Physics 215C: Quantum Field Theory

Total Page:16

File Type:pdf, Size:1020Kb

Physics 215C: Quantum Field Theory Physics 215C: Quantum Field Theory Lecturer: McGreevy Last updated: 2014/03/25, 15:49:16 0.1 Introductory remarks...............................4 0.2 Conventions....................................6 1 Ideas from quantum mechanics, I7 1.1 Broken scale invariance..............................7 1.2 Integrating out degrees of freedom........................ 13 1.2.1 Attempt to consolidate understanding................. 16 1.2.2 Wick rotation to real time......................... 18 2 Renormalization in QFT 22 2.1 Naive scale invariance in field theory...................... 22 2.2 Blob-ology: structure of diagrammatic perturbation theory.......... 24 2.3 Coleman-Weinberg(-Stone-Dasgupta-Ma-Halperin) potential......... 35 2.3.1 The one-loop effective potential..................... 37 2.3.2 Renormalization of the effective action................. 38 1 2.3.3 Useful properties of the effective action................. 41 2.4 The spectral density and consequences of unitarity............... 45 2.4.1 Cutting rules............................... 51 3 The Wilsonian perspective on renormalization 54 3.1 Where do field theories come from?....................... 54 3.1.1 A model with finitely many degrees of freedom per unit volume... 54 3.1.2 Landau and Ginzburg guess the answer................. 56 3.1.3 Coarse-graining by block spins...................... 58 3.2 The continuum version of blocking....................... 62 3.3 An extended example: a complex scalar field.................. 65 3.3.1 Important lessons............................. 72 3.3.2 Comparison with renormalization by counterterms........... 73 3.3.3 Comment on critical exponents..................... 74 3.3.4 Once more with feeling (and an arbitrary number of components).. 78 4 Effective field theory 84 4.1 Fermi theory of Weak Interactions........................ 87 4.2 Loops in EFT................................... 88 4.2.1 Comparison of schemes, case study................... 89 4.3 The SM as an EFT................................. 94 4.4 Quantum Rayleigh scattering.......................... 96 4.5 QFT of superconductors and superfluids.................... 98 4.5.1 Landau-Ginzburg description of superconductors............ 98 2 4.5.2 Lightning discussion of BCS........................ 100 4.5.3 Non-relativistic scalar fields....................... 103 4.5.4 Superfluids................................. 105 5 Roles of topology in QFT 107 5.1 Anomalies..................................... 107 5.1.1 Chiral anomaly.............................. 108 5.1.2 The physics of the anomaly....................... 113 5.2 Topological terms in QM and QFT....................... 116 5.2.1 Differential forms and some simple topological invariants of manifolds 116 5.2.2 Geometric quantization and coherent state quantization of spin systems118 5.2.3 Ferromagnets and antiferromagnets.................... 124 5.2.4 The beta function for non-linear sigma models............. 127 5.2.5 Coherent state quantization of bosons.................. 129 5.2.6 Where do topological terms come from?................ 130 6 Guide to unfulfilled promises 131 6.1 Linear response: nothing fancy, just QM.................... 131 6.1.1 Linear response, an example....................... 132 6.2 Next steps..................................... 132 3 0.1 Introductory remarks I will begin with some comments about my goals for this course. The main goal is to make a study of coarse- graining in quantum systems with extensive degrees of freedom. For silly historical rea- sons, this is called the renormalization group (RG) in QFT. By `extensive degrees of free- dom' I mean that we are going to study mod- els which, if we like, we can sprinkle over vast tracts of land, like sod (see Fig.1). And also like sod, each little patch of degrees of freedom only interacts with its neighboring patches: this property of sod and of QFT is Figure 1: Sod. called locality. By `coarse-graining' I mean ignoring things we don't care about, or rather only paying attention to them to the extent that they affect the things we do care about.1 In the course of doing this, I would like to try to convey the Wilsonian perspective on the RG, which provides an explanation of the totalitarian principle of physics that anything that can happen must happen. And I have a collection of subsidiary goals: • I would like to convince you that \non-renormalizable" does not mean \not worth your attention," and explain the incredibly useful notion of an Effective Field Theory. • There is more to QFT than perturbation theory about free fields in a Fock vacuum. In particular, we will spend some time thinking about non-perturbative physics, effects of topology, solitons. • I will try to resist making too many comments on the particle-physics-centric nature of the QFT curriculum. QFT is also quite central in many aspects of condensed matter physics, and we will learn about this. From