A Powerful New Tool for Mouse Functional Genomics

Total Page:16

File Type:pdf, Size:1020Kb

A Powerful New Tool for Mouse Functional Genomics REVIEWS RECOMBINEERING: A POWERFUL NEW TOOL FOR MOUSE FUNCTIONAL GENOMICS Neal G. Copeland*, Nancy A. Jenkins* and Donald L. Court‡ Highly efficient phage-based Escherichia coli homologous recombination systems have recently been developed that enable genomic DNA in bacterial artificial chromosomes to be modified and subcloned, without the need for restriction enzymes or DNA ligases. This new form of chromosome engineering, termed recombinogenic engineering or recombineering, is efficient and greatly decreases the time it takes to create transgenic mouse models by traditional means. Recombineering also facilitates many kinds of genomic experiment that have otherwise been difficult to carry out, and should enhance functional genomic studies by providing better mouse models and a more refined genetic analysis of the mouse genome. MOUSE GENOMIC TECHNOLOGIES PHAGE-BASED RECOMBINATION During the next few years, the sequence of the human A limitation of most of these technologies is that Bacteria, such as Escherichia coli, genome will be completed and annotated. The next chal- they require the production of complicated targeting encode their own homologous lenge will be to determine how each of these genes func- and selection constructs. The ability to generate these recombination systems.Viruses tions alone and with other genes in the genome, to constructs is often limited by the availability of or phages that inhabit bacteria also often carry their own understand the developmental programme of a human. appropriate and unique restriction-enzyme cleavage recombination functions, which Given that there are many genes that need to be charac- sites in both cloning vectors and genomic DNA can work with, or independently terized and the fact that a lot of them will not be related to (BOX 1). Other types of functional genomics experi- of, the bacterial recombination genes with known function, this will be a daunting task. ment also require the manipulation of large segments functions. Much of our understanding of these genes will therefore of DNA, which is difficult to do using standard have to come from studies of model organisms. recombinant DNA techniques, because many cloning The mouse is an ideal model organism for these vectors do not have sufficient capacity or do not tend types of study. Not only are the mouse and human to tolerate large inserts. The development of PHAGE- genomes very similar, but also transgenic and knockout BASED HOMOLOGOUS RECOMBINATION systems in the past technologies, developed during the past two decades, three years5–8 has greatly simplified the generation of allow gene function studies in the mouse that are not transgenic and knockout constructs, making it possi- possible in most other organisms. Null mutations, as ble to engineer large segments of genomic DNA, such *Mouse Cancer Genetic well as subtle missense or gain-of-function mutations, as those carried on BACTERIAL ARTIFICIAL CHROMOSOMES ‡ Program, and Gene can be introduced into virtually any gene in the mouse (BACs) or P1 artificial chromosomes (PACs), that Regulation and Chromosome Biology germ line using homologous-recombination-based, replicate at low-copy number in Escherichia coli. Laboratory, Center for gene-targeting technology. In addition, the conditional Using phage recombination to carry out genetic engi- Cancer Research, National inactivation of gene expression in vivo can be used to neering has been called recombinogenic engineering9 Cancer Institute at inactivate a gene in only a subset of cells or at well- or recombineering. Recombineering offers exciting Frederick, Frederick, 1–4 Maryland 21702, USA. defined stages of development (for more on this new opportunities for creating mouse models of Correspondence to N.G.C. topic, see the accompanying review by Mark human disease and for gene therapy. Here, we con- e-mail: [email protected] Lewandoski on p743 of this issue). trast and compare these new phage systems with NATURE REVIEWS | GENETICS VOLUME 2 | OCTOBER 2001 | 769 © 2001 Macmillan Magazines Ltd REVIEWS Box 1 | Classical recombinant DNA technology versus recombineering Traditional genetic engineering technology, which uses restriction a Genetic engineering b Recombineering enzymes and DNA ligase to cut and rejoin DNA fragments (see Cassette PCR-amplified cassette figure part a), breaks down when cloning vehicles and the target site contain hundreds of kilobases of DNA. This is because even 5' 5' Restriction rare restriction-enzyme sites occur frequently on large DNA + molecules, such as bacterial artificial chromosomes (BACs) and Target in BAC the bacterial chromosome, making the finding of unique sites almost impossible. Furthermore, the in vitro manipulation of large Multi-copy linear DNAs of this length is extremely difficult; once BAC cloning plasmid drugR technology became available in Escherichia coli, modifying the BAC clones became the primary problem. Problems associated with the traditional approach have been overcome by developing ori recombineering technology, which uses homologous Ligation, recombination functions that are encoded by phages (see figure transformation Transformation Plasmid/phage- part b). The crucial advance in the recombineering methodology is mediated homologous the use of phage recombination functions that generate recombination recombinant molecules using homologies of 50 bp (or less); Recombinant cassette in BAC homologous regions for recombination usually need to be ~500 bp Cloned R cassette in length, whereas in recombineering approaches, they need be drug only 40–50 bp in length. (ori, origin of replication.) ori