Bakubung Reservoir Sensitivity Screening

Total Page:16

File Type:pdf, Size:1020Kb

Bakubung Reservoir Sensitivity Screening SENSITIVITY SCREENING OF THE PROPOSED BAKUBUNG RESERVOIR, PILANESBERG NATIONAL PARK, NORTH-WEST PROVINCE April 2017 Prepared for: Tosca Grünewald NuLeaf Planning & Environmental PostNet Suite 168 Private Bag X 844 Silverton 0127 Prepared by: ECOREX Consulting Ecologists CC PostNet Suite 192 Private Bag X2 Raslouw 0109 Author: Warren McCleland Reviewer: Dr Robert Palmer (Nepid Consultants) Sensitivity Screening: Bakubung Reservoir 1. Introduction Pilanesberg Resorts (Pty) Ltd is planning to construct a one megaliter potable water reservoir at the edge of Bakubung Lodge, Pilanesberg National Park, North-west Province. The new reservoir will replace three existing aging reservoirs currently servicing the Bakubung Lodge. NuLeaf Planning & Environmental are conducting the Basic Assessment for this development and have appointed ECOREX Consulting Ecologists CC to undertake a biodiversity sensitivity screening for the reservoir site. The study was undertaken by Warren McCleland, terrestrial ecologist and owner of ECOREX Consulting Ecologists. He has conducted over 120 biodiversity assessments for EIAs in South Africa since 2006, primarily in savannah and grassland biomes, as well as numerous assessments in 14 other countries in southern and tropical Africa. Warren has expertise in both flora and vertebrate fauna. He co-authored the “Field Guide to Trees and Woody Shrubs of Mpumalanga and Kruger National Park” (Jacana 2002), and is lead author on the “Field Guide to the Wildflowers of Kruger National Park” project. 2. Approach and Methods Fieldwork was conducted on 21 April 2017 and the location of the proposed reservoir was indicated on site by a Pilanesberg Resorts (Pty) Ltd representative. The site was surveyed on foot along a meandering transect covering all microhabitats present. All species of flora that were located on site were recorded and the area was screened for potentially occurring conservation-important vertebrate fauna (mammals, birds, reptiles and frogs). The search was focused on locating conservation-important species as listed under the North West Biodiversity Management Act (No. 4 of 2016), National Forests Act (No. 30 of 1998), National Environmental Management: Biodiversity Act Threatened or Protected Species (No. 10 of 2004) and various national Red Data Lists. The location of all conservation- important species was recorded on a hand-held GPS (with approximately three-meter accuracy). ECOREX Consulting Ecologists CC 2 PO Box 57 White River 1240 (013) 750-1893 (083) 231-5632 [email protected] Sensitivity Screening: Bakubung Reservoir 3. Assumptions and Limitations The field survey period was very brief, given the small impact footprint that needed to be searched. This did not allow for a comprehensive survey of fauna, most of which would not be resident but would move irregularly through the site. However, sufficient time was available to survey the flora present. A number of herbaceous plant species were not in flower at the time of fieldwork and it is possible that certain geophytic species were not visible due to tall and quite dense grass cover. However, recommendations are given to mitigate this shortcoming and it should not negatively influence a Record of Decision. 4. Study Area The proposed development is located on portion 6 of the farm Ledig 909 JQ, which is situated within Pilanesberg National Park, Moses Kotane Local Municipality, North West Province (Figure 1). The proposed development will entail the construction of a new one megalitre (1000 m3) potable water reservoir to replace the three existing aging reservoirs currently servicing the Bakubung Lodge. It is understood that the total development footprint will not exceed one hectare. ECOREX Consulting Ecologists CC 3 PO Box 57 White River 1240 (013) 750-1893 (083) 231-5632 [email protected] Sensitivity Screening: Bakubung Reservoir Pilanesberg National Park Bakubung Lodge Figure 1. Location of the study site within the Pilanesberg National Park ECOREX Consulting Ecologists CC 4 PO Box 57 White River 1240 (013) 750-1893 (083) 231-5632 [email protected] Sensitivity Screening: Bakubung Reservoir 5. Results 5.1 NATIONAL VEGETATION TYPE The study area is situated within Pilanesberg Mountain Bushveld in the Central Bushveld Bioregion of the Savanna Biome (Mucina & Rutherford, 2006). The vegetation type is closely associated with the