Threatened Plants in China's Sanjiang Plain: Hotspot Distributions and Gap Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Department of Planning and Zoning
Department of Planning and Zoning Subject: Howard County Landscape Manual Updates: Recommended Street Tree List (Appendix B) and Recommended Plant List (Appendix C) - Effective July 1, 2010 To: DLD Review Staff Homebuilders Committee From: Kent Sheubrooks, Acting Chief Division of Land Development Date: July 1, 2010 Purpose: The purpose of this policy memorandum is to update the Recommended Plant Lists presently contained in the Landscape Manual. The plant lists were created for the first edition of the Manual in 1993 before information was available about invasive qualities of certain recommended plants contained in those lists (Norway Maple, Bradford Pear, etc.). Additionally, diseases and pests have made some other plants undesirable (Ash, Austrian Pine, etc.). The Howard County General Plan 2000 and subsequent environmental and community planning publications such as the Route 1 and Route 40 Manuals and the Green Neighborhood Design Guidelines have promoted the desirability of using native plants in landscape plantings. Therefore, this policy seeks to update the Recommended Plant Lists by identifying invasive plant species and disease or pest ridden plants for their removal and prohibition from further planting in Howard County and to add other available native plants which have desirable characteristics for street tree or general landscape use for inclusion on the Recommended Plant Lists. Please note that a comprehensive review of the street tree and landscape tree lists were conducted for the purpose of this update, however, only -
'Ivory Silk' Japanese Tree Lilac
Fact Sheet ST-611 October 1994 Syringa reticulata ‘Ivory Silk’ ‘Ivory Silk’ Japanese Tree Lilac1 Edward F. Gilman and Dennis G. Watson2 INTRODUCTION Although a Lilac, this member of the species is quite different in appearance than those with which gardeners are more familiar (Fig. 1). Its upright habit varies from symmetrical to irregular but is more consistent than the species. Cultivars including ‘Ivory Silk’ and ‘Summer Snow’ could be used instead of the species due to the more consistent habit and more flowers. ‘Ivory Silk’ grows well only in USDA hardiness zones 3 through six (perhaps into 7) and has an oval or pyramidal form when young but spreads to a rounded shape as it grows older. This is a very large shrub or small tree, reaching a height of about 20 to 30 feet with a 15-foot-spread. The huge clusters of creamy white flowers, borne in early summer for about two weeks, are the main ornamental feature but lack the fragrance of the spring-blooming Lilacs -- this Lilac’s fragrance is more suggestive of Privet. GENERAL INFORMATION Scientific name: Syringa reticulata ‘Ivory Silk’ Pronunciation: sih-RING-guh reh-tick-yoo-LAY-tuh Common name(s): ‘Ivory Silk’ Japanese Tree Lilac Family: Oleaceae Figure 1. Mature ‘Ivory Silk’ Japanese Tree Lilac. USDA hardiness zones: 3A through 7A (Fig. 2) Origin: not native to North America sidewalk cutout (tree pit); residential street tree; tree Uses: container or above-ground planter; large has been successfully grown in urban areas where air parking lot islands (> 200 square feet in size); wide pollution, poor drainage, compacted soil, and/or tree lawns (>6 feet wide); medium-sized tree lawns drought are common (4-6 feet wide); recommended for buffer strips around Availability: somewhat available, may have to go out parking lots or for median strip plantings in the of the region to find the tree highway; near a deck or patio; screen; trainable as a standard; narrow tree lawns (3-4 feet wide); specimen; 1. -
Native Orchids in Southeast Alaska