the point of view of someone interested in QFT, high energy particle physics has the severe drawback that it offers only one 1To continue the sod example, a person laying the sod in the picture above cares that the sod doesn't fall apart, and rolls nicely onto the ground (as long as we don't do high-energy probes like bending it violently or trying to lay it down too quickly). These long-wavelength properties of rigidity and elasticity are collective, emergent properties of the microscopic constituents (sod molecules) { we can describe the dynamics involved in covering the Earth with sod (never mind whether this is a good idea in a desert climate) without knowing the microscopic theory of the sod molecules (I think they might be called `grass'). Our job is to think about the relationship between the microscopic model (grassodynamics) and its macroscopic counterpart (in this case, suburban landscaping). 4 example! (OK, for some purposes you can think about QCD and the electroweak theory separately...) • There is more to QFT than the S-matrix. In a particle-physics QFT course you learn that the purpose in life of correlation functions or green's functions or off-shell am- µ 2 plitudes is that they have poles (at p pµ − m = 0) whose residues are the S-matrix elements, which are what you measure (or better, are the distribution you sample) when you scatter the particles which are the quanta of the fields of the QFT. I want to make two extended points about this: 1. In many physical contexts where QFT is relevant, you can actually measure the off-shell stuff. This is yet another reason why including condensed matter in our field of view will deepen our understanding of QFT. 2. The Green's functions don't always have simple poles! There are lots of interesting field theories where the Green's functions instead have power-law singularities, like 1 G(p) ∼ p2∆ . If you fourier transform this, you don't get an exponentially-localized packet. The elementary excitations created by a field whose two point function does this are not particles. (Any conformal field theory (CFT) is an example of this.) The theory of particles (and their dance of creation and annihilation and so on) is a proper subset of QFT. Here is a confession, related to several of the points above: The following comment in the book Advanced Quantum Mechanics by Sakurai had a big effect on my education in physics: ... we see a number of sophisticated, yet uneducated, theoreticians who are conversant in the LSZ formalism of the Heisenberg field operators, but do not know why an excited atom radiates, or are ignorant of the quantum-theoretic derivation of Rayleigh's law that accounts for the blueness of the sky. I read this comment during my first year of graduate school and it could not have applied more aptly to me. I have been trying to correct the defects in my own education which this exemplifies ever since. I bet most of you know more about the color of the sky than I did when I was your age, but we will come back to this question. (If necessary, we will also come back to the radiation from excited atoms.) So I intend that there will be two themes of this course: coarse-graining and topology. Both of these concepts are important in both hep-th and in cond-mat. As for what these goals mean for what topics we will actually discuss, this depends some- what on the results of pset 00. Topics which I hope to discuss include: Theory of renor- malization, effective field theory, effects of topology in QFT, anomalies, solitons and defects, lattice models of QFT, CFT in d = 1 + 1 and in d > 1 + 1. We begin with some parables from quantum mechanics. 5 0.2 Conventions You will have noticed above that I already had to commit to a signature convention for the metric tensor. I will try to follow Zee and use + − −−. I am used to the other signature convention, where time is the weird one. We work in units where ~ and c are equal to one unless otherwise noted. The convention that repeated indices are summed is always in effect. I will try to be consistent about writing fourier transforms as Z d4p Z e−ipx=~f(x) ≡ ¯d4p e−ipx=~f(x) ≡ f~(p): (2π~)4 I reserve the right to add to this page as the notes evolve. Please tell me if you find typos or errors or violations of the rules above. 6 1 Ideas from quantum mechanics, I 1.1 Broken scale invariance Reading assignment: Zee chapter III. Here we will study a simple quantum mechanical example (that is: a finite number of degrees of freedom) which exhibits many interesting features that can happen strongly inter- acting quantum field theory { asymptotic freedom, dimensional transmutation. Because the model is simple, we can understand these phenomena without resort to perturbation theory. I learned this example from Marty Halpern. Consider the following (`bare') action: Z 1 Z 1 S[x] = dt ~x_ 2 + g δ(2)(~x) ≡ dt ~x_ 2 − V (~x) 2 0 2 where ~x = (x; y) are two coordinates of a quantum particle, and the potential involves δ(2)(~x) ≡ δ(x)δ(y), a Dirac delta function.
