Introduction to Pharmacology 1 University of Hawai„I Hilo Pre-Nursing Program NURS 203 – General Pharmacology Danita Narciso Pharm D

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Pharmacology 1 University of Hawai„I Hilo Pre-Nursing Program NURS 203 – General Pharmacology Danita Narciso Pharm D Introduction to Pharmacology 1 University of Hawai„i Hilo Pre-Nursing Program NURS 203 – General Pharmacology Danita Narciso Pharm D 2 Learning Objectives Understand the barriers that drug molecules must overcome to complete a cycle from absorption to excretion in the body (tissue and membrane) Understand the different ways drug molecules transport across membranes Know the different characteristics of binding sites Know the different characteristics of bonds 3 Definitions Pharmacology – The study of substances that interact with living systems through chemical processes. Medical pharmacology – The area of pharmacology concerned with the use of chemicals in the prevention, diagnosis, and treatment of disease, especially in humans. Toxicology – The area of pharmacology concerned with the undesirable effects of chemicals on biologic systems. Pharmacokinetics – Describes the effects of the body on drugs. Pharmacodynamics – Describes the effects of the drug on the body. 4 Types of drugs Endogenous Produced in the body Hormones Neurotransmitters Exogenous Not produced in the body Poisons Drugs with almost only harmful effects Toxins Naturally occurring poisons 5 Breaking Through the Barriers Many biological barriers Tissue Cell membranes 6 Tissue Barriers Absorption Reaching the site of action (brain) Exiting the body Metabolism Intestinal epithelium Brain capillaries Capillaries Blood brain barrier Liver General circulation First pass effect (metabolism) Liver General circulation Metabolism (biotransformation) Blood brain barrier General circulation Brain capillaries Kidney Brain tissue Distribution Excretion 7 Cellular Transport – Cell Membrane barriers Transcellular Passive diffusion Transporters Carrier mediated transport Facilitated diffusion Active transport Transcytosis Paracellular Passive Diffusion 8 Diffusion – The natural tendency for molecules to move from an area of higher concentration to lower concentration *no energy required* Area of high Area of low Equilibrium concentration concentration 9 Passive Diffusion Diffusion – The natural tendency for molecules to move from an area of higher concentration to lower concentration Hydrophilic Hydrophobic Water loving Water resistant Lipophobic Lipophilic 10 Passive Diffusion Diffusion – The natural tendency for molecules to move from an area of Water like higher concentration to lower concentration environment Hydrophilic substances Lipophilic substances Hydrophilic channels Through the lipid bilayer Oil like environment 11 Passive Diffusion Passive diffusion of Lipophilic substances Factors that alter Concentration gradient Surface area of the membrane Thickness of the membrane Charge Electric gradient Permeability Must be permeable to pass through a membrane 12 Transporters Transporters Membrane proteins with one or more active sites that move molecules across membranes Can be selective or non-selective Exist in the kidney, liver, intestines, and other tissues Carrier mediated transport Affinity 13 Facilitated Diffusion Facilitated diffusion – a carrier medicate process that occurs only when a concentration gradient exists *no energy required* Facilitated diffusion Factors Concentration gradient Transporter concentration Affinity Types Uniporter 14 Active Transport Active transport processes are able to transport molecules against their concentration gradient. *require energy* Active transport Against the concentration gradient Requires energy Use of transporters Uniport Symport Antiport Drug efflux transporters Efflux proteins Multidrug efflux 15 Transcytosis Transcytosis (vesicular transport) – is a process by which certain substances are transported across cell membranes by the use of vesicles. Endocytosis Pinocytosis Phagocytosis Exocytosis 16 Paracellular Transport Paracellular transport – the passing of substances through an epithelial or endothelial membrane by the use of cell junctions Types of paracellular transport Through epithelial membranes Gap junctions Smaller than 1 nm in diameter Through capillaries 5-30 nm in diameter Blood-Brain barrier Tight junctions Other enzymatic barriers Filtration Driven by hydrostatic pressure Leaky capillaries 50 -100 nm in diameter 17 More Than 1 Way to Skin a Cat Substances or molecules are able to transport through biological membranes by more than 1 transport mechanism 18 Break…. May be a good time to take a break 19 Regulatory Proteins (Receptors) Drugs must interact with the body in order to promote change Proteins that receive and pass on chemical messages Types of regulatory proteins Receptor proteins Ion channel proteins Enzymes Transporters Drugs are not the only substances that can bin to receptors 20 Receptor proteins Receive and process chemical signals from outside the cell Example of drugs that target receptor proteins Zyrtec Alpha Blockers 21 Ion channel proteins Ion channels control the passage of ions through a cell‟s membrane Example of drugs that target ion channels Calcium channel blockers Digoxin 22 Ion channel proteins Ion channels control the passage of ions through a cell‟s membrane Example of drugs that target ion channels Calcium channel blockers Digoxin 23 Ion channel proteins Ion channels control the passage of ions through a cell‟s membrane Example of drugs that target ion channels Calcium channel blockers Digoxin 24 Ion channel proteins Ion channels control the passage of ions through a cell‟s membrane Example of drugs that target ion channels Calcium channel blockers Digoxin Enzymes 25 An enzymes job is to catalyze biochemical and metabolic reactions Examples of enzymes Examples of drugs that bind to enzymes ProteASE Celecoxib SynthASE Aspirin TranscriptASE 26 Transporters Transporters help to transport substances across a cells membrane Examples of drugs that target transporters Prozac Cocaine 27 Bonds Drugs form bonds at the site of action Types of bonds Covalent Ionic Hydrogen bonds Hydrophobic interactions 28 Covalent Bonds Covalent bonds – sharing of electrons Covalent bonds in pharmacology “Irreversible” Aspirin and cyclooxygenase 29 Ionic bonds Ionic bonds - the transferring of electrons between two atoms Ionic bonds in pharmacology (AKA electrostatic bond) “Reversible” Lidocaine 30 Hydrogen bonds Hydrogen bonds – A weak electrostatic bond Hydrogen bonds in pharmacology Lactulose 31 Hydrophobic bonds Hydrophobic interactions – interactions driven by the tendency to avoid water Hydrophobic interactions in pharmacology Weak Flagyl 32 Questions .
Recommended publications
  • Low Affinity Uniporter Carrier Proteins Can Increase Net Substrate Uptake
    www.nature.com/scientificreports OPEN Low afnity uniporter carrier proteins can increase net substrate uptake rate by reducing efux Received: 10 November 2017 Evert Bosdriesz 1,3, Meike T. Wortel 1,4, Jurgen R. Haanstra 1, Marijke J. Wagner1, Accepted: 9 March 2018 Pilar de la Torre Cortés2 & Bas Teusink 1 Published: xx xx xxxx Many organisms have several similar transporters with diferent afnities for the same substrate. Typically, high-afnity transporters are expressed when substrate is scarce and low-afnity ones when it is abundant. The beneft of using low instead of high-afnity transporters remains unclear, especially when additional nutrient sensors are present. Here, we investigate two hypotheses. It was previously hypothesized that there is a trade-of between the afnity and the catalytic efciency of transporters, and we fnd some but no defnitive support for it. Additionally, we propose that for uptake by facilitated difusion, at saturating substrate concentrations, lowering the afnity enhances the net uptake rate by reducing substrate efux. As a consequence, there exists an optimal, external-substrate- concentration dependent transporter afnity. A computational model of Saccharomyces cerevisiae glycolysis shows that using the low afnity HXT3 transporter instead of the high afnity HXT6 enhances the steady-state fux by 36%. We tried to test this hypothesis with yeast strains expressing a single glucose transporter modifed to have either a high or a low afnity. However, due to the intimate link between glucose perception and metabolism, direct experimental proof for this hypothesis remained inconclusive. Still, our theoretical results provide a novel reason for the presence of low-afnity transport systems.
    [Show full text]
  • Disease-Induced Modulation of Drug Transporters at the Blood–Brain Barrier Level
    International Journal of Molecular Sciences Review Disease-Induced Modulation of Drug Transporters at the Blood–Brain Barrier Level Sweilem B. Al Rihani 1 , Lucy I. Darakjian 1, Malavika Deodhar 1 , Pamela Dow 1 , Jacques Turgeon 1,2 and Veronique Michaud 1,2,* 1 Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL 32827, USA; [email protected] (S.B.A.R.); [email protected] (L.I.D.); [email protected] (M.D.); [email protected] (P.D.); [email protected] (J.T.) 2 Faculty of Pharmacy, Université de Montréal, Montreal, QC H3C 3J7, Canada * Correspondence: [email protected]; Tel.: +1-856-938-8697 Abstract: The blood–brain barrier (BBB) is a highly selective and restrictive semipermeable network of cells and blood vessel constituents. All components of the neurovascular unit give to the BBB its crucial and protective function, i.e., to regulate homeostasis in the central nervous system (CNS) by removing substances from the endothelial compartment and supplying the brain with nutrients and other endogenous compounds. Many transporters have been identified that play a role in maintaining BBB integrity and homeostasis. As such, the restrictive nature of the BBB provides an obstacle for drug delivery to the CNS. Nevertheless, according to their physicochemical or pharmacological properties, drugs may reach the CNS by passive diffusion or be subjected to putative influx and/or efflux through BBB membrane transporters, allowing or limiting their distribution to the CNS. Drug transporters functionally expressed on various compartments of the BBB involve numerous proteins from either the ATP-binding cassette (ABC) or the solute carrier (SLC) superfamilies.
    [Show full text]
  • Arxiv:1912.06275V2 [Q-Bio.BM] 18 Feb 2021
    General Principles of Secondary Active Transporter Function Oliver Beckstein1, a) and Fiona Naughton1 Department of Physics, Arizona State University, Tempe AZ 85287, USA (Dated: February 19, 2021) Transport of ions and small molecules across the cell membrane against electrochemical gradients is catalyzed by integral membrane proteins that use a source of free energy to drive the energetically uphill flux of the transported substrate. Secondary active transporters couple the spontaneous influx of a “driving” ion such as Na+ or H+ to the flux of the substrate. The thermodynamics of such cyclical non-equilibrium systems are well understood and recent work has focused on the molecular mechanism of secondary active transport. The fact that these transporters change their conformation between an inward-facing and outward-facing conformation in a cyclical fashion, called the alternating access model, is broadly recognized as the molecular framework in which to describe transporter function. However, only with the advent of high resolution crystal structures and detailed computer simulations has it become possible to recognize common molecular-level principles between disparate transporter families. Inverted repeat symmetry in secondary active transporters has shed light on how protein structures can encode a bi-stable two-state system. More detailed analysis (based on experimental structural data and detailed molecular dynamics simulations) indicates that transporters can be understood as gated pores with at least two coupled gates. These gates are not just a convenient cartoon element to illustrate a putative mechanism but map to distinct parts of the transporter protein. Enumerating all distinct gate states naturally includes occluded states in the alternating access picture and also suggests what kind of protein conformations might be observable.
    [Show full text]
  • Membrane Transport Quiz
    Membrane Transport Quiz 1. Which of the following is an example of extracellular fluid? a. Cytosol b. Plasma c. Interstitial Fluid d. Both b and c 2. Which of the following correctly describes passive transport? a. the cell uses ATP in passive transport b. most pumps are examples of passive transport c. diffusion is an example of passive transport d. exocytosis is an example of passive transport 3. Simple diffusion occurs ______________. a. with transporters in the cell membrane b. directly across the cell membrane c. through exocytosis d. through endocytosis 4. Which of the following is an example of active transport? a. Filtration b. Osmosis c. Endocytosis d. Exocytosis e. Both c and d 5. Which type of active transport uses ATP directly? a. Primary Active Transport b. Secondary Active Transport c. Both a and b 6. Which of the following is an example of receptor mediated endocytosis? a. Phagocytosis b. Primary Active Transport c. Exocytosis d. ALL are For use with TCC iTunes University Membrane Transport Lecture. 1 Developed by: Martha Kutter 2009 for the Learning Commons at Tallahassee Community College. 7. A transporter that moves one type of particle in one direction is _______________. a. Uniporter b. Symporter c. Antiporter 8. A transporter the moves two different particles in two different directions is ________. a. Endocytosis b. Exocytosis c. Uniporter d. Symporter e. Antiporter 9. Which of the following is an example of a primary active transporter? a. Na+/Ca2+ transporter on cardiac contractile cells b. Na+ channels on neurons c. Na+/K+ ATPase on all cells d.
    [Show full text]
  • Amino Acids, Peptides, and Proteins
    1/11/2018 King Saud University College of Science Department of Biochemistry Biomembranes and Cell Signaling (BCH 452) Chapter 3 Diffusion, Channels and Transport Systems Prepared by Dr. Farid Ataya http://fac.ksu.edu.sa/fataya Lect Topics to be covered No. Role of cell surface carbohydrates in recognise ion, as receptor of antigens, 7 hormones, toxins, viruses and bacteria. Their role in histocompatibility and cell-cell adhesion. Diffusion. 8 Diffusion across biomembranes. Ficks law. Structural types of channels (pores): -type, -barrel, pore forming toxins, ionophores. Functional types of channels (pores): voltage-gated channels e.g. sodium channels, ligand-gated channels e.g. acetylcholine receptor (nicotinic-acetylcholine channel), c-AMP regulated. Gap junctions and nuclear pores. 9 Transport systems: Energetics of transport systems, G calculation in each type. Passive Transport (facilitated diffusion). 1 1/11/2018 No. Topics to be covered Lect Kinetic properties. 9 Passive transport: Glucose transporters (GLUT 1 to5), - C1 , HCO3 exchanger (anion exchanger protein) in erythrocyte membrane Kinetic properties. 10 Active transport: Types of active transport: Primary ATPases (Primary active transporters): P transporters (e.g. Na+, K+, ATPase) First assessment Exam ATP binding cassettes (ABC transports) 11 (e.g. cystic fibrosis transmembrane conductance regulator-chloride transport). Multidrug resistance protein transporter. V transporters, F transporters. Secondary active transporters (e.g. Na+ -dependent transport of glucose and amino acids). To be covered under intestinal brush border Transport of large molecules (Macromolecules) 12 Types: Exocytosis, Endocytosis-pinocytosis and phagocytosis Types of pinocytosis: Absorptive pinocytosis, characteristics and examples. Fluid phase pinocytosis, characteristics and examples The role of cell surface carbohydrates: Glycoproteins Membrane glycoproteins are proteins that contain 1-30% carbohydrate in their structure.
    [Show full text]
  • Mitochondria Regulate the Ca2+–Exocytosis Relationship of Bovine Adrenal Chromaffin Cells
    The Journal of Neuroscience, November 1, 1999, 19(21):9261–9270 Mitochondria Regulate the Ca21–Exocytosis Relationship of Bovine Adrenal Chromaffin Cells David R. Giovannucci,1 Michael D. Hlubek,2 and Edward L. Stuenkel1 Departments of 1Physiology and 2Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0622 The present study expands the contemporary view of mito- entered via voltage-activated Ca 21 channels. Disruption of chondria as important participants in cellular Ca 21 dynamics cellular Ca 21 homeostasis by poisoning mitochondria en- and provides evidence that mitochondria regulate the supply of hanced the secretory responsiveness of chromaffin cells by release-competent secretory granules. Using pharmacological increasing the amplitude of the transient rise and the time 21 D 21 probes to inhibit mitochondrial Ca import, the ability of mi- course of recovery to baseline of the evoked [Ca ]c. The tochondria to modulate secretory activity in single, patch- enhancement of the secretory response was represented by clamped bovine chromaffin cells was examined by simulta- significant deviation of the Ca 21–exocytosis relationship from a 21 D neously monitoring rapid changes in membrane surface area standard relationship that equates Ca influx and Cm. Thus, D 21 21 ( Cm ) and cytosolic Ca levels ([Ca ]c ). Repetitive step mitochondria would play a critical role in the control of secre- depolarizations or action potential waveforms were found to tory activity in chromaffin cells that undergo tonic or repetitive 21 m 21 raise the [Ca ]c of chromaffin cells into the 1 M to tens of depolarizing activity, likely by limiting the Ca -dependent ac- micromolar range.
    [Show full text]
  • Concentration Gradient; Within a System, Different Substances in the Medium Will Each Diffuse at Different Rates According to Their Individual Gradients
    Biomolecules Biological Macromolecules • Life depends on four types of organic macromolecules: 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic acids 1. Carbohydrates • Contain carbon, hydrogen and oxygen in a ratio of 1:2:1 • Account for less that 1% of body weight • Used as energy source • Called saccharides Carbohydrates • Compounds containing C, H and O • General formula : Cx(H2O)y • All have C=O and -OH functional groups. • Classified based on • Size of base carbon chain • Number of sugarunits • Location of C=O • Stereochemistry Types of carbohydrates • Classifications based on number of sugarunits in total chain. • Monosaccharides - single sugarunit • Disaccharides - two sugarunits • Oligosaccharides - 2 to 10 sugarunits • Polysaccharides - more than 10units • Chaining relies on ‘bridging’ of oxygenatoms • glycoside bonds Monosaccharides • Based on location of C=O H CH2OH | | C=O C=O | | H-C-OH HO-C-H | | H-C-OH H-C-OH | | H-C-OH H-C-OH | | CH2OH CH2OH Aldose Ketose - aldehyde C=O - ketone C=O Monosaccharide classifications • Number of carbon atoms in the chain H H | H | C=O H | C=O | | C=O | H-C-OH C=O | H-C-OH | | H-C-OH | H-C-OH | H-C-OH | H-C-OH H-C-OH | H-C-OH | | H-C-OH | CH2OH | H-C-OH CH2OH | CH2OH CH2OH triose tetrose pentose hexose Can be either aldose or ketose sugar. Stereoisomers • Stereochemistry • Study of the spatial arrangement ofmolecules. • Stereoisomers have • the same order and types of bonds. • different spatial arrangements. • different properties. • Many biologically importantchemicals, like sugars, exist as stereoisomers. Your body can tell the difference.
    [Show full text]
  • Sodium-Coupled Glucose Transport, the SLC5 Family, and Therapeutically Relevant Inhibitors: from Molecular Discovery to Clinical Application
    Pflügers Archiv - European Journal of Physiology (2020) 472:1177–1206 https://doi.org/10.1007/s00424-020-02433-x INVITED REVIEW Sodium-coupled glucose transport, the SLC5 family, and therapeutically relevant inhibitors: from molecular discovery to clinical application Gergely Gyimesi1 & Jonai Pujol-Giménez1 & Yoshikatsu Kanai2 & Matthias A. Hediger1 Received: 4 March 2020 /Revised: 24 June 2020 /Accepted: 2 July 2020 / Published online: 7 August 2020 # The Author(s) 2020 Abstract Sodium glucose transporters (SGLTs) belong to the mammalian solute carrier family SLC5. This family includes 12 different members in human that mediate the transport of sugars, vitamins, amino acids, or smaller organic ions such as choline. The SLC5 family belongs to the sodium symporter family (SSS), which encompasses transporters from all kingdoms of life. It furthermore shares similarity to the structural fold of the APC (amino acid-polyamine-organocation) transporter family. Three decades after the first molecular identification of the intestinal Na+-glucose cotransporter SGLT1 by expression cloning, many new discoveries have evolved, from mechanistic analysis to molecