Unique Growth Paths of Heterospecific Pollen Tubes Result in Late

Total Page:16

File Type:pdf, Size:1020Kb

Unique Growth Paths of Heterospecific Pollen Tubes Result in Late Plant Biology ISSN 1435-8603 RESEARCH PAPER Unique growth paths of heterospecific pollen tubes result in late entry into ovules in the gynoecium of Sagittaria (Alismataceae) N. Lyu, W. Du & X.-F. Wang College of Life Sciences, Wuhan University, Wuhan, China Keywords ABSTRACT heterospecific pollen; interspecific pollination; pollen tube growth; pollen tube guidance; pollen-pistil interactions; Sagittaria. • Pollen-pistil interactions are a fundamental process in the reproductive biology of angiosperms and play a particularly important role in maintaining incipient species Correspondence that exist in sympatry. However, the majority of previous studies have focused on spe- X.-F. Wang, College of Life Sciences, Wuhan cies with syncarpous gynoecia (fused carpels) and not those with apocarpous gynoecia University, Wuhan, 430072, China. (unfused carpels). E-mail: [email protected] • In the present study, we investigated the growth of conspecific pollen tubes compared to heterospecific pollen tubes in Sagittaria species, which have apocarpous gynoecia. We Editor conducted controlled pollinations between S. pygmaea and S. trifolia and observed the G. Thiel growth of conspecific and heterospecific pollen tubes under a fluorescence microscope. • Heterospecific and conspecific pollen tubes arrived at locules within the ovaries near Received: 26 August 2015; Accepted: simultaneously. However, conspecific pollen tubes entered into the ovules directly, 24 September 2016 whereas heterospecific tubes passed through the carpel base and adjacent receptacle tissue, to ultimately fertilize other unfertilized ovules. This longer route taken by doi:10.1111/plb.12508 heterospecific pollen tubes therefore caused a delay in the time required to enter into the ovules. Furthermore, heterospecific pollen tubes displayed similar growth patterns at early and peak pollination. The growth pattern of heterospecific pollen tubes at late pollination was similar to that of conspecific pollen tubes at peak pollination. • Heterospecific and conspecific pollen tubes took different routes to fertilize ovules. A delayed entry of heterospecific pollen into ovules may be a novel mechanism of con- specific pollen advantage (CPA) for apocarpous species. 2010) and pistil-length mismatch (Lee et al. 2008). Environ- INTRODUCTION ment-dependent selection on pollen performance (Chapman Varying floral characters, such as corolla color and petal or pol- et al. 2005) may also play a role in pollen-pistil interactions. len scent (Adler & Irwin 2006), production of flower nectar These phenomena have been observed among taxa of Nicotiana (Mitchell & Waser 1992), as well as the structure of pollen (Lee et al. 2008), Iris (Emms et al. 1996), Mimulus (Fishman grain and stigma (Sannier et al. 2009) can determine outcomes et al. 2008), Helianthus (Rieseberg et al. 1995), Senecio (Chap- for plant pollination owing to their influence on complex man et al. 2005), Betula (Williams et al. 1999), Brassica (Hauser plant-pollinator interactions. For individuals of different spe- et al. 1997), Piriqueta (Wang & Cruzan 1998), Costus (Yost & cies that exist adjacent to one another, pollen exchange is pos- Kay 2009), and Chamerion angustifolium (Husband et al. 2002). sible via wind, and for those that exist in sympatry or Pollen-pistil interactions are more well characterized in syncar- parapatry, pollen exchange is possible via shared pollinators pous than apocarpous plants. (Arroyo & Dafni 1993; Brown & Mitchell 2001). Sagittaria is a genus of Alismataceae with conduplicate and Pollen-pistil interactions that lead mating barriers and prevent apocarpous carpels (Kaul 1976). There is incomplete fusion hybrid fertilizations are particularly important for the persistence of the mature carpel, which has an opening at the base due of incipient species