Genetic engineering steps to generate a BAC recombinant include: + • Cleaving a cassette DNA with a restriction enzyme. Target gene in BAC • Cleaving a target DNA on a plasmid with a restriction enzyme. • Ligating the cassette to the plasmid. • Transforming the plasmid into competent bacterial cells. • Selecting drug-resistant (drugR) clones. • Isolating the transformant and verifying the cloned cassette. • Transforming the cloned cassette into a BAC-containing bacterial strain to introduce the cloned cassette into the BAC by Classical homologous recombination steps homologous recombination. Regions of homology Target gene in BAC Recombinant cassette in BAC Recombineering steps to generate a BAC recombinant include: Restriction site • Amplifying a cassette by PCR with flanking regions of Plasmid DNA homology. BAC DNA • Introducing phage recombination functions into a BAC- PCR primers containing bacterial strain, or introducing a BAC into a strain Restriction enzyme that carries recombination functions. • Transforming the cassette into cells that contain a BAC and recombination functions. • Generating a recombinant in vivo. • Detecting a recombinant by selection, counterselection or by direct screening (colony hybridization). earlier, more classical bacterial recombination sys- tion pathway is very efficient10, making yeast a useful tems that have been used for engineering genomic organism for creating recombinant DNA molecules by DNA on BACs or PACs. homologous recombination. These recombination pathways recombine transformed, linear, double- Chromosome engineering in yeast stranded DNA (dsDNA) with homologous sites in the BACTERIAL ARTIFICIAL CHROMOSOME E. coli has traditionally been the main organism in yeast genome. Moreover, recombination occurs profi- (BAC). A cloning vector derived which to carry out genetic engineering for genetic stud- ciently with even short stretches of homologous from a single-copy F-plasmid of ies of bacteria, and also for constructing recombinant sequence, thereby allowing recombinant DNA to be Escherichia coli. It carries the F DNA molecules for use in other organisms. Most E. coli generated in vivo without the use of restriction replication and partitioning 11–13 systems that ensure low-copy cloning methods use restriction enzymes to cleave enzymes and DNA ligases . number and faithful DNA, and DNA ligases to join DNA fragments. These Homologous recombination has proved to be segregation of plasmid DNA to cleavage and joining reactions are the basis for creating extremely useful for analysing the function of genes in daughter cells. Large genomic recombinant molecules, and for cloning DNA into the yeast genome. In 1993, Agnès Baudin and fragments can be cloned into phage and PLASMID vectors for additional modification colleagues13 showed that it is possible to delete a yeast F-type plasmids, making them useful for constructing and amplification. In Saccharomyces cerevisiae, the gene and replace it with a yeast selectable marker, such genomic libraries. DNA double-stranded-break and -repair recombina- as HIS3, using homologous recombination. In these 770 | OCTOBER 2001 | VOLUME 2 www.nature.com/reviews/genetics © 2001 Macmillan Magazines Ltd REVIEWS 24,26–28 Box 2 | YACs versus BACs and PACs for recombineering activity to recBC mutants . These exonuclease- deficient strains provided one of the first in vivo cloning Yeast artificial chromosomes (YACs) were developed for cloning large fragments of systems for E. coli and have been used for several applica- genomic DNA into yeast, whereas bacterial artificial chromosomes (BACs) and P1 tions, including recombining linear dsDNA with circular artificial chromosomes (PACs) were developed for cloning large genomic fragments chromosomal DNA29, introducing drug-selectable into Escherichia coli. Each vector type has its own inherent advantages and markers into the E. coli chromosome, and for mutage-
Recommended publications
  • A Highly Efficient Recombineering-Based Method for Generating Conditional Knockout Mutations Pentao Liu, Nancy A
    Methods A Highly Efficient Recombineering-Based Method for Generating Conditional Knockout Mutations Pentao Liu, Nancy A. Jenkins, and Neal G. Copeland1 Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA Phage-based Escherichia coli homologous recombination systems have recently been developed that now make it possible to subclone or modify DNA cloned into plasmids, BACs, or PACs without the need for restriction enzymes or DNA ligases. This new form of chromosome engineering, termed recombineering, has many different uses for functional genomic studies. Here we describe a new recombineering-based method for generating conditional mouse knockout (cko) mutations. This method uses homologous recombination mediated by the ␭ phage Red proteins, to subclone DNA from BACs into high-copy plasmids by gaprepair,and together with Cre or Flpe recombinases, to introduce loxPorFRT sites into the subcloned DNA. Unlike other methods that use short 45–55-bpregions of homology for recombineering, our metho d uses much longer regions of homology. We also make use of several new E. coli strains, in which the proteins required for recombination are expressed from a defective temperature-sensitive ␭ prophage, and the Cre or Flpe recombinases from an arabinose-inducible promoter. We also describe two new Neo selection cassettes that work well in both E. coli and mouse ES cells. Our method is fast, efficient, and reliable and makes it possible to generate cko-targeting vectors in less than 2 wk. This method should also facilitate the generation of knock-in mutations and transgene constructs, as well as expedite the analysis of regulatory elements and functional domains in or near genes.