Native Orchids in Southeast Alaska Marlin Bowles & Bob Armstrong 2019 Preface Southeast Alaska's rainforests, peatlands and alpine habitats support a wide variety of plant life. The composition of this vegetation is strongly influenced by patterns of plant distribution and geographical factors. For example, the ranges of some Asian plant species extend into Southeast Alaska by way of the Aleutian Islands; other species extend northward into this region along the Pacific coast or southward from central Alaska. Included in Southeast Alaska's vegetation are at least 27 native orchid species and varieties whose collective ranges extend from Mexico north to beyond the Arctic Circle, and from North America to northern Europe and Asia. These orchids survive in a delicate ecological balance, requiring specific insect pollinators for seed production, and mycorrhizal fungi that provide nutrients essential for seedling growth and survival of adult plants. These complex relationships can lead to vulnerability to human impacts. Orchids also tend to transplant poorly and typically perish without their fungal partners. They are best left to survive as important components of biodiversity as well as resources for our enjoyment. Our goal is to provide a useful description of Southeast Alaska's native orchids for readers who share enthusiasm for the natural environment and desire to learn more about our native orchids. This book addresses each of the native orchids found in the area of Southeast Alaska extending from Yakutat and the Yukon border south to Ketchikan and the British Columbia border. For each species, we include a brief description of its distribution, habitat, size, mode of reproduction, and pollination biology. -
Platanthera Chapmanii (Small) Luer
Common Name: CHAPMAN’S FRINGED ORCHID Scientific Name: Platanthera chapmanii (Small) Luer Other Commonly Used Names: none Previously Used Scientific Names: Platanthera X chapmanii (Small) Luer, Blephariglottis chapmanii Small Family: Orchidaceae (orchid) Rarity Ranks: G2/S1 State Legal Status: Special Concern Federal Legal Status: none Federal Wetland Status: OBL Description: Perennial herb 12 - 30 inches (30 - 77 cm) tall, with 2 - 4 stem leaves. Leaves 6 - 10 inches (15 - 26) long, - 1 inches (1 - 3 cm) wide, sheathing the stem and decreasing in size to the flower spike. Flower cluster a dense spike at the top of the stem with 30 - 75 bright orange flowers. Flower inch (2 cm) long, not including spur. Lateral sepals oval, held backward along the side of the flower; one upright sepal overlaps with 2 narrow, fringed petals to form a hood over the center of the flower. Lip petal oval with a deep, showy, delicate fringe. Spur about ¾ inch (1.75 - 2 cm) long, extends behind the flower and is about the same length as the ovary. Similar Species: Chapman’s fringed orchid is a species created by the natural crossing of orange fringed orchid (Platanthera ciliaris) and orange crested orchid (P. cristata); it closely resembles both ancestors but can be distinguished by spur length. The spur of orange fringed orchid ( - 1 inch) is much longer than its ovary; the spur of orange crested orchid ( - ¾ inch) is clearly shorter than its ovary. Related Rare Species: Yellow fringeless orchid (Platanthera integra, Special Concern) occurs in wet savannas and pitcherplant bogs in 5 Coastal Plain counties. -
Phytochemical Constituents from the Stem Bark of Phellodendron Amurense Rupr
Agric. Chem. Biotechnol. 48(2), 93-96 (2005) Article Phytochemical Constituents from the Stem Bark of Phellodendron amurense Rupr. Jin Hwan Lee, Byong Won Lee, Yea Hwang Moon,1 Min Suk Yang, Ki Chang Jang and Ki Hun Park* Department of Agricultural Chemistry, Gyeongsang National University, Jinju 660-701, Korea 1Department of Animal Science & Biotechnology, Jinju National University, RAIRC, Jinju 660-758, Korea Received March 25, 2005; Accepted June 16, 2005 Three limonoids and two phenolics were isolated from stem bark of Pellodendron amurense Rupr. (Rutaceae) and were defined clearly as calodendrolide (1), obacunone (2), limonin (3), methyl 4- hydroxybenzoate (4), and syringin (5) based on NMR spectroscopy results obtained with the aid of X-ray crystallographic analysis. This is the first report on the isolation of calodendrolide (1) from this plant. Key words: Phellodendron amurense Rupr., Rutaceae, limonoid, calodendrolide, X-ray analysis Phellodendron amurense Rupr., belonging to the family Gyeongsangnam-do Southern Forest Research Center. Rutaceae, is well known as an oriental folk medicine. In Instruments. Melting points were measured on a Thomas Korea, China, and Japan, the bark of this plant, in particular, is Scientific Capillary Melting point Apparatus and are used as a crude drug for controlling intestinal function, and as uncorrected. IR and UV spectra were recorded on a Bruker an anti-pyretic and anti-inflammatory drug. Recently reported IFS66 infrared Fourier transform spectrophotometer (KBr) biological activities of the P. amurense Rupr. extracts are anti- and a Beckman DU650 spectrophotometer, respectively. 1H- inflammatory,1,2) anti-gastric ulcer,3,4) and repression for and 13C-NMR at 500 and 125 MHz, respectively, and 2D- experimental hypertension in rats,5) and the major chemical NMR data were obtained on a Bruker AM 500 spectrometer 6,7) constituents of the crude drug reported so far are limonoids in CDCl3 and CD3OD. -