that exist in sympatry. Hybrid fertilizations to the carpel margins being unfused (Huang 2014). In at reduce the fitness of one or both taxa as those ovules and sperm least four species of Sagittaria, pollen tubes from a carpel in are not used for conspecific matings (Levin 1975; Endress 1982; the gynoecium can either enter directly into an individual Armbruster et al. 2002; Husband et al. 2002; Ramsey et al. ovule or travel through the carpel basal opening and adjacent 2003). The pollen-pistil interactions of different taxonomic receptacle tissue to nearby unfertilized ovaries (Wang et al. groups employ varying strategies to maintain species integrity, 2002, 2006). The growth pattern of pollen tubes during such as inhibiting or retarding pollen germination on heterospecific pollination of these plants was unclear. There- heterospecific stigma (Hiscock & Dickinson 1993; Hodnett et al. fore, we used controlled pollination to examine the growth 2005), or unequal rates of pollen tube growth in the pistil (Car- of heterospecific pollen tubes in Sagittaria pygmaea gynoecia. ney et al. 1996; Klips 1999; Lankinene & Skogsmyr 2001). In We found that heterospecific and conspecific pollen tubes addition, several recent studies have reported mechanical mech- follow a different growth path in this species. This difference anisms of stigma closure and reopening (Sritongchuay et al. in pollen tube growth may represent a novel pollen-pistil Plant Biology © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands 1 Alien pollen tube growth in Sagittaria species Lyu, Du & Wang interaction in apocarpous species, which may extend our recounted carpels in which the pollen tubes entered into the understanding of these interactions and their importance in ovules and passed into the surface layer of the receptacle tissue plant evolution. simultaneously (Fig. 1, Type VI). One-way analysis of variance (ANOVA), t-test, and statistical graphics were performed using the STATISTICA software package for Windows (single user MATERIAL AND METHODS version 6.0) StatSoft Inc. (2002). Plant materials and study site The two monoecious species S. pygmaea and Sagittaria trifolia RESULTS are both widely distributed in marshes, wetlands, and rice fields Pollen tube growth route after conspecific and heterospecific in the south of China. Their flowers have three white petals in pollination in S. pygmaea a spiral arrangement on the scapes and the flowering period is from May to November (Chen 1989). In total, 60 plants of the Conspecific pollen tubes grew through the recipient styles and two species were collected in 2013 from a rice field in Lichuan, reached the vicinity of the ovary at approximately 1 h AP Hubei Province, China (30°390 N, 109°180 E), and transplanted (Fig. 2A). At roughly 1.5 h AP, one tube began to turn toward into an outdoor pond at Wuhan University. the ovule and smoothly penetrated the micropyle. By approxi- mately 2 h AP, a large proportion of the pollen tubes (44.74%) had entered the ovules. Redundant pollen tubes passed into Conspecific and heterospecific pollination and across the receptacle tissue to enter into other unfertilized ThefemaleflowersofbothS. pygmaea and S. trifolia were ovaries (Figs 2B and C, and 3A). bagged before flowering. The following day, flowers were polli- Heterospecific pollen tubes also reached the vicinity of the nated by applying pollen from either S. pygmaea or S. trifolia ovary at 1 h AP (Fig. 2D). Most heterospecific pollen tubes tan- directly onto the stigmata when the flowers opened naturally at gled together and displayed a crooked growth mode without any 0730 h which is when maximum pollen and stigma activity abnormal growth patterns. However, heterospecific growth tubes occurs in the two species (L Na, unpublished results) (herein were not seen to turn toward the ovules until 2.5 h AP (Fig. 3B). referred to as peak pollination). Pollinated flowers were then By 2.5 h AP, 5.13% of ovaries had received pollen tubes and harvested at 