    [Show full text]
  • A Homologous Recombination-Based Method of Genetic Engineering
    PROTOCOL Recombineering: a homologous recombination-based method of genetic engineering Shyam K Sharan1, Lynn C Thomason2, Sergey G Kuznetsov1 & Donald L Court3 1Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA. 2SAIC-Frederick Inc., Gene Regulation and Chromosome Biology Laboratory, Basic Research Program, Frederick, Maryland, 21702, USA. 3Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA. Correspondence should be addressed to S.K.S. ([email protected]) or D.L.C. ([email protected]). Published online 29 January 2009; doi:10.1038/nprot.2008.227 Recombineering is an efficient method of in vivo genetic engineering applicable to chromosomal as well as episomal replicons in Escherichia coli. This method circumvents the need for most standard in vitro cloning techniques. Recombineering allows construction of DNA molecules with precise junctions without constraints being imposed by restriction enzyme site location. Bacteriophage homologous recombination proteins catalyze these recombineering reactions using double- and single-stranded linear DNA substrates, natureprotocols so-called targeting constructs, introduced by electroporation. Gene knockouts, deletions and point mutations are readily made, gene / m tags can be inserted and regions of bacterial artificial chromosomes or the E. coli genome can be subcloned by gene retrieval using o c . recombineering. Most of these constructs can be made within about 1 week’s time. e r u t a n . INTRODUCTION w w Recombineering is an in vivo method of genetic engineering used This protocol will emphasize modification of bacterial artificial w / / 1–5 : primarily in Escherichia coli that uses short 50 base homologies .
    [Show full text]
  • Bacterial Artificial Chromosome Mutagenesis Using Recombineering
    Hindawi Publishing Corporation Journal of Biomedicine and Biotechnology Volume 2011, Article ID 971296, 10 pages doi:10.1155/2011/971296 Review Article Bacterial Artificial Chromosome Mutagenesis Using Recombineering Kumaran Narayanan1, 2 and Qingwen Chen2 1 Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA 2 School of Science, Monash University, Sunway Campus, Room 2-5-29, Bandar Sunway, 46150, Malaysia Correspondence should be addressed to Kumaran Narayanan, [email protected] Received 2 August 2010; Accepted 21 October 2010 Academic Editor: Masamitsu Yamaguchi Copyright © 2011 K. Narayanan and Q. Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Gene expression from bacterial artificial chromosome (BAC) clones has been demonstrated to facilitate physiologically relevant levels compared to viral and nonviral cDNA vectors. BACs are large enough to transfer intact genes in their native chromosomal setting together with flanking regulatory elements to provide all the signals for correct spatiotemporal gene expression. Until recently, the use of BACs for functional studies has been limited because their large size has inherently presented a major obstacle for introducing modifications using conventional genetic engineering strategies. The development of in vivo homologous recombination strategies based on recombineering in E. coli has helped resolve this problem by enabling facile engineering of high molecular weight BAC DNA without dependence on suitably placed restriction enzymes or cloning steps. These techniques have considerably expanded the possibilities for studying functional genetics using BACs in vitro and in vivo.