rocky hills encircling the ancient volcanic caldera that dominates Pilanesberg, occurring on a variety of mostly alkaline soils. Vegetation structure is fairly dense, broad-leaved, deciduous woodland on hillslopes, with more open woodland or savannah on hilltops and valley floors. Soils are mostly shallow, rocky lithosols on the hillslopes. Broad-leaved tree species such as Combretum apiculatum, C. molle, C. zeyheri and Strychnos cocculoides are dominant canopy species in Pilanesberg Mountain Bushveld, with shrubs or small trees such as Diplorhynchus condylocarpon, Elephantorrhiza burkei and Grewia flava being prominent in the mid-stratum. Dominant grasses include Chrysopogon serrulatus, Elionurus muticus, Panicum maximum and Themeda triandra (Mucina & Rutherford, 2006). Pilanesberg Mountain Bushveld occurs almost entirely within the Pilanesberg National Park and is thus well protected. The vegetation type has a national conservation status of Least Threatened (Mucina & Rutherford, 2006). The map in Mucina & Rutherford (2006) indicates Zeerust Thornveld as being close to the boundary of Bakubung Lodge, but data collected during fieldwork indicate that this vegetation type is not represented in the study area. 5.2 THREATENED ECOSYSTEMS The study area is not situated within any Threatened Ecosystems as defined in Government Gazette No. 34809 of 9 December 2011 (DEAT, 2011). 5.3 NORTH-WEST BIODIVERSITY CONSERVATION PLAN The study area is in an Ecological Support Area level 1 (Protected Area Corridor) according to the latest version of the North-West Biodiversity Sector Plan (Schaller et al., 2015). There are six Protected Area Corridors in North-West province, with the study area being located in the Pilanesberg-Madikwe Heritage Park. Ecological Support Areas (ESAs) are not necessarily essential for meeting biodiversity representation targets, but they play an important role in supporting the ecological functioning of critical biodiversity areas and/or in ECOREX Consulting Ecologists CC 5 PO Box 57 White River 1240 (013) 750-1893 (083) 231-5632 [email protected] Sensitivity Screening: Bakubung Reservoir delivering valuable ecosystem services. 5.4 VEGETATION DESCRIPTION - STUDY SITE The proposed reservoir site is situated within the hills near the southern boundary of Pilanesberg National Park. The vegetation within the proposed reservoir footprint has been significantly impacted by bush clearing, possibly for the nearby transmission line route. Vegetation structure is low, closed to mid-dense shrubland (Figure 2). Dominant large woody shrubs or small trees are Acacia caffra, A. nilotica, Combretum apiculatum, C. molle and C. zeyheri, while other fairly common woody species include Dichrostachys cinerea, Grewia flava and G. monticola. Dominant grass species are Aristida congesta, Panicum maximum and Heteropogon contortus, while other common species are Enneapogon cenchroides, Melinis repens, Eragrostis cf. chloromelas and Hyperthelia dissoluta. Herbaceous species were poorly represented in the dense, grassy undergrowth, but these species are likely to be more visible after spring / early summer rains when grass cover is lowest. Herbaceous species located during fieldwork included Justicia betonica, Corbichonia decumbens, Melhania prostrata, Rhynchosia totta, Sphedamnocarpus pruriens and Waltheria indica. Sixty-six species were recorded in the 1200m2 footprint during fieldwork (Appendix 1), with the most well represented families being Leguminosae (9 species), Poaceae (9 species), Malvaceae (7 species) and Asteraceae (5 species). The highest species richness was among forbs (28 species), although cover-abundance of these species was generally low. The dominant growth form in terms of species richness and cover-abundance is trees and shrubs (26 species). Three protected plant species were recorded within the footprint (Appendix 1). Three coppicing trees or low shrubs of Sclerocarya birrea subsp. cafra, which is protected under the National Forests Act (No. 30 of 1998), were located and are indicated on the map in Figure 3. Two other species are listed as specially protected under Schedule 2 of the North West Biodiversity Management Act (No. 4 of 2016), namely Pellaea calomelanos and Spirostachys africana. These species are also indicated on the map in Figure 3. ECOREX Consulting Ecologists CC 6 PO Box 57 White River 1240 (013) 750-1893 (083) 231-5632 [email protected] Sensitivity Screening: Bakubung Reservoir Figure 2. Photos of low, dense shrubland vegetation within the reservoir footprint ECOREX Consulting Ecologists CC 7 PO Box 57 White River 1240 (013) 750-1893 (083) 231-5632 [email protected] Sensitivity Screening: Bakubung Reservoir 5.5 POTENTIALLY OCCURRING SPECIES OF CONSERVATION CONCERN 5.5.1 Flora Fifteen threatened plant species occur in North West Province (Hahn, 2013), none of which occur in the vicinity of Pilanesberg National Park and none are thus likely to occur in the impact footprint. One species protected under the Threatened or Protected Species list of the National Environmental Management: Biodiversity Act (No. 10 of 2004), Drimia sanguinea, occurs in woodland habitat in the vicinity