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, and 74.23% of carpels contained pollen tubes at the receptacle (Type 6.0 h after pollination (AP). We collected 3–6 flowers pollinated by each species at each sampling time and fixed them in formalin–acetic acid–alcohol (FAA). In addition, using a stereomicroscope, pollen grains from S. pygmaea were applied to a single carpel in the gynoecium of a pistillate flower from S. pyg- maea, while the adjacent carpels were pollinated by S. trifolia. Pollinated flowers were collected 2 h AP and again fixed in FAA. Controlled pollination using pollen from S. trifolia on the gynoecia of S. pygmaea was also conducted at approximately 0930 h, meaning 2 h after the bagged flowers opened (herein referred to as late pollination). Similarly, we pollinated the gynoecia of S. pygmaea with S. trifolia at approximately 0630 h, meaning 1 h before peak pollination when the flow- ers were just opened (herein referred to as early pollination). Flowers were collected 2 h after early and late pollination and fixed in FAA. Observation of pollen tube growth in pistils Sampled flowers were rinsed with water and placed in NaOH (5%, w/v) at room temperature until most of the tissues had become translucent. The flowers were again rinsed in water and then stained with aniline blue (0.1% in 0.03 M K3PO4) for 4 h (Wang et al. 2002). Carpels were randomly picked using tweezers and placed on slides for observation under a fluores- cence microscope (Olympus BX-43, Tokyo, Japan). Fig. 1. Sagittaria pygmaea carpels classified into six types (I–VI) following Statistics and data analysis conspecific or heterospecific pollination, according to pollen tube front-end position. (I) Carpels with ungerminated pollen on the stigma. (II) Pollen ger- As shown in Fig. 1, the carpels were classified into six types mination and pollen tube beginning to emerge on the stigma. (III) Pollen (I–VI), according to pollen tube front-end position, with the tube navigating the style channel. (IV) Pollen tube arriving in the vicinity of exception of Type I that had carpels with ungerminated pollen. the ovary. (V) Pollen tube growing toward the ovule. (VI) Pollen tube passed At each time point from 0.5 to 6 h AP, we counted the carpels through the basal opening of the carpel toward the surface tissue layer of of each type using a fluorescence microscope.
Recommended publications
  • Floral Finds in the City of Abakan (Republic of Khakassia, Russian Federation)
    IOP Conference Series: Earth and Environmental Science PAPER • OPEN ACCESS Floral finds in the city of Abakan (Republic of Khakassia, Russian Federation) To cite this article: E M Antipova and O P Chebotareva 2019 IOP Conf. Ser.: Earth Environ. Sci. 315 072005 View the article online for updates and enhancements. This content was downloaded from IP address 5.253.147.120 on 31/08/2019 at 19:30 AGRITECH IOP Publishing IOP Conf. Series: Earth and Environmental Science 315 (2019) 072005 doi:10.1088/1755-1315/315/7/072005 Floral finds in the city of Abakan (Republic of Khakassia, Russian Federation) E M Antipova and O P Chebotareva Krasnoyarsk state pedagogical university named after V P Astafiev, 89, A Lebedeva sreet, Krasnoyarsk, 660049, Russia E-mail: [email protected], [email protected] Abstract. Abakan is a city district, the capital of a constituent entity of the Russian Federation of the Republic of Khakassia, with a population of 171.2 thousand people. On botanical and geographical zoning of L M Cherepnin Abakan is located in the Priabakanskaya valley steppe (S1) in the central part of the Khakass-Minusinsk depression at a height of 250 m above the sea level at the mouth of the Abakan river. Despite the fact that the territory of the Republic of Khakassia is studied well from the botanical point of view, there is not enough information about the current state, structure and species composition of the flora of the city of Abakan, which constituted the basis for in-depth studies of its vegetation cover.