    [Show full text]
  • Genetic Engineering Using Homologous Recombination1
    17 Oct 2002 13:49 AR AR174-GE36-14.tex AR174-GE36-14.SGM LaTeX2e(2002/01/18) P1: IBC 10.1146/annurev.genet.36.061102.093104 Annu. Rev. Genet. 2002. 36:361–88 doi: 10.1146/annurev.genet.36.061102.093104 GENETIC ENGINEERING USING HOMOLOGOUS RECOMBINATION1 Donald L. Court, James A. Sawitzke, and Lynn C. Thomason Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702; e-mail: [email protected], [email protected], [email protected] Key Words DNA replication forks, strand annealing, in vivo cloning, oligo recombination, recombineering ■ Abstract In the past few years, in vivo technologies have emerged that, due to their efficiency and simplicity, may one day replace standard genetic engineering tech- niques. Constructs can be made on plasmids or directly on the Escherichia coli chromo- some from PCR products or synthetic oligonucleotides by homologous recombination. This is possible because bacteriophage-encoded recombination functions efficiently re- combine sequences with homologies as short as 35 to 50 base pairs. This technology, termed recombineering, is providing new ways to modify genes and segments of the chromosome. This review describes not only recombineering and its applications, but also summarizes homologous recombination in E. coli and early uses of homologous recombination to modify the bacterial chromosome. Finally, based on the premise that phage-mediated recombination functions act at replication forks, specific molecular models are
    [Show full text]
  • Improved Bacterial Recombineering by Parallelized Protein Discovery
    Improved bacterial recombineering by parallelized protein discovery Timothy M. Wanniera,1, Akos Nyergesa,b, Helene M. Kuchwaraa, Márton Czikkelyb, Dávid Baloghb, Gabriel T. Filsingera, Nathaniel C. Bordersa, Christopher J. Gregga, Marc J. Lajoiea, Xavier Riosa, Csaba Pálb, and George M. Churcha,1 aDepartment of Genetics, Harvard Medical School, Boston, MA 02115; and bSynthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged HU-6726, Hungary Edited by Susan Gottesman, National Institutes of Health, Bethesda, MD, and approved April 17, 2020 (received for review January 30, 2020) Exploiting bacteriophage-derived homologous recombination pro- recombineering, is the molecular mechanism that drives MAGE cesses has enabled precise, multiplex editing of microbial genomes and DIvERGE (4, 32, 33). This method was first described in and the construction of billions of customized genetic variants in a E. coli, and is most commonly promoted by the expression of bet single day. The techniques that enable this, multiplex automated ge- (here referred to as Redβ) from the Red operon of Escherichia nome engineering (MAGE) and directed evolution with random ge- phage λ (5, 6, 34). Redβ is an ssDNA-annealing protein (SSAP) nomic mutations (DIvERGE), are however, currently limited to a whose role in recombineering is to anneal ssDNA to compli- handful of microorganisms for which single-stranded DNA-annealing mentary genomic DNA at the replication fork. Although im- proteins (SSAPs) that promote efficient recombineering have been provements to recombineering efficiency have been made (7–9), identified. Thus, to enable genome-scale engineering in new hosts, the core protein machinery has remained constant, with Redβ efficient SSAPs must first be found.
    [Show full text]
  • Mini-E: a Tractable System for Chromosome and BAC Engineering
    Gene 315 (2003) 63–69 www.elsevier.com/locate/gene Mini-E: a tractable system for chromosome and BAC engineering Donald L. Courta,*, Srividya Swaminathanb, Daiguan Yua, Helen Wilsona, Teresa Bakera, Mikail Bubunenkoa, James Sawitzkea, Shyam K. Sharanb a Molecular Control and Genetics Section, Gene Regulation and Chromosome Biology Laboratory, NCI/FCRDC, National Cancer Institute at Frederick, Building 539/Room 243, P.O. Box B, Frederick, MD 21702, USA b Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, 1050 Boyles Street, Frederick, MD 21702, USA Received 4 March 2003; received in revised form 12 May 2003; accepted 28 May 2003 Received by V. Larionov Abstract The bacteriophage lambda (E) recombination system Red has been used for engineering large DNA fragments cloned into P1 and bacterial artificial chromosomes (BAC or PAC) vectors. So far, this recombination system has been utilized by transferring the BAC or PAC clones into bacterial cells that harbor a defective E prophage. Here we describe the generation of a mini-E DNA that can provide the Red recombination functions and can be easily introduced by electroporation into any E. coli strain, including the DH10B-carrying BACs or PACs. The mini-E DNA integrates into the bacterial chromosome as a defective prophage. In addition, since it retains attachment sites, it can be excised out to cure the cells of the phage DNA. We describe here the use of the mini-E recombination system for BAC modification by introducing a selectable marker into the vector sequence of a BAC clone.