Recommended publications
  • Seasonal Selection Preferences for Woody Plants by Breeding Herds of African Elephants (Loxodonta Africana)In a Woodland Savanna
    Hindawi Publishing Corporation International Journal of Ecology Volume 2013, Article ID 769587, 10 pages http://dx.doi.org/10.1155/2013/769587 Research Article Seasonal Selection Preferences for Woody Plants by Breeding Herds of African Elephants (Loxodonta africana)in a Woodland Savanna J. J. Viljoen,1 H. C. Reynecke,1 M. D. Panagos,1 W. R. Langbauer Jr.,2 and A. Ganswindt3,4 1 Department of Nature Conservation, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa 2 ButtonwoodParkZoo,NewBedford,MA02740,USA 3 Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa 4 Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa Correspondence should be addressed to J. J. Viljoen; [email protected] Received 19 November 2012; Revised 25 February 2013; Accepted 25 February 2013 Academic Editor: Bruce Leopold Copyright © 2013 J. J. Viljoen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. To evaluate dynamics of elephant herbivory, we assessed seasonal preferences for woody plants by African elephant breeding herds in the southeastern part of Kruger National Park (KNP) between 2002 and 2005. Breeding herds had access to a variety of woody plants, and, of the 98 woody plant species that were recorded in the elephant’s feeding areas, 63 species were utilized by observed animals. Data were recorded at 948 circular feeding sites (radius 5 m) during wet and dry seasons. Seasonal preference was measured by comparing selection of woody species in proportion to their estimated availability and then ranked according to the Manly alpha () index of preference.
    [Show full text]
  • Phytochemical Constituents of Combretum Loefl. (Combretaceae)
    Send Orders for Reprints to [email protected] 38 Pharmaceutical Crops, 2013, 4, 38-59 Open Access Phytochemical Constituents of Combretum Loefl. (Combretaceae) Amadou Dawe1,*, Saotoing Pierre2, David Emery Tsala2 and Solomon Habtemariam3 1Department of Chemistry, Higher Teachers’ Training College, University of Maroua, P.O.Box 55 Maroua, Cameroon, 2Department of Earth and Life Sciences, Higher Teachers’ Training College, University of Maroua, P.O.Box 55 Ma- roua, Cameroon, 3Pharmacognosy Research Laboratories, Medway School of Science, University of Greenwich, Cen- tral Avenue, Chatham-Maritime, Kent ME4 4TB, UK Abstract: Combretum is the largest and most widespread genus of Combretaceae. The genus comprises approximately 250 species distributed throughout the tropical regions mainly in Africa and Asia. With increasing chemical and pharma- cological investigations, Combretum has shown its potential as a source of various secondary metabolites. Combretum ex- tracts or isolates have shown in vitro bioactivitities such as antibacterial, antifungal, antihyperglycemic, cytotoxicity against various human tumor cell lines, anti-inflammatory, anti-snake, antimalarial and antioxidant effects. In vivo studies through various animal models have also shown promising results. However, chemical constituents and bioactivities of most species of this highly diversified genus have not been investigated. The molecular mechanism of bioactivities of Combretum isolates remains elusive. This review focuses on the chemistry of 261 compounds isolated and identified from 31 species of Combretum. The phytochemicals of interest are non-essential oil compounds belonging to the various struc- tural groups such as terpenoids, flavonoids, phenanthrenes and stilbenoids. Keywords: Combretum, phytochemistry, pharmacology, terpenoids, polyphenolic compounds, antibacterial activity, antifungal activity. INTRODUCTION is sometimes persistant, and especially in climbers it forms a hooked wooded spine when the leaf abscises.