Recommended publications
  • An Introduction to Quantum Field Theory
    AN INTRODUCTION TO QUANTUM FIELD THEORY By Dr M Dasgupta University of Manchester Lecture presented at the School for Experimental High Energy Physics Students Somerville College, Oxford, September 2009 - 1 - - 2 - Contents 0 Prologue....................................................................................................... 5 1 Introduction ................................................................................................ 6 1.1 Lagrangian formalism in classical mechanics......................................... 6 1.2 Quantum mechanics................................................................................... 8 1.3 The Schrödinger picture........................................................................... 10 1.4 The Heisenberg picture............................................................................ 11 1.5 The quantum mechanical harmonic oscillator ..................................... 12 Problems .............................................................................................................. 13 2 Classical Field Theory............................................................................. 14 2.1 From N-point mechanics to field theory ............................................... 14 2.2 Relativistic field theory ............................................................................ 15 2.3 Action for a scalar field ............................................................................ 15 2.4 Plane wave solution to the Klein-Gordon equation ...........................
    [Show full text]
  • 2-Loop $\Beta $ Function for Non-Hermitian PT Symmetric $\Iota
    2-Loop β Function for Non-Hermitian PT Symmetric ιgφ3 Theory Aditya Dwivedi1 and Bhabani Prasad Mandal2 Department of Physics, Institute of Science, Banaras Hindu University Varanasi-221005 INDIA Abstract We investigate Non-Hermitian quantum field theoretic model with ιgφ3 interaction in 6 dimension. Such a model is PT-symmetric for the pseudo scalar field φ. We analytically calculate the 2-loop β function and analyse the system using renormalization group technique. Behavior of the system is studied near the different fixed points. Unlike gφ3 theory in 6 dimension ιgφ3 theory develops a new non trivial fixed point which is energetically stable. 1 Introduction Over the past two decades a new field with combined Parity(P)-Time rever- sal(T) symmetric non-Hermitian systems has emerged and has been one of the most exciting topics in frontier research. It has been shown that such theories can lead to the consistent quantum theories with real spectrum, unitary time evolution and probabilistic interpretation in a different Hilbert space equipped with a positive definite inner product [1]-[3]. The huge success of such non- Hermitian systems has lead to extension to many other branches of physics and interdisciplinary areas. The novel idea of such theories have been applied in arXiv:1912.07595v1 [hep-th] 14 Dec 2019 numerous systems leading huge number of application [4]-[21]. Several PT symmetric non-Hermitian models in quantum field theory have also been studied in various context [16]-[26]. Deconfinment to confinment tran- sition is realised by PT phase transition in QCD model using natural but uncon- ventional hermitian property of the ghost fields [16].