Phellodendron Amurense) and Their
Journal of Geophysical Research: Biogeosciences RESEARCH ARTICLE Spatial Variability in Growth-Climate Relationships of Amur 10.1029/2017JG004292 Cork Tree (Phellodendron amurense) and Their Key Points: Connections With PDO in Northeast China • Minimum temperature (Tmin) was a major limiting factor for Amur cork Liangjun Zhu1,2 , Xiaochun Wang1 , Neil Pederson3, Zhenju Chen4, David J. Cooper2 , tree growth at regional scales 5 6 • The positive effects of summer Yuandong Zhang , and Zongshan Li temperature (precipitation) on Amur 1 2 cork tree growth decreased Center for Ecological Research, Northeast Forestry University, Harbin, China, Department of Forest and Rangeland (increased) with increasing latitude Stewardship, Colorado State University, Fort Collins, CO, USA, 3Harvard Forest, Harvard University, Petersham, MA, USA, • The spatial variability in 4Tree-ring Laboratory, Forestry College/Research Station of Liaohe-River Plain Forest Ecosystem CFERN, Shenyang growth-climate relationships of Amur Agricultural University, Shenyang, China, 5Key Laboratory of Forest Ecology and Environment, State Forestry cork tree may be connected to the 6 range of PDO Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China Supporting Information: • Supporting Information S1 • Data Set S1 Abstract We used a dendrochronological approach to identify the spatial variability in growth-climate relationships of Amur cork tree (Phellodendron amurense), using a network of 12 sites across its natural Correspondence to: X. Wang, range in Northeast China. Results showed that the signal-noise ratio, expressed population signal, and mean [email protected] interseries correlations of the site chronologies decreased significantly with decreasing latitude. -
Likely to Have Habitat Within Iras That ALLOW Road
Item 3a - Sensitive Species National Master List By Region and Species Group Not likely to have habitat within IRAs Not likely to have Federal Likely to have habitat that DO NOT ALLOW habitat within IRAs Candidate within IRAs that DO Likely to have habitat road (re)construction that ALLOW road Forest Service Species Under NOT ALLOW road within IRAs that ALLOW but could be (re)construction but Species Scientific Name Common Name Species Group Region ESA (re)construction? road (re)construction? affected? could be affected? Bufo boreas boreas Boreal Western Toad Amphibian 1 No Yes Yes No No Plethodon vandykei idahoensis Coeur D'Alene Salamander Amphibian 1 No Yes Yes No No Rana pipiens Northern Leopard Frog Amphibian 1 No Yes Yes No No Accipiter gentilis Northern Goshawk Bird 1 No Yes Yes No No Ammodramus bairdii Baird's Sparrow Bird 1 No No Yes No No Anthus spragueii Sprague's Pipit Bird 1 No No Yes No No Centrocercus urophasianus Sage Grouse Bird 1 No Yes Yes No No Cygnus buccinator Trumpeter Swan Bird 1 No Yes Yes No No Falco peregrinus anatum American Peregrine Falcon Bird 1 No Yes Yes No No Gavia immer Common Loon Bird 1 No Yes Yes No No Histrionicus histrionicus Harlequin Duck Bird 1 No Yes Yes No No Lanius ludovicianus Loggerhead Shrike Bird 1 No Yes Yes No No Oreortyx pictus Mountain Quail Bird 1 No Yes Yes No No Otus flammeolus Flammulated Owl Bird 1 No Yes Yes No No Picoides albolarvatus White-Headed Woodpecker Bird 1 No Yes Yes No No Picoides arcticus Black-Backed Woodpecker Bird 1 No Yes Yes No No Speotyto cunicularia Burrowing -
Native Orchids in Southeast Alaska with an Emphasis on Juneau