    [Show full text]
  • NABRO Ecological Analysts CC Natural Asset and Botanical Resource Ordinations Environmental Consultants & Wildlife Specialists
    NABRO Ecological Analysts CC Natural Asset and Botanical Resource Ordinations Environmental Consultants & Wildlife Specialists ENVIRONMENTAL BASELINE REPORT FOR HANS HOHEISEN WILDLIFE RESEARCH STATION Compiled by Ben Orban, PriSciNat. June 2013 NABRO Ecological Analysts CC. - Reg No: 16549023 / PO Box 11644, Hatfield, Pretoria. Our reference: NABRO / HHWRS/V01 NABRO Ecological Analysts CC Natural Asset and Botanical Resource Ordinations Environmental Consultants & Wildlife Specialists CONTENTS 1 SPECIALIST INVESTIGATORS ............................................................................... 3 2 DECLARATION ............................................................................................................ 3 3 INTRODUCTION ......................................................................................................... 3 4 LOCALITY OF STUDY AREA .................................................................................... 4 4.1 Location ................................................................................................................... 4 5 INFRASTRUCTURE ..................................................................................................... 4 5.1 Fencing ..................................................................................................................... 4 5.2 Camps ...................................................................................................................... 4 5.3 Buildings ................................................................................................................
    [Show full text]
  • Carbon Based Secondary Metabolites in African Savanna Woody Species in Relation to Ant-Herbivore Defense
    Carbon based secondary metabolites in African savanna woody species in relation to anti-herbivore defense Dawood Hattas February 2014 Thesis Presented for the Degree of DOCTOR OF PHILOSOPHY in the Department of Biological Sciences UniveristyUNIVERSITY ofOF CAPE Cape TOWN Town Supervisors: JJ Midgley, PF Scogings and R Julkunen-Tiitto The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Declaration I Dawood Hattas, hereby declare that the work on which this thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole nor any part of it has been, is being, or is to be submitted for another degree in this or any other university. I authorize the University to reproduce for the purpose of research either the whole or a portion of the content in any manner whatsoever. This thesis includes two publications that were published in collaboration with research colleagues. Thus I am using the format for a thesis by publication. My collaborators have testified that I made substantial contributions to the conceptualization and design of the papers; that I independently ran experiments and wrote the manuscripts, with their support in the form of comments and suggestions (see Appendix). Published papers Hattas, D., Hjältén, J., Julkunen-Tiitto, R., Scogings, P.F., Rooke, T., 2011.
    [Show full text]
  • Corchorus L. and Hibiscus L.: Molecular Phylogeny Helps to Understand Their Relative Evolution and Dispersal Routes
    Corchorus L. and Hibiscus L.: Molecular Phylogeny Helps to Understand Their Relative Evolution and Dispersal Routes Arif Mohammad Tanmoy1, Md. Maksudul Alam1,2, Mahdi Muhammad Moosa1,3, Ajit Ghosh1,4, Waise Quarni1,5, Farzana Ahmed1, Nazia Rifat Zaman1, Sazia Sharmin1,6, Md. Tariqul Islam1, Md. Shahidul Islam1,7, Kawsar Hossain1, Rajib Ahmed1 and Haseena Khan1* 1Molecular Biology Lab, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh. 2Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, Richardson, TX 75080, USA. 3Graduate Studies in Biological Sciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. 4Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India. 5Department of Pathology and Cell Biology, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA. 6Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan. 7Breeding Division, Bangladesh Jute Research Institute (BJRI), Dhaka 1207, Bangladesh. ABSTRACT: Members of the genera Corchorus L. and Hibiscus L. are excellent sources of natural fibers and becoming much important in recent times due to an increasing concern to make the world greener. The aim of this study has been to describe the molecular phylogenetic relationships among the important members of these two genera as well as to know their relative dispersal throughout the world. Monophyly of Corchorus L. is evident from our study, whereas paraphyletic occurrences have been identified in case of Hibiscus L.