    [Show full text]
  • Effective Quantum Field Theories Thomas Mannel Theoretical Physics I (Particle Physics) University of Siegen, Siegen, Germany
    Generating Functionals Functional Integration Renormalization Introduction to Effective Quantum Field Theories Thomas Mannel Theoretical Physics I (Particle Physics) University of Siegen, Siegen, Germany 2nd Autumn School on High Energy Physics and Quantum Field Theory Yerevan, Armenia, 6-10 October, 2014 T. Mannel, Siegen University Effective Quantum Field Theories: Lecture 1 Generating Functionals Functional Integration Renormalization Overview Lecture 1: Basics of Quantum Field Theory Generating Functionals Functional Integration Perturbation Theory Renormalization Lecture 2: Effective Field Thoeries Effective Actions Effective Lagrangians Identifying relevant degrees of freedom Renormalization and Renormalization Group T. Mannel, Siegen University Effective Quantum Field Theories: Lecture 1 Generating Functionals Functional Integration Renormalization Lecture 3: Examples @ work From Standard Model to Fermi Theory From QCD to Heavy Quark Effective Theory From QCD to Chiral Perturbation Theory From New Physics to the Standard Model Lecture 4: Limitations: When Effective Field Theories become ineffective Dispersion theory and effective field theory Bound Systems of Quarks and anomalous thresholds When quarks are needed in QCD É. T. Mannel, Siegen University Effective Quantum Field Theories: Lecture 1 Generating Functionals Functional Integration Renormalization Lecture 1: Basics of Quantum Field Theory Thomas Mannel Theoretische Physik I, Universität Siegen f q f et Yerevan, October 2014 T. Mannel, Siegen University Effective Quantum
    [Show full text]
  • Quantum Field Theory*
    Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement.
    [Show full text]
  • Radiative Corrections in Curved Spacetime and Physical Implications to the Power Spectrum and Trispectrum for Different Inflationary Models
    Radiative Corrections in Curved Spacetime and Physical Implications to the Power Spectrum and Trispectrum for different Inflationary Models Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades Doctor rerum naturalium der Georg-August-Universit¨atG¨ottingen Im Promotionsprogramm PROPHYS der Georg-August University School of Science (GAUSS) vorgelegt von Simone Dresti aus Locarno G¨ottingen,2018 Betreuungsausschuss: Prof. Dr. Laura Covi, Institut f¨urTheoretische Physik, Universit¨atG¨ottingen Prof. Dr. Karl-Henning Rehren, Institut f¨urTheoretische Physik, Universit¨atG¨ottingen Prof. Dr. Dorothea Bahns, Mathematisches Institut, Universit¨atG¨ottingen Miglieder der Prufungskommission:¨ Referentin: Prof. Dr. Laura Covi, Institut f¨urTheoretische Physik, Universit¨atG¨ottingen Korreferentin: Prof. Dr. Dorothea Bahns, Mathematisches Institut, Universit¨atG¨ottingen Weitere Mitglieder der Prufungskommission:¨ Prof. Dr. Karl-Henning Rehren, Institut f¨urTheoretische Physik, Universit¨atG¨ottingen Prof. Dr. Stefan Kehrein, Institut f¨urTheoretische Physik, Universit¨atG¨ottingen Prof. Dr. Jens Niemeyer, Institut f¨urAstrophysik, Universit¨atG¨ottingen Prof. Dr. Ariane Frey, II. Physikalisches Institut, Universit¨atG¨ottingen Tag der mundlichen¨ Prufung:¨ Mittwoch, 23. Mai 2018 Ai miei nonni Marina, Palmira e Pierino iv ABSTRACT In a quantum field theory with a time-dependent background, as in an expanding uni- verse, the time-translational symmetry is broken. We therefore expect loop corrections to cosmological observables to be time-dependent after renormalization for interacting fields. In this thesis we compute and discuss such radiative corrections to the primordial spectrum and higher order spectra in simple inflationary models. We investigate both massless and massive virtual fields, and we disentangle the time dependence caused by the background and by the initial state that is set to the Bunch-Davies vacuum at the beginning of inflation.