Native Orchids in Southeast Alaska with an Emphasis on Juneau Marlin Bowles & Bob Armstrong 2019 Acknowledgements We are grateful to numerous people and agencies who provided essential assistance with this project. Carole Baker, Gilbette Blais, Kathy Hocker, John Hudson, Jenny McBride and Chris Miller helped locate and study many elusive species. Pam Bergeson, Ron Hanko, & Kris Larson for use of their photos. Ellen Carrlee provided access to the Juneau Botanical Club herbarium at the Alaska State Museum. The U.S. Forest Service Forestry Sciences Research Station at Juneau also provided access to its herbarium, and Glacier Bay National Park provided data on plant collections in its herbarium. Merrill Jensen assisted with plant resources at the Jensen-Olson Arboretum. Don Kurz, Jenny McBride, Lisa Wallace, and Mary Willson reviewed and vastly improved earlier versions of this book. About the Authors Marlin Bowles lives in Juneau, AK. He is a retired plant conservation biologist, formerly with the Morton Arboretum, Lisle, IL. He has studied the distribution, ecology and reproductionof grassland orchids. Bob Armstrong has authored and co-authored several books about nature in Alaska. This book and many others are available for free as PDFs at https://www.naturebob.com He has worked in Alaska as a biologist, research supervisor and associate professor since 1960. Table of Contents Page The southeast Alaska archipellago . 1 The orchid plant family . 2 Characteristics of orchids . 3 Floral anatomy . 4 Sources of orchid information . 5 Orchid species groups . 6 Orchid habitats . Fairy Slippers . 9 Eastern - Calypso bulbosa var. americana Western - Calypso bulbosa var. occidentalis Lady’s Slippers . -
The Architectural Complexity of Crown Bud Clusters in Gentian: Anatomy, Ontogeny, and Origin
J. AMER.SOC.HORT.SCI. 139(1):13–21. 2014. The Architectural Complexity of Crown Bud Clusters in Gentian: Anatomy, Ontogeny, and Origin Uttara C. Samarakoon1,4, Keith A. Funnell2, and David J. Woolley Institute of Agriculture and Environment, Massey University, Palmerston North, 4474, New Zealand Barbara A. Ambrose3 Institute of Molecular BioSciences, Massey University, Palmerston North, 4474, New Zealand Ed R. Morgan The New Zealand Institute for Plant & Food Research Limited, Private Bag 11 600, Palmerston North, 4442, New Zealand ADDITIONAL INDEX WORDS. adventitious buds, axillary buds, Gentianaceae, hierarchical arrangement of buds, phyllotaxis ABSTRACT. Shoot productivity and overwintering survival of gentians (Gentiana sp.) are determined by the initiation and subsequent development of crown bud clusters. Understanding of the anatomical features and origins of crown buds and bud clusters, and plant ontogeny, the morphological features of crown buds, and their associated development is required to achieve manipulation of bud initiation, emergence, and development. Anatomical features of the crown bud clusters were examined using both light and confocal microscopy using hybrids of Gentiana triflora · G. scabra. The initiation of bud clusters presented characteristics typical of adventitious buds in terms of their origin and presence of external vascular connection to the parental tissue. In contrast, crown buds forming subsequently within the cluster developed as axillary buds within that initial bud, collectively forming on a compact stem with minimal internode elongation. Stem elongation within the cluster after application of gibberellic acid enabled identification of a hierarchical arrangement of buds within the cluster with one bud at each node and arranged spirally at 908. -
A Phylogenomic Analysis of the Floral Transcriptomes of Sexually Deceptive and Rewarding European Orchids, Ophrys and Gymnadenia
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2019 A phylogenomic analysis of the floral transcriptomes of sexually deceptive and rewarding European orchids, Ophrys and Gymnadenia Pineiro Fernandez, Laura ; Byers, Kelsey J R P ; Cai, Jing ; Sedeek, Khalid E M ; Kellenberger, Roman T ; Russo, Alessia ; Qi, Weihong ; Aquino Fournier, Catharine ; Schlüter, Philipp M Abstract: The orchids (Orchidaceae) constitute one of the largest and most diverse families of flowering plants. They have evolved a great variety of adaptations to achieve pollination by a diverse group of pollinators. Many orchids reward their pollinators, typically with nectar, but the family is also well- known for employing deceptive pollination strategies in which there is no reward for the pollinator, in the most extreme case by mimicking sexual signals of pollinators. In the European flora, two examples of these different pollination strategies are the sexually deceptive genus Ophrys and the rewarding genus Gymnadenia, which differ in