    [Show full text]
  • Review on Combretaceae Family
    Int. J. Pharm. Sci. Rev. Res., 58(2), September - October 2019; Article No. 04, Pages: 22-29 ISSN 0976 – 044X Review Article Review on Combretaceae Family Soniya Rahate*, Atul Hemke, Milind Umekar Department of Quality Assurance, Shrimati Kishoritai Bhoyar College of Pharmacy, Kamptee, Dist-Nagpur 441002, India. *Corresponding author’s E-mail: [email protected] Received: 06-08-2019; Revised: 22-09-2019; Accepted: 28-09-2019. ABSTRACT Combretaceae, the family of flowering plants consisting of 20 genus and 600 important species in respective genus. The two largest genera of the family are Combretum and Terminalia which contains the more no. of species. The members of the family are widely distributed in tropical and subtropical regions of the world. Most members of the trees, shrubs or lianas of the combretaceae family are widely used medicinally. The members of this family contain the different phytoconstituents of medicinal value e.g tannins, flavonoids, terpenoids and alkaloids. Most of the species of this family are used as antimicrobial, antioxidant and antifungal. The biological activities of the some members of this family yet not found. Apart from the medicinal value many members of the Combretaceae are of culinary and ornamental value. Keywords: Combretaceae, Tannins, Flavonoid, Terminalia, Combretum. INTRODUCTION species of Combretum have edible kernels whereas Buchenavia species have edible succulent endocarps. he family combretaceae is a major group of Chemical constituents like tannins are also found in fruits, flowering plants (Angiosperms) included in the bark, leaves, roots and timber in buchenavia and order of Myrtales. Robert Brown established it in T terminalia genera. Many of the species are reputed to 1810 and its inclusion to the order is not in dispute.
    [Show full text]
  • Grewia Hispidissima Wahlert, Phillipson & Mabb., Sp. Nov
    Grewia hispidissima Wahlert, Phillipson & Mabb., sp. nov. (Malvaceae, Grewioideae): a new species of restricted range from northwestern Madagascar Gregory A. WAHLERT Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri 63166-0299 (USA) [email protected] Peter B. PHILLIPSON Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri 63166-0299 (USA) and Institut de systématique, évolution, et biodiversité (ISYEB), Unité mixte de recherche 7205, Centre national de la recherche scientifique/Muséum national d’Histoire naturelle/ École pratique des Hautes Études, Université Pierre et Marie Curie, Sorbonne Universités, case postale 39, 57 rue Cuvier, F-75231 Paris cedex 05 (France) [email protected]/[email protected] David J. MABBERLEY Wadham College, University of Oxford, Parks Road Oxford, OX1 3PN (United Kingdom) and Universiteit Leiden and Naturalis Biodiversity Center Darwinweg 2, 2333 CR Leiden (The Netherlands) and Macquarie University and The Royal Botanic Gardens & Domain Trust, Mrs Macquaries Road, Sydney NSW 2000 (Australia) [email protected] Porter P. LOWRY II Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri 63166-0299 (USA) and Institut de systématique, évolution, et biodiversité (ISYEB), Unité mixte de recherche 7205, Centre national de la recherche scientifique/Muséum national d’Histoire naturelle/ École pratique des Hautes Études, Université Pierre et Marie Curie, Sorbonne Universités, case postale 39, 57 rue Cuvier, F-75231 Paris cedex 05 (France) [email protected]/[email protected] Published on 24 June 2016 Wahlert G. A., Phillipson P. B., Mabberley D. J. & Lowry II P. P. 2016. — Grewia hispidissima Wahlert, Phillipson & Mabb., sp. nov. (Malvaceae, Grewioideae): a new species of restricted range from northwestern Madagascar.