    [Show full text]
  • Hep-Th] 27 May 2021
    Higher order curvature corrections and holographic renormalization group flow Ahmad Ghodsi∗and Malihe Siahvoshan† Department of Physics, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran September 3, 2021 Abstract We study the holographic renormalization group (RG) flow in the presence of higher-order curvature corrections to the (d+1)-dimensional Einstein-Hilbert (EH) action for an arbitrary interacting scalar matter field by using the superpotential approach. We find the critical points of the RG flow near the local minima and maxima of the potential and show the existence of the bounce solutions. In contrast to the EH gravity, regarding the values of couplings of the bulk theory, superpoten- tial may have both upper and lower bounds. Moreover, the behavior of the RG flow controls by singular curves. This study may shed some light on how a c-function can exist in the presence of these corrections. arXiv:2105.13208v1 [hep-th] 27 May 2021 ∗[email protected][email protected] Contents 1 Introduction1 2 The general setup4 3 Holographic RG flow: κ1 = 0 theories5 3.1 Critical points for κ2 < 0...........................7 3.1.1 Local maxima of the potential . .7 3.1.2 Local minima of potential . .9 3.1.3 Bounces . .9 3.2 Critical points for κ2 > 0........................... 11 3.2.1 Critical points for W 6= WE ..................... 12 3.2.2 Critical points near W = WE .................... 13 4 Holographic RG flow: General case 15 4.1 Local maxima of potential . 18 4.2 Local minima of potential . 22 4.3 Bounces .
    [Show full text]
  • Electromagnetic Field Theory
    Electromagnetic Field Theory BO THIDÉ Υ UPSILON BOOKS ELECTROMAGNETIC FIELD THEORY Electromagnetic Field Theory BO THIDÉ Swedish Institute of Space Physics and Department of Astronomy and Space Physics Uppsala University, Sweden and School of Mathematics and Systems Engineering Växjö University, Sweden Υ UPSILON BOOKS COMMUNA AB UPPSALA SWEDEN · · · Also available ELECTROMAGNETIC FIELD THEORY EXERCISES by Tobia Carozzi, Anders Eriksson, Bengt Lundborg, Bo Thidé and Mattias Waldenvik Freely downloadable from www.plasma.uu.se/CED This book was typeset in LATEX 2" (based on TEX 3.14159 and Web2C 7.4.2) on an HP Visualize 9000⁄360 workstation running HP-UX 11.11. Copyright c 1997, 1998, 1999, 2000, 2001, 2002, 2003 and 2004 by Bo Thidé Uppsala, Sweden All rights reserved. Electromagnetic Field Theory ISBN X-XXX-XXXXX-X Downloaded from http://www.plasma.uu.se/CED/Book Version released 19th June 2004 at 21:47. Preface The current book is an outgrowth of the lecture notes that I prepared for the four-credit course Electrodynamics that was introduced in the Uppsala University curriculum in 1992, to become the five-credit course Classical Electrodynamics in 1997. To some extent, parts of these notes were based on lecture notes prepared, in Swedish, by BENGT LUNDBORG who created, developed and taught the earlier, two-credit course Electromagnetic Radiation at our faculty. Intended primarily as a textbook for physics students at the advanced undergradu- ate or beginning graduate level, it is hoped that the present book may be useful for research workers
    [Show full text]
  • Scalar Quantum Electrodynamics
    A complex system that works is invariably found to have evolved from a simple system that works. John Gall 17 Scalar Quantum Electrodynamics In nature, there exist scalar particles which are charged and are therefore coupled to the electromagnetic field. In three spatial dimensions, an important nonrelativistic example is provided by superconductors. The phenomenon of zero resistance at low temperature can be explained by the formation of so-called Cooper pairs of electrons of opposite momentum and spin. These behave like bosons of spin zero and charge q =2e, which are held together in some metals by the electron-phonon interaction. Many important predictions of experimental data can be derived from the Ginzburg- Landau theory of superconductivity [1]. The relativistic generalization of this theory to four spacetime dimensions is of great importance in elementary particle physics. In that form it is known as scalar quantum electrodynamics (scalar QED). 17.1 Action and Generating Functional The Ginzburg-Landau theory is a three-dimensional euclidean quantum field theory containing a complex scalar field ϕ(x)= ϕ1(x)+ iϕ2(x) (17.1) coupled to a magnetic vector potential A. The scalar field describes bound states of pairs of electrons, which arise in a superconductor at low temperatures due to an attraction coming from elastic forces. The detailed mechanism will not be of interest here; we only note that the pairs are bound in an s-wave and a spin singlet state of charge q =2e. Ignoring for a moment the magnetic interactions, the ensemble of these bound states may be described, in the neighborhood of the superconductive 4 transition temperature Tc, by a complex scalar field theory of the ϕ -type, by a euclidean action 2 3 1 m g 2 E = d x ∇ϕ∗∇ϕ + ϕ∗ϕ + (ϕ∗ϕ) .
