, Gaborone.
    [Show full text]
  • Bakubung Reservoir Sensitivity Screening
    SENSITIVITY SCREENING OF THE PROPOSED BAKUBUNG RESERVOIR, PILANESBERG NATIONAL PARK, NORTH-WEST PROVINCE April 2017 Prepared for: Tosca Grünewald NuLeaf Planning & Environmental PostNet Suite 168 Private Bag X 844 Silverton 0127 Prepared by: ECOREX Consulting Ecologists CC PostNet Suite 192 Private Bag X2 Raslouw 0109 Author: Warren McCleland Reviewer: Dr Robert Palmer (Nepid Consultants) Sensitivity Screening: Bakubung Reservoir 1. Introduction Pilanesberg Resorts (Pty) Ltd is planning to construct a one megaliter potable water reservoir at the edge of Bakubung Lodge, Pilanesberg National Park, North-west Province. The new reservoir will replace three existing aging reservoirs currently servicing the Bakubung Lodge. NuLeaf Planning & Environmental are conducting the Basic Assessment for this development and have appointed ECOREX Consulting Ecologists CC to undertake a biodiversity sensitivity screening for the reservoir site. The study was undertaken by Warren McCleland, terrestrial ecologist and owner of ECOREX Consulting Ecologists. He has conducted over 120 biodiversity assessments for EIAs in South Africa since 2006, primarily in savannah and grassland biomes, as well as numerous assessments in 14 other countries in southern and tropical Africa. Warren has expertise in both flora and vertebrate fauna. He co-authored the “Field Guide to Trees and Woody Shrubs of Mpumalanga and Kruger National Park” (Jacana 2002), and is lead author on the “Field Guide to the Wildflowers of Kruger National Park” project. 2. Approach and Methods Fieldwork was conducted on 21 April 2017 and the location of the proposed reservoir was indicated on site by a Pilanesberg Resorts (Pty) Ltd representative. The site was surveyed on foot along a meandering transect covering all microhabitats present.
    [Show full text]
  • Thèse GOSSAN ADJA URCA 2013 100713
    UFR DE PHARMACIE UFR SSMT TH SE EN COTUTELLE Année 2013 Ecole Doctorale : Sciences Technologie Santé Pour obtenir le grade de Docteur de l’Université de Reims Champagne-Ardenne (FRANCE) et de l’Université Félix Houphouët-Boigny d’Abidjan (CÔTE D’IVOIRE) Discipline : Chimie Organique des Substances Naturelles Spécialité : Pharmacognosie Par Apie Diane Patricia GOSSAN le 29 Mai 2013 Étude phytochimique de plantes médicinales issues de la flore de la Côte d’Ivoire : Gouania longipetala , Ventilago africana (Rhamnaceae), Combretum racemosum (Combretaceae) et Glyphaea brevis (Malvaceae) Directrice de thèse Pr. Laurence VOUTQUENNE-NAZABADIOKO Jury Pr. Elisabeth SEGUIN…………………………………………..Président Dr Thierry HENNEBELLE……………………………………..Rapporteur Pr. Loré Beugré Hervé César ZABRI…………………………...Rapporteur Dr Raphaël GROUGNET……………………………………….Examinateur Pr. Antoine AHIBO-COFFY……………………………………Co-directeur de thèse Dr Abdulmagid ALABDUL MAGID…………………………..Co-encadrant Dr Philomène Akoua KOUASSI-YAO……………………........Co-encadrant Pr. Laurence VOUTQUENNE-NAZABADIOKO……………..Directrice de thèse i Diane GOSSAN -Thèse de l’Université de Reims Champagne -Ardenne -2013 ii Diane GOSSAN -Thèse de l’Université de Reims Champagne -Ardenne -2013 Remerciements J’adresse mes sincères remerciements et toute ma reconnaissance à : Monsieur le Docteur Thierry HENNEBELLE Maître de Conférences à l’Université de Lille Nord de France (Lille 2) Monsieur le Professeur Loré Beugré Hervé César ZABRI, Maître de Conférences à l’Université Nangui-Abrogoua d'Abidjan Madame le Professeur Elisabeth
    [Show full text]
  • Mabira Degazettement Report.Pdf
    Series No. 7 THE ECONOMIC VALUATION OF THE PROPOSED DEGAZETTEMENT OF MABIRA CENTRAL FOREST RESERVE NatureUganda Lead Consultants Dr. Yakobo Moyini Mr. Moses Masiga The Economic Valuation of the Proposed Degazettement of Mabira Central Forest Reserve With support from THE ECONOMIC VALUATION OF THE PROPOSED DEGAZETTEMENT OF MABIRA CENTRAL FOREST RESERVE Reproduction of this publication for educational or other non commercial purposes is authorized only with further written permission from the copyright holder provided the source is fully acknowledged. Production of this publication for resale or other commercial purposes is prohibited without prior written notice of the copyright holder. Citation: NatureUganda (2011). The Economic Valuation of the Proposed Degazettement of Mabira Central Forest Reserve. NatureUganda Kampala Copyright ©NatureUganda – The East Africa Natural History Society P.O.Box 27034, Kampala Uganda Plot 83 Tufnel Drive Kamwokya. Email [email protected] Website: www.natureuganda.org ACKNOWLEDGEMENTS This consultancy builds on NatureUganda earlier studies to identify important biodiversity areas in Uganda or key biodiversity areas. Thirty three (33) Important Bird Areas were identified including Mabira Forest Reserve. In this study, we make a case that policy formulation about natural resources needs to be informed with facts in the present and full knowledge of the future or predicted long term consequences. We are grateful to BirdLife International Partnership particularly Royal Society for the Protection of Birds (RSPB) whose initial support enabled NatureUganda to undertake this study on the economic evaluation of a section of Mabira Forest Reserve that was proposed for Degazzettement. The research work falls under our advocacy programme supported by various partners including BirdLife International through Jansen’s Foundation programme on ‘turning policy advantages into conservation gains’.
    [Show full text]
  • Plant-Based Gums and Mucilages Applications in Pharmacology and Nanomedicine: a Review
    molecules Review Plant-Based Gums and Mucilages Applications in Pharmacology and Nanomedicine: A Review Mohammad Sadegh Amiri 1 , Vahideh Mohammadzadeh 2, Mohammad Ehsan Taghavizadeh Yazdi 3 , Mahmood Barani 4 , Abbas Rahdar 5,* and George Z. Kyzas 6,* 1 Department of Biology, Payame Noor University, Tehran 19395-4697, Iran; [email protected] 2 Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 917794-8954, Iran; [email protected] 3 Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran; [email protected] 4 Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran; [email protected] 5 Department of Physics, University of Zabol, Zabol 98613-35856, Iran 6 Department of Chemistry, International Hellenic University, 65404 Kavala, Greece * Correspondence: [email protected] (A.R.); [email protected] (G.Z.K.); Tel.: +30-25-1046-2218 (G.Z.K.) Abstract: Gums are carbohydrate biomolecules that have the potential to bind water and form gels. Gums are regularly linked with proteins and minerals in their construction. Gums have several forms, such as mucilage gums, seed gums, exudate gums, etc. Plant gums are one of the most important gums because of their bioavailability. Plant-derived gums have been used by humans since ancient times for numerous applications. The main features that make them appropriate for use in different applications are high stabilization, viscosity, adhesive property, emulsification action, and surface-active activity. In many pharmaceutical formulations, plant-based gums and mucilages are Citation: Amiri, M.S.; the key ingredients due to their bioavailability, widespread accessibility, non-toxicity, and reasonable Mohammadzadeh, V.; Yazdi, M.E.T.; prices.
    [Show full text]