    [Show full text]
  • Large Tree Mortality in Kruger National Park
    Tough times for large trees: Relative impacts of elephant and fire on large trees in Kruger National Park Graeme Shannon1, Maria Thaker1 Abi Tamim Vanak1, Bruce Page1, Rina Grant2, Rob Slotow1 1University of KwaZulu-Natal, 2Scientific Services, SANParks Shannon G., Thaker M, et al. 2011. Ecosystems 14: 1372-1381 Large trees in savanna ecosystems • Key role in ecosystem functioning – Keystone components – Nutrient pumps – Habitat heterogeneity – Increase biodiversity Damage to large trees: Role of elephant • Foliage utilisation • Breaking of large branches • Debarking • Pushing over Damage to large trees: Role of fire • Removal of lower crown biomass • Damage to tissues • Topkill Effect of elephant and fire: are they additive? • Elephant damage to trees makes them more susceptible to fire • Opening up of canopy increases fuel load – Higher intensity fires Understanding the patterns of damage • Determine impact of elephant, fire (main ecological drivers) and disease on large trees over a 30-month period subsequent to initial description • Particular focus on the independent and combined effects of previous impact on subsequent levels of impact and mortality Surveys of large trees • Transects: 2.5 years apart (Apr 2006, Nov 2008) • 22 Transects (67 km total) • Southern Kruger • N = 2522 trees (> 5 m height) 1st survey of large trees • location of individual trees (≥ 5 m height) • species, dimensions • use/impact by elephant (proportion tree volume removed) • fire damage (proportion tree volume removed) • disease (presence of wood borer,
    [Show full text]
  • Microcos Antidesmifolia (Malvaceae-Grewioideae), a Poorly Known Species in Singapore
    Gardens' Bulletin Singapore 72(2): 159–164. 2020 159 doi: 10.26492/gbs72(2).2020-04 Microcos antidesmifolia (Malvaceae-Grewioideae), a poorly known species in Singapore S.K. Ganesan1, R.C.J. Lim2, P.K.F. Leong1 & X.Y. Ng2 1Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, 259569 Singapore [email protected] 2 Native Plant Centre, Horticulture and Community Gardening Division, National Parks Board, 100K Pasir Panjang Road, 118526 Singapore ABSTRACT. A poorly known species in Singapore, Microcos antidesmifolia (King) Burret, is described and illustrated for the first time. In Singapore, it is known from the type variety, Microcos antidesmifolia (King) Burret var. antidesmifolia. Notes on distribution, ecology and conservation status are given. This species is assessed as Critically Endangered for Singapore. A key is given for the fiveMicrocos L. species in Singapore. Keywords. Conservation assessment, distribution, ecology, flora Introduction The genus Microcos L. comprises about 80 species that are distributed in tropical Africa (not in Madagascar), India, Sri Lanka, Myanmar, Indochina, south China and throughout Malesia (except the Lesser Sunda Islands) (Chung & Soepadmo, 2011). Until about 2007, Microcos was placed in the family Tiliaceae. However, phylogenetic analysis using both molecular and morphological data has led to the recognition of an expanded Malvaceae, composed of the formerly recognised families Malvaceae s.s., Tiliaceae, Bombacaceae and Sterculiaceae, and for the Malvaceae s.l. to be divided into nine sub-families (Alverson et al., 1999; Bayer et al., 1999; Bayer & Kubitzki, 2003). This classification was adopted by the Angiosperm Phylogeny Group (APG, 2009, 2016). Here we follow APG and consider Microcos in Malvaceae, subfamily Grewioideae Dippel.
    [Show full text]
  • Elephant Damage to Sclerocarya Birrea on Different Landscapes
    Vol. 9(4), pp. 97-106, April 2017 DOI: 10.5897/IJBC2015.0912 Article Number: A99E04563330 International Journal of Biodiversity and ISSN 2141-243X Copyright © 2017 Conservation Author(s) retain the copyright of this article http://www.academicjournals.org/IJBC Full Length Research Paper Elephant damage to Sclerocarya birrea on different landscapes M. Q. Seloana1*, J. W. Kruger2, M. J. Potgieter1 and J. J. Jordaan1 1Department of Biodiversity, University of Limpopo, P. O. Box 1106, Sovenga, 0727, South Africa. 2Department of Economic Development, Environment and Tourism, Private Bag X 9484, Polokwane, 0700, Pretoria, South Africa. Received 21 November, 2016; Accepted 28 February, 2017 The African elephant (Loxodonta africana Blumenbach) is a keystone species and ecosystem engineer. Elephants can cause serious damage to important trees, with only certain species being targeted such as Marula (Sclerocarya birrea A. Rich. Hoscht). High levels of elephant utilization may to some extent, compromise the viability of some woody plant populations leading to vegetation changes coupled with a possible loss of species diversity and/or structural diversity. In order to quantify their effect a study was initiated in 2014 to investigate their effect on tree height, degree of branch damage, the extent of debarking, and degree of stem damage. This was done within elephant’s frequently and non–frequently used sites, and a neighbouring enclosure (control site). One hundred and fifty (50 per site) mature S. birrea trees were randomly selected within each site. Tree height was recorded using clinometers, degree of branch damage, extent of debarking (circumference debarked using different percentages of intensity) and degree of stem damage were assessed using different categories.