    [Show full text]
  • Lo Algebras for Extended Geometry from Borcherds Superalgebras
    Commun. Math. Phys. 369, 721–760 (2019) Communications in Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-019-03451-2 Mathematical Physics L∞ Algebras for Extended Geometry from Borcherds Superalgebras Martin Cederwall, Jakob Palmkvist Division for Theoretical Physics, Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden. E-mail: [email protected]; [email protected] Received: 24 May 2018 / Accepted: 15 March 2019 Published online: 26 April 2019 – © The Author(s) 2019 Abstract: We examine the structure of gauge transformations in extended geometry, the framework unifying double geometry, exceptional geometry, etc. This is done by giving the variations of the ghosts in a Batalin–Vilkovisky framework, or equivalently, an L∞ algebra. The L∞ brackets are given as derived brackets constructed using an underlying Borcherds superalgebra B(gr+1), which is a double extension of the structure algebra gr . The construction includes a set of “ancillary” ghosts. All brackets involving the infinite sequence of ghosts are given explicitly. All even brackets above the 2-brackets vanish, and the coefficients appearing in the brackets are given by Bernoulli numbers. The results are valid in the absence of ancillary transformations at ghost number 1. We present evidence that in order to go further, the underlying algebra should be the corresponding tensor hierarchy algebra. Contents 1. Introduction ................................. 722 2. The Borcherds Superalgebra ......................... 723 3. Section Constraint and Generalised Lie Derivatives ............. 728 4. Derivatives, Generalised Lie Derivatives and Other Operators ....... 730 4.1 The derivative .............................. 730 4.2 Generalised Lie derivative from “almost derivation” .......... 731 4.3 “Almost covariance” and related operators ..............
    [Show full text]
  • Large-Deviation Principles, Stochastic Effective Actions, Path Entropies
    Large-deviation principles, stochastic effective actions, path entropies, and the structure and meaning of thermodynamic descriptions Eric Smith Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA (Dated: February 18, 2011) The meaning of thermodynamic descriptions is found in large-deviations scaling [1, 2] of the prob- abilities for fluctuations of averaged quantities. The central function expressing large-deviations scaling is the entropy, which is the basis for both fluctuation theorems and for characterizing the thermodynamic interactions of systems. Freidlin-Wentzell theory [3] provides a quite general for- mulation of large-deviations scaling for non-equilibrium stochastic processes, through a remarkable representation in terms of a Hamiltonian dynamical system. A number of related methods now exist to construct the Freidlin-Wentzell Hamiltonian for many kinds of stochastic processes; one method due to Doi [4, 5] and Peliti [6, 7], appropriate to integer counting statistics, is widely used in reaction-diffusion theory. Using these tools together with a path-entropy method due to Jaynes [8], this review shows how to construct entropy functions that both express large-deviations scaling of fluctuations, and describe system-environment interactions, for discrete stochastic processes either at or away from equilibrium. A collection of variational methods familiar within quantum field theory, but less commonly applied to the Doi-Peliti construction, is used to define a “stochastic effective action”, which is the large-deviations rate function for arbitrary non-equilibrium paths. We show how common principles of entropy maximization, applied to different ensembles of states or of histories, lead to different entropy functions and different sets of thermodynamic state variables.