their level of pollinator specialization; Ophrys is typically pollinated by pseudo-copulation of males of a single insect species, whilst Gymnadenia attracts a broad range of floral visitors. Here, we present and describe the annotated floral transcriptome of Ophrys iricolor, an Andrena- pollinated representative of the genus Ophrys that is widespread throughout the Aegean. Furthermore, we present additional floral transcriptomes of both sexually deceptive and rewarding orchids, specifi- cally the deceptive Ophrys insectifera, Ophrys aymoninii, and an updated floral transcriptome of Ophrys sphegodes, as well as the floral transcriptomes of the rewarding orchids Gymnadenia conopsea, Gym- nadenia densiflora, Gymnadenia odoratissima, and Gymnadenia rhellicani (syn. -
Biological Evaluation for US Trunk Highway 2 Passing Lane and Turn Lane Improvements
Draft Biological Evaluation for US Trunk Highway 2 Passing Lane and Turn Lane Improvements Prepared by: Minnesota Department of Transportation Prepared for: US Forest Service, Chippewa National Forest Minnesota Department of Natural Resources May 2014 US Highwy 2 Passing Lane and Turn Lane Improvements Biological Evaluation This Biological Evaluation was prepared pursuant to the National Environmental Policy Act, National Forest Management Act, and other applicable laws and regulations. For additional information, please contact the team leader for the US Trunk Highway 2 Passing Lane and Turn Lane Improvements Project. Ms. Christine Brown Chippewa National Forest Address: 200 Ash Avenue NW Cass Lake, MN 56633 Phone: (218) 335-8600 TTY: (218) 335-8632 FAX: (218)335-8637 Prepared by: ______________________________________ _______________ Antony Randazzo, HDR Engineering, Inc. Date Reviewed by: ______________________________________ _______________ Kirk W. Larson, U.S. Forest Service Date Chippewa National Forest Reviewed by: ______________________________________ _______________ Cory Mlodik, U.S. Forest Service Date Chippewa National Forest May 2014 Signature Page Page i US Highwy 2 Passing Lane and Turn Lane Improvements Biological Evaluation Table of Contents 1.0 Introduction ............................................................................................................................ 1-1 1.1 Purpose of this Report .............................................................................................................................. -
View .Pdf of This Issue
The Hardy Orchid Society Newsletter No. 21 July 2001 The Hardy Orchid Society Committee is… President: Richard M Bateman Vice-Presidents: Paul Harcourt Davies and Norman Heywood Chairman: Richard Manuel, Wye View Cottage, Leys Hill, Ross-on-Wye, Herefordshire, HR9 5QU Secretary: Sarah Marks, 83 Ladysmith, East Gomeldon, Salisbury, Wilts, SP4 6LE Treasurer: Tony Beresford, Pound Farm, Wearne, Langport, Somerset, TA10 0QJ Membership Secretary: Nick Storer, 17 Orchard Close, Lymm, Cheshire, WA13 9HH Show Secretary: Doreen Webster, 25 Highfields Drive, Loughborough, Leics, LE11 3JS Newsletter Editor: Moira Tarrant, Bumby’s, Fox Rd., Mashbury, Chelmsford, CM1 4TJ Meetings Secretary: Colin Clay, 14 Cromwell Place, Lighthorne Heath, Leamington Spa, CV33 9TG Ordinary Member (publicity): Simon Tarrant, Bumby’s, Fox Rd., Mashbury, Chelmsford, CM1 4TJ Ordinary Member (Newsletter Dist.): Bill Temple, Primrose Cottage, Hanney Rd., Ste- venton, Oxon, OX13 6AP Ordinary Member (Seed & Fungus Bank): Ted Weeks, 74 Over Lane, Almondsbury, Bristol, BS32 4BT Co-opted Member (BOC Rep.): Richard Nicol, 1364 Evesham Rd., Astwood Bank, Red- ditch, Worcs, B96 6BD Contents P.3 From the New President, Richard Bateman P.5 Report of the 9th AGM of the Hardy Orchid Society P.7 Publicity Posters, Simon Tarrant P.8 HELP!, Richard Manuel P.8 HOS Plant Show 2001, Tony Hughes P.10 Does DNA reveal All about the Evolution of Terrestrial Orchids? Part 3, Richard Bateman P.14 Getting Started - the Basics of Hardy Orchid Cultivation, Alan Dash P.20 Chemical Warfare, Richard Manuel P.21 AGS Summer South Show - Silver Award, Carol Dash P.22 Seed and Fungus Bank, Ted Weeks Colour Insert between Pages 12 and 13 Cover illustration: Serapias lingua by Carol Dash HOS Newsletter 21, July 2001 From the New President of the HOS Richard Bateman I am of course delighted to accept the Presidency of the Hardy Orchid Society.