    [Show full text]
  • The Butterflies of Taita Hills
    FLUTTERING BEAUTY WITH BENEFITS THE BUTTERFLIES OF TAITA HILLS A FIELD GUIDE Esther N. Kioko, Alex M. Musyoki, Augustine E. Luanga, Oliver C. Genga & Duncan K. Mwinzi FLUTTERING BEAUTY WITH BENEFITS: THE BUTTERFLIES OF TAITA HILLS A FIELD GUIDE TO THE BUTTERFLIES OF TAITA HILLS Esther N. Kioko, Alex M. Musyoki, Augustine E. Luanga, Oliver C. Genga & Duncan K. Mwinzi Supported by the National Museums of Kenya and the JRS Biodiversity Foundation ii FLUTTERING BEAUTY WITH BENEFITS: THE BUTTERFLIES OF TAITA HILLS Dedication In fond memory of Prof. Thomas R. Odhiambo and Torben B. Larsen Prof. T. R. Odhiambo’s contribution to insect studies in Africa laid a concrete footing for many of today’s and future entomologists. Torben Larsen’s contribution to the study of butterflies in Kenya and their natural history laid a firm foundation for the current and future butterfly researchers, enthusiasts and rearers. National Museums of Kenya’s mission is to collect, preserve, study, document and present Kenya’s past and present cultural and natural heritage. This is for the purposes of enhancing knowledge, appreciation, respect and sustainable utilization of these resources for the benefit of Kenya and the world, for now and posterity. Copyright © 2021 National Museums of Kenya. Citation Kioko, E. N., Musyoki, A. M., Luanga, A. E., Genga, O. C. & Mwinzi, D. K. (2021). Fluttering beauty with benefits: The butterflies of Taita Hills. A field guide. National Museums of Kenya, Nairobi, Kenya. ISBN 9966-955-38-0 iii FLUTTERING BEAUTY WITH BENEFITS: THE BUTTERFLIES OF TAITA HILLS FOREWORD The Taita Hills are particularly diverse but equally endangered.
    [Show full text]
  • The Effects of Rainfall, Elephant and Fire on Woody Height Class Distributions in South African Savannas Georgette Lagendijk & Rob Slotow
    The effects of rainfall, elephant and fire on woody height class distributions in South African savannas Georgette Lagendijk & Rob Slotow Amarula Elephant Research Programme, University of KwaZulu-Natal Introduction Concern for the loss of trees within African savannas Are size classes missing from the savanna? Disruption of ‘natural’ tree size distribution, or population dynamics Three main ecological drivers: rainfall, fire and herbivory Introduction Fire-trap <3m Browsing trap, seedlings and saplings Fire and herbivory intrinsic to savannas BUT Active management Introduction Are disruptions in size distributions recruitment or mortality related? Study Area Kruger National Park Makalali Madikwe Mkuze Pilanesberg Pongola Phinda Rainfall: 450 – 764 mm Elephant: 0.13 – 0.68 km2 Fire: 2.5 – 71.7 years Height classes Seedling: ≤ 0.5 m Sapling: 0.5-1.5 m Small tree: 1.5-3.0 m Medium tree: 3.0-5.0 m Large tree: ≥ 5.0 m Results ( & discussion) Positive Negative Rainfall seedlings large trees saplings Elephant - seedlings medium trees large trees Fire seedlings - (longer fire medium trees return interval) large trees Results Indicator species Prolonged fire period (+): Combretum apiculatum, Grewia monticola Rainfall (+): Acacia nilotica, Euclea natalensis Elephant (-): Peltophorum africanum No sign models for Pappea capensis or Ziziphus mucronata Results Kruger National Park Missing size classes: medium (3-5 m) large (≥ 5.0 m) trees Conclusion Disruptions in size classes appear mortality related: elephant and fire Affecting transition of individual trees through different size classes Whether this is detrimental to population dynamics and thus the persistance of (specific) species, requires urgent attention Thank you! Management of Kruger National Park, Madikwe, Pilanesberg, Makalali, Phinda, Mkuze and Pongola, Bruce Page, Craig Packer, Dave Druce, Matt Repton, Lisette Moolman, Tenjiwe Ndlovu, Sven Bourquin, Debbie Donkin, Dehn von Ahlenveld, Audrey Delsink, Navashni Govender, Pieter Nel, Simon Naylor, Dr.
    [Show full text]