    [Show full text]
  • The Euler Legacy to Modern Physics
    ENTE PER LE NUOVE TECNOLOGIE, L'ENERGIA E L'AMBIENTE THE EULER LEGACY TO MODERN PHYSICS G. DATTOLI ENEA -Dipartimento Tecnologie Fisiche e Nuovi Materiali Centro Ricerche Frascati M. DEL FRANCO - ENEA Guest RT/2009/30/FIM This report has been prepared and distributed by: Servizio Edizioni Scientifiche - ENEA Centro Ricerche Frascati, C.P. 65 - 00044 Frascati, Rome, Italy The technical and scientific contents of these reports express the opinion of the authors but not necessarily the opinion of ENEA. THE EULER LEGACY TO MODERN PHYSICS Abstract Particular families of special functions, conceived as purely mathematical devices between the end of XVIII and the beginning of XIX centuries, have played a crucial role in the development of many aspects of modern Physics. This is indeed the case of the Euler gamma function, which has been one of the key elements paving the way to string theories, furthermore the Euler-Riemann Zeta function has played a decisive role in the development of renormalization theories. The ideas of Euler and later those of Riemann, Ramanujan and of other, less popular, mathematicians have therefore provided the mathematical apparatus ideally suited to explore, and eventually solve, problems of fundamental importance in modern Physics. The mathematical foundations of the theory of renormalization trace back to the work on divergent series by Euler and by mathematicians of two centuries ago. Feynman, Dyson, Schwinger… rediscovered most of these mathematical “curiosities” and were able to develop a new and powerful way of looking at physical phenomena. Keywords: Special functions, Euler gamma function, Strin theories, Euler-Riemann Zeta function, Mthematical curiosities Riassunto Alcune particolari famiglie di funzioni speciali, concepite come dispositivi puramente matematici tra la fine del XVIII e l'inizio del XIX secolo, hanno svolto un ruolo cruciale nello sviluppo di molti aspetti della fisica moderna.
    [Show full text]
  • Perturbative Algebraic Quantum Field Theory
    Perturbative algebraic quantum field theory Klaus Fredenhagen Katarzyna Rejzner II Inst. f. Theoretische Physik, Department of Mathematics, Universität Hamburg, University of Rome Tor Vergata Luruper Chaussee 149, Via della Ricerca Scientifica 1, D-22761 Hamburg, Germany I-00133, Rome, Italy [email protected] [email protected] arXiv:1208.1428v2 [math-ph] 27 Feb 2013 2012 These notes are based on the course given by Klaus Fredenhagen at the Les Houches Win- ter School in Mathematical Physics (January 29 - February 3, 2012) and the course QFT for mathematicians given by Katarzyna Rejzner in Hamburg for the Research Training Group 1670 (February 6 -11, 2012). Both courses were meant as an introduction to mod- ern approach to perturbative quantum field theory and are aimed both at mathematicians and physicists. Contents 1 Introduction 3 2 Algebraic quantum mechanics 5 3 Locally covariant field theory 9 4 Classical field theory 14 5 Deformation quantization of free field theories 21 6 Interacting theories and the time ordered product 26 7 Renormalization 26 A Distributions and wavefront sets 35 1 Introduction Quantum field theory (QFT) is at present, by far, the most successful description of fundamental physics. Elementary physics , to a large extent, explained by a specific quantum field theory, the so-called Standard Model. All the essential structures of the standard model are nowadays experimentally verified. Outside of particle physics, quan- tum field theoretical concepts have been successfully applied also to condensed matter physics. In spite of its great achievements, quantum field theory also suffers from several longstanding open problems. The most serious problem is the incorporation of gravity.
    [Show full text]