    [Show full text]
  • Size-Dependent Sex Allocation in a Monoecious Species Sagittaria Pygmaea (Alismataceae)
    Ann. Bot. Fennici 46: 95–100 ISSN 0003-3847 (print) ISSN 1797-2442 (online) Helsinki 30 April 2009 © Finnish Zoological and Botanical Publishing Board 2009 Size-dependent sex allocation in a monoecious species Sagittaria pygmaea (Alismataceae) Fan Liu1,3, Jin-Ming Chen2 & Qing-Feng Wang1,3,* 1) Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan, Hubei 430074, P. R. China (*corresponding author’s e-mail: [email protected]) 2) Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China 3) Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan, Hubei 430074, P. R. China Received 20 Jan. 2008, revised version received 14 Jan 2009, accepted 12 Mar. 2008 Liu, F., Chen, J. M. & Wang, Q. F. 2009: Size-dependent sex allocation in a monoecious species Sagittaria pygmaea (Alismataceae). — Ann. Bot. Fennici 46: 95–100. Sagittaria species have been reported to display remarkable variation in gender expres- sion. Here, we investigated gender variation in Sagittaria pygmaea, the smallest sized monoecious species in the genus. We used the midvein length as an indicator of plant size and production of male and female fl owers as an indicator of gender variation in a single infl orescence. We counted the total number of infl orescences to assess the effect of infl orescence variation on the gender variation pattern. Our results showed that vari- ation in infl orescence number did not affect gender variation. Male fl ower production increased with increasing plant size, but female fl ower production did not. Plants of S. pygmaea might enhance their paternal reproductive success by increasing the number of male fl owers with increasing plant size.
    [Show full text]
  • Nota Lepidopterologica
    ©Societas Europaea Lepidopterologica; download unter http://www.biodiversitylibrary.org/ und www.zobodat.at Nota Lepi. 2014: 113-121 DPI 10.3897/nl.37.7708 37(2) | The biology of Gynnidomorpha permixtana (Lepidoptera, Tortricidae) on Sagittaria trifolia L. (Alismataceae) in paddy fields in Iran Atousa Farahpour Haghani*, Bijan YaghoubF, Farzad Majidi-Shilsar', Naser Davatghar', Leif Aarvik^ 1 Rice Research Institute ofIran, P.O. Box 1658, Rasht, Iran 2 Natural History Museum, University of Oslo, PO. Box 1172, NO-0318 Oslo, Norway; [email protected] http://zoobank. org/EF4IF9A C-BAF0-4D48-8B8B-684 751584D 7D Received 12 April 2014; accepted 17 June 2014; published: 8 September 2014 Subject Editor: Jadranka Rota. Abstract. While testing the effieacy of herbicides on paddy weeds at the Rice Research Institute of Iran (RRII) in 2008, we encountered the failure of arrowhead {Sagittaria sagittifolia L., Alismataceae) seeds to germinate. Detailed investigation revealed physical damage of seeds caused by the larvae of Gynnidomorpha permixtana (Denis & Schiffermüller, 1775) (Tortricidae, Tortricinae, Cochylina). Further studies showed that larvae feed on the seeds and flowers of the host plant and destroy the achenes. Under laboratory conditions G. permixtana required 23-30 days to complete its life cycle. Arrowhead is a new host record for this moth species; further- more, this is the first detailed record of a tortricid feeding on this plant. Introduction Arrowhead {Sagittaria sagittifolia L.; Alismataceae) is a perennial weed that is present throughout the rice growing areas of eastern Asia (Naylor 1996). It is a major weed pest of paddy rice in Iran (Mohammadsharifi 2000). Arrowhead is difficult to control due to herbicide tolerance and sea- son-long emergence (Kwon 1993).