    [Show full text]
  • The Efficiency for Recombineering Is Dependent on the Source of The
    bioRxiv preprint doi: https://doi.org/10.1101/745448; this version posted August 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The efficiency for recombineering is dependent on the source of the 2 phage recombinase function unit 3 Yizhao Chang, a Qian Wang, b Tianyuan Su, a Qingsheng Qia,c # 4 a State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, 5 Qingdao 266237, P.R. China 6 7 b National Glycoengineering Center, Shandong University, Jinan, Shandong, China 8 c CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess 9 Technology, Chinese Academy of Sciences, Qingdao, Shandong, China 10 11 Running Head: Features affecting recombineering efficiency 12 13 # Address correspondence to Qingsheng Qi, [email protected]. 14 15 Word counts for abstract: 183 16 Word counts for text: 3621 17 18 19 20 bioRxiv preprint doi: https://doi.org/10.1101/745448; this version posted August 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 21 Abstract 22 Phage recombinase function units (PRFUs) such as lambda-Red or Rac RecET have been proven 23 to be powerful genetic tools in the recombineering of Escherichia coli.
    [Show full text]
  • Manipulating the Mouse Genome Using Recombineering
    e in G net ts ic n E e n Biswas and Sharan, Adv Genet Eng 2013, 2:2 g m i e n c e e n DOI: 10.4172/2169-0111.1000108 r a i v n d g A Advancements in Genetic Engineering ISSN: 2169-0111 Review Article Open Access Manipulating the Mouse Genome Using Recombineering Kajal Biswas and Shyam K Sharan* Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA Abstract Genetically engineered mouse models are indispensable for understanding the biological function of genes, understanding the genetic basis of human diseases, and for preclinical testing of novel therapies. Generation of such mouse models has been possible because of our ability to manipulate the mouse genome. Recombineering is a highly efficient, recombination-based method of genetic engineering that has revolutionized our ability to generate mouse models. Since recombineering technology is not dependent on the availability of restriction enzyme recognition sites, it allows us to modify the genome with great precision. It requires homology arms as short as 40 bases for recombination, which makes it relatively easy to generate targeting constructs to insert, change, or delete either a single nucleotide or a DNA fragment several kb in size; insert selectable markers or reporter genes; or add epitope tags to any gene of interest. In this review, we focus on the development of recombineering technology and its application to the generation of genetically engineered mouse models. High-throughput generation of gene targeting vectors, used to construct knockout alleles in mouse embryonic stem cells, is now feasible because of this technology.
    [Show full text]
  • Identification and Analysis of Recombineering Functions from Gram-Negative and Gram-Positive Bacteria and Their Phages
    Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages Simanti Datta, Nina Costantino, Xiaomei Zhou, and Donald L. Court† Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702 Edited by Sankar Adhya, National Institutes of Health, Bethesda, MD, and approved December 12, 2007 (received for review September 25, 2007) We report the identification and functional analysis of nine genes but linear DNA recombination studies with RecET have used ␭ from Gram-positive and Gram-negative bacteria and their phages Gam to inhibit nucleases (4). that are similar to lambda (␭) bet or Escherichia coli recT. Beta and For recombineering, either a dsDNA PCR product (1, 4, RecT are single-strand DNA annealing proteins, referred to here as 15–17) or an oligonucleotide (oligo) (18–21) carrying short recombinases. Each of the nine other genes when expressed in E. (Ϸ50-bp) segments homologous to the target sequences can be coli carries out oligonucleotide-mediated recombination. To our used. These linear DNA substrates are precisely recombined in knowledge, this is the first study showing single-strand recombi- vivo by the phage proteins to target DNA on any replicon. When nase activity from diverse bacteria. Similar to bet and recT, most of linear dsDNA is used for recombination, both the exonuclease these other recombinases were found to be associated with pu- and single-strand annealing protein are required. For optimal tative exonuclease genes. Beta and RecT in conjunction with their recombination, RecBCD should be inactivated, either by muta- cognate exonucleases carry out recombination of linear double- tion or by ␭ Gam (1, 15, 22).