    [Show full text]
  • Ecogeography of Haplotype Composition of Sagittaria Trifolia L
    Volume 58(1):7-10, 2014 Acta Biologica Szegediensis http://www.sci.u-szeged.hu/ABS ARTICLE Ecogeography of haplotype composition of Sagittaria trifolia L. (Alismataceae): environment, space, vicariance and selective sweeps Youhua Chen Department of Renewable Resources, University of Alberta, Edmonton, Canada ABS TR A CT In the present report, the relative influence of environment and space was evalu- KEY WORDS ated for explaining the variation of haplotype composition of 42 populations of Sagittaria tri- environmental filtering, folia L. (Alismataceae) in China. The results showed that, neither environment nor space could genetic drift, explain current haplotype composition patterns of S. trifolia, and most variation in haplotype population genetic structure, composition could not be explained. Vicariance was recognized to explain the pattern that vicariance, most haplotypes (25 out of 27 ones) were rare, being found in only one or two populations of variation partitioning S. trifolia in China. Finally, an emerging selective sweep from increasing human activity and habitat destruction explained the dominance patterns of haplotypes 5 and 8 among popula- tions of S. trifolia. Acta Biol Szeged 58(1):7-10 (2014) Environmental filtering and dispersal limitation are known 2006). The influence of environmental filtering (or environ- to influence the phylogeographic patterns of many species mental gradients) should thus also be critical in determining (Kelly et al. 2006; Viruel et al. 2012). Phylogeographic and the haplotype composition pattern of S. trifolia. Given that population genetic structure of some herb species in the ge- both dispersal limitation and environmental filtering might nus Sagittaria (family Alismataceae) have been quantified in function simultaneously in determining the geographic dis- recent studies in China (Chen et al.
    [Show full text]
  • Molecular Basis of Cross-Resistance in Sagittaria Trifolia L. Against Acetolactate-Synthase Inhibitors
    ESEARCH ARTICLE R ScienceAsia 46 (2020): 1–9 doi: 10.2306/scienceasia1513-1874.2020.069 Molecular basis of cross-resistance in Sagittaria trifolia L. against acetolactate-synthase inhibitors a,c b,c c c c, Danni Fu , Bochui Zhao , Xiuwei Li , Songhong Wei , Mingshan Ji ∗ a Inner Mongolia University for Nationalities, Tongliao 028000 China b Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035 China c College of Plant Protection, Shenyang Agricultural University, Shenyang 110866 China ∗Corresponding author, e-mail: [email protected] Received 13 Aug 2019 Accepted 11 Jul 2020 ABSTRACT: Herbicide resistance to sulfonylureas in Sagittaria trifolia L. is a common problem in northern China. In our study, we used whole-plant dose-response, acetolactate synthase (ALS) sequencing, and ALS enzyme activity methods to assess 3 putative resistant (LN-1, LN-2, and LN-3) and one susceptible (S) S. trifolia populations for cross- resistance to ALS inhibitors (bensulfuron-methyl, ethoxysulfuron, pyrazosulfuron-ethyl, penoxsulam, pyribenzoxim, and bispyribac-sodium). Regarding the whole-plant dose-response and the in vitro ALS assays, the results showed that the LN-2 population evolved cross-resistance to all herbicides tested whereas the other two populations showed cross- resistance only to bensulfuron-methyl, ethoxysulfuron, pyrazosulfuron-ethyl, and penoxsulam. Results of the in vitro ALS assays were consistent with whole-plant dose-response data. The DNA sequencing of the ALS gene showed that LN-1 and LN-3 populations had a single nucleotide polymorphism in the Pro 197 codon, resulting in the substitution of proline (Pro) by serine (Ser) and leucine (Leu), respectively.
    [Show full text]
  • A Comparison of the Extent of Genetic Variation in the Endangered Sagittaria Natans and Its Widespread Congener S
    http://www.paper.edu.cn Aquatic Botany 87 (2007) 1–6 www.elsevier.com/locate/aquabot A comparison of the extent of genetic variation in the endangered Sagittaria natans and its widespread congener S. trifolia Jin-Ming Chen a, Wahiti Robert Gituru b, Qing-Feng Wang a,* a Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, PR China b Botany Department, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya Received 13 May 2006; received in revised form 28 November 2006; accepted 1 December 2006 Abstract Genetic variation and clonal diversity of 14 populations of the endangered clonal herb Sagittaria natans and its widespread congener S. trifolia were investigated using inter-simple sequence repeat (ISSR) markers. Using nine effective ISSR primers, a total of 92 DNA fragments were generated with 54 (percentage of polymorphic loci, PPL: 58.7%) being polymorphic. A higher level of genetic diversity among populations was found in S. natans (PPL: 48.9%) than S. trifolia (PPL: 32.6%). Analysis of molecular variance (AMOVA) showed that in each species a similar proportion of the total genetic variation resided within and among populations, and that between species there was a moderate genetic differentiation (Gst: 0.601). With the use of 54 polymorphic ISSR markers, we identified 116 genets among 138 samples from five S. natans populations, and 93 genets among 215 samples from nine S. trifolia populations. The proportion of distinguishable genets (PD: mean 0.82) and Simpson’s diversity index (D: mean 0.95) for S.
    [Show full text]
  • Aquatic Vascular Plants from the Sanjiang Plain, Northeast China - 2689
    Ekoko et al.: Aquatic vascular plants from the Sanjiang plain, northeast China - 2689 - AQUATIC VASCULAR PLANTS FROM THE SANJIANG PLAIN, NORTHEAST CHINA EKOKO, W. A.1,2,5 – YAO, Y. L.1,2,3* – SHAN, Y. Q.1,2 – LIU, B.4 – SHABANI, I. E.1,2,6 1Wetland Biodiversity Conservation and Research Center, Northeast Forestry University, Harbin P.O. Box 150040, China 2College of Wildlife and Protected Area, Northeast Forestry University, Harbin P.O. Box 150040, China 3Hebei Key Laboratory of Wetland Ecology and Conservation, Hengshui P.O. Box 053000, China 4Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China 5Department of Water and Forest, University of Kisangani, PO Box 2012 – Kisangani, Democratic Republic of the Congo 6Department of Biology, Faculty of Sciences, State University of Bukavu, P.O. Box 570 – Bukavu, Democratic Republic of the Congo *Corresponding author e-mail: [email protected] (Received 21st Dec 2020; accepted 3rd Mar 2021) Abstract. Sanjiang plain is recognized as a biodiversity hotspot in China, and knowledge of aquatic vascular plant species is essential for long-term wetland conservation programs. This investigation provided a checklist of aquatic vascular plants for the Sanjiang plain wetland, and information about the influences of water depth on their parameters. Based on the inventory, 149 species were identified, belonging to 86 genera, 44 families and 32 orders. Of these, Cyperales was the most diverse order with 26 species, followed by Graminalis (14 species). Cyperaceae and Gramineae were the most species-rich families (26 and 14 species, respectively). Carex and Polygonum were the most species-rich genera with 14 and 9 species, respectively.
    [Show full text]
  • Plant Species and Communities in Poyang Lake, the Largest Freshwater Lake in China
    Collectanea Botanica 34: e004 enero-diciembre 2015 ISSN-L: 0010-0730 http://dx.doi.org/10.3989/collectbot.2015.v34.004 Plant species and communities in Poyang Lake, the largest freshwater lake in China H.-F. WANG (王华锋)1, M.-X. REN (任明迅)2, J. LÓPEZ-PUJOL3, C. ROSS FRIEDMAN4, L. H. FRASER4 & G.-X. HUANG (黄国鲜)1 1 Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resource, Ministry of Education, College of Horticulture and Landscape Agriculture, Hainan University, CN-570228 Haikou, China 2 College of Horticulture and Landscape Architecture, Hainan University, CN-570228 Haikou, China 3 Botanic Institute of Barcelona (IBB-CSIC-ICUB), pg. del Migdia s/n, ES-08038 Barcelona, Spain 4 Department of Biological Sciences, Thompson Rivers University, 900 McGill Road, CA-V2C 0C8 Kamloops, British Columbia, Canada Author for correspondence: H.-F. Wang ([email protected]) Editor: J. J. Aldasoro Received 13 July 2012; accepted 29 December 2014 Abstract PLANT SPECIES AND COMMUNITIES IN POYANG LAKE, THE LARGEST FRESHWATER LAKE IN CHINA.— Studying plant species richness and composition of a wetland is essential when estimating its ecological importance and ecosystem services, especially if a particular wetland is subjected to human disturbances. Poyang Lake, located in the middle reaches of Yangtze River (central China), constitutes the largest freshwater lake of the country. It harbours high biodiversity and provides important habitat for local wildlife. A dam that will maintain the water capacity in Poyang Lake is currently being planned. However, the local biodiversity and the likely effects of this dam on the biodiversity (especially on the endemic and rare plants) have not been thoroughly examined.
    [Show full text]
  • First Miocene Megafossil of Arrowhead, Alismataceous Plant Sagittaria, from South America
    First Miocene megafossil of arrowhead, alismataceous plant Sagittaria, from South America JUAN M. ROBLEDO, SILVINA A. CONTRERAS, JOHANNA S. BAEZ, and CLAUDIA I. GALLI Robledo, J.M., Contreras, S.A., Baez, J.S., and Galli, C.I. 2021. First Miocene megafossil of arrowhead, alismataceous plant Sagittaria, from South America. Acta Palaeontologica Polonica 66 (Supplement to 3): S111–S122. The first pre-Quaternary representative of Alismataceae from South America is reported based on achenes of Sagittaria montevidensis from the Palo Pintado Formation (upper Miocene) in the south of Salta Province, Argentina. Achenes are laterally compressed, have a lateral beak and a single recurved seed inside them. The fruits were found both in the base (10 Ma) and the top of the formation (~5 Ma), suggesting similar environmental conditions during this time period. A cursory review of the Alismataceae family in the fossil record, with a special interest in those South American reports is given. During the Oligocene–Miocene Sagittaria may have arrived from tropical Africa to South America and thence to North America. Key words: Alismataceae, Sagittaria, achene, aquatic plants, fossil fruits, Neogene, Argentina. Juan M. Robledo [[email protected]] and Silvina A. Contreras [[email protected]], Laborato- rio de Paleobotánica y Palinología desde el Neógeno hasta la Actualidad en el Norte de Argentina, Centro de Ecología Aplicada del Litoral (CONICET-UNNE), Ruta 5, km 2.5. W3400, Corrientes, Argentina and Facultad de Ciencias Ex- actas, Naturales y Agrimensura-Universidad Nacional del Nordeste. Av. Libertad 5450, W3400. Corrientes, Argentina. Johanna S. Baez [[email protected]], Laboratorio de Xilotafofloras del Neopaleozoico y Triásico de Sud- américa y Neógeno del Noroeste Argentino, Centro de Ecología Aplicada del Litoral (CONICET-UNNE), Ruta 5, km 2.5.
    [Show full text]
  • ALISMATACEAE 1. SAGITTARIA Linnaeus, Sp. Pl. 2: 993. 1753
    ALISMATACEAE 泽泻科 ze xie ke Wang Qingfeng (王青锋)1; Robert R. Haynes2, C. Barre Hellquist3 Herbs, perennial or rarely annual, aquatic or of marshes, sometimes rhizomatous. Leaves basal, linear, lanceolate, elliptic to ovate or orbicular, or sagittate, with elongated sheathing petioles; principal veins parallel with margins and converging toward apex and connected by transverse veins. Flowers often whorled at nodes of scape forming racemes, panicles, or umbels, pedicellate, actinomorphic, bisexual, unisexual, or polygamous, usually bracteate. Sepals 3, persistent, green. Petals 3, deciduous, usually white, sometimes yellowish. Stamens 3 to numerous, whorled, with elongated filaments; anthers 2-celled, extrorse, opening by longitudinal slits. Carpels 3 to numerous, whorled or spirally arranged, free; ovules 1 to several; style persistent. Fruit a cluster or whorl of lat- erally compressed achenes, drupelets, or occasionally follicles. Seeds curved, with a horseshoe-shaped embryo; endosperm absent. About 13 genera and ca. 100 species: cosmopolitan, especially abundant in temperate and tropical regions of the N Hemisphere; six genera (one introduced) and 18 species (three endemic, one introduced) in China. Chen Yaodong. 1992. Alismataceae. In: Sun Xiangzhong, ed., Fl. Reipubl. Popularis Sin. 8: 127–145; Zhou Lingyun. 1992. Butomopsis and Limnocharis. In: Sun Xiangzhong, ed., Fl. Reipubl. Popularis Sin. 8: 147–151. 1a. Stamens 8 or 9, or numerous, with sterile staminodes in outermost whorl, filaments flattened; stigmas sessile, carpels 6–9 or numerous, crowded into a head; aquatic herbs with terminal umbels; bracts forming an involucre. 2a. Petals white; stamens 8 or 9; carpels 6–9; pedicels slender ................................................................................... 5. Butomopsis 2b. Petals yellowish; stamens numerous; carpels numerous; pedicels thick .............................................................
    [Show full text]
  • Sagittaria Graminea (Alismataceae)
    Effects of Tidal Action on Pollination and Reproductive Allocation in an Estuarine Emergent Wetland Plant– Sagittaria graminea (Alismataceae) Yanwen Zhang1,2*, Lihui Zhang2, Xingnan Zhao2, Shengjun Huang1, Jimin Zhao2 1 Department of Biology, Eastern Liaoning University, Dandong, China, 2 Department of Biology, Changchun Normal University, Changchun, China Abstract In estuarine wetlands, the daily periodic tidal activity has a profound effect on plant growth and reproduction. We studied the effects of tidal action on pollination and reproductive allocation of Sagittaria graminea. Results showed that the species had very different reproductive allocation in tidal and non-tidal habitats. In the tidal area, seed production was only 9.7% of that in non-tidal habitat, however, plants produced more male flowers and nearly twice the corms compared to those in non-tidal habitat. An experiment showed that the time available for effective pollination determined the pollination rate and pollen deposition in the tidal area. A control experiment suggested that low pollen deposition from low visitation frequency is not the main cause of very low seed sets or seed production in this plant in tidal habitat. The negative effects of tides (water) on pollen germination may surpass the influence of low pollen deposition from low visitation frequency. The length of time from pollen deposition to flower being submerged by water affected pollen germination rate on stigmas; more than three hours is necessary to allow pollen germination and complete fertilization to eliminate the risk of pollen grains being washed away by tidal water. Citation: Zhang Y, Zhang L, Zhao X, Huang S, Zhao J (2013) Effects of Tidal Action on Pollination and Reproductive Allocation in an Estuarine Emergent Wetland Plant–Sagittaria graminea (Alismataceae).
    [Show full text]
  • ISTA List of Stabilized Plant Names 6Th Edition
    ISTA List of Stabilized Plant Names 6th Edition ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema Published by All rights reserved. No part of this publication may The International Seed Testing Association (ISTA) be reproduced, stored in any retrieval system or Zürichstr. 50, CH-8303 Bassersdorf, Switzerland transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, ©2014 International Seed Testing Association (ISTA) without prior permission in writing from ISTA. ISBN 978-3-906549-77-4 ISTA List of Stabilized Plant Names 1st Edition 1966 ISTA Nomenclature Committee Chair: Prof. P. A. Linehan 2nd Edition 1983 ISTA Nomenclature Committee Chair: Dr. H. Pirson 3rd Edition 1988 ISTA Nomenclature Committee Chair: Dr. W. A. Brandenburg 4th Edition 2001 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 5th Edition 2007 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 6th Edition 2013 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema ii 6th Edition 2013 ISTA List of Stabilized Plant Names Contents Contents Preface ...................................................... iv L ................................................................41 Acknowledgements .................................... v M ...............................................................46 Symbols and abbreviations ....................... vi N ...............................................................50 ISTA List of Stabilized Plant Names ........... 1 O ...............................................................51
    [Show full text]