    [Show full text]
  • Transformation and Homologous Recombination in Mycoplasma Gallisepticum Jian Jian Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1-1-1993 Transformation and homologous recombination in Mycoplasma gallisepticum Jian Jian Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Recommended Citation Jian, Jian, "Transformation and homologous recombination in Mycoplasma gallisepticum" (1993). Retrospective Theses and Dissertations. 18012. https://lib.dr.iastate.edu/rtd/18012 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Transformation and homologous recombination in Mycoplasma gallisepticum by Jian Cao A Thesis Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Department: Microbiology, Immunology and Preventive Medicine Major: Veterinary Microbiology "-- ... - .. - -J . Signatures have been redacted for privacy Iowa State University Ames, Iowa 1993 II TABLE OF CONTENTS LIST OF TABLES iv LIST OF FIGURES v LIST OF ABBREVIATIONS vi ACKNOWLEDGMENTS vii INTRODUCTION General Characteristics of Mycoplasmas Antigenic variation 1 Virulence factors 3 Chromosomal structure 4 Physical and genetic maps 4 Nucleotide composition and codon usage 5 Transformation and transposition
    [Show full text]
  • Recombineering Using the Modified DH10B Strain DY380
    Recombineering protocol #1 Recombineering using the modified DH10B strain DY380 by Søren Warming, Ph.D. Overview 1. Design primers with 50 bp homology suited for either targeting (insertion of a selectable marker into a specific site) or gap repair (retrieving a piece of DNA into a linear piece of vector backbone). 2. Run PCR and digest residual plasmid template away with DpnI (1-2 ml in a standard 25 ml PCR reaction, @37°C for 1 h). DpnI works fine in PCR buffers. Gel purify the PCR product and elute in ddH2O. If concentration is low, EtOH precipitate and dissolve in small volume of ddH2O. You need 2 x 100-300 ng rather concentrated PCR product per experiment. 3. Alternatively, design primers to amplify “mini-arms” of 250-500 bp length, and clone these arms into an appropiate vector using conventional cloning techniques. The vector is prepared by digestion/linearization and gel purification of the desired band. Background will be higher than with DpnI digested PCR fragments, but the efficiency is very high when the arms are longer. 4. Transform your target plasmid (or BAC) into electrocompetent DY380 cells, see below. Alternatively, co-transform target plasmid and PCR product (see note below). 5. From a single isolated colony, inoculate a 5 ml o/n culture with appropriate selection 6. Perform the heat shock induction, followed by transformation (the recombineering experiment). Transformation (electroporation) of DY380 1. Make a 5 ml o/n culture either from the DY380 freeze stock or from a colony containing a target plasmid. IMPORTANT: Keep the cells @ 32°C or lower.
    [Show full text]
  • Recombination of Escherzchza Colz and Bacteriophage Lambda
    Symposium on Genetic Exchange : XIlI Internaiionul Congress of Genetics PROGRESS TOWARD A METABOLIC INTERPRETATION OF GENETIC RECOMBINATION OF ESCHERZCHZA COLZ AND BACTERIOPHAGE LAMBDA ALVIN J. CLARK Department of Molecular Biology, University of California, Berkeley, California 94720 is a metabolically active cellular component of bacteria. Transcrip- DNA tion and replication can proceed continuously throughout the growth and division of bacterial cells. Enzymes methylate DNA bases and when they have not acted restriction enzymes nick and break double-stranded DNA mole- cules producing substrates for further degradation. When radiations or chemicals damage DNA, repair enzymes either change or remove damaged portions, restor- ing the DNA to its original state, or they deal with secondary lesions produced by faulty metabolism of the unremoved primary lesions. In addition to these realms of DNA metabolism there is the realm of genetic recombination. A metabolic interpretation of genetic recombination will require knowledge of the structures of the starting materials and end products of recom- bination. It will also require a list of the enzymes or proteins catalyzing the steps in recombination together with their activities and substrate specificities and ultimately the intermediates and products of each step. Furthermore E! metabolic interpretation will require a knowledge of the regulation of the synthesis and activities of the enzymes and other proteins of recombination. Finally the rela- tionships between recombination and the other realms of DNA metabolism must be stated as a list of common and unique intermediates and enzymes. At present we are far from such a metabolic interpretation although consider- able progress has been made. In the present report I shall emphasize work per- formed in my own laboratory on the recombination of E.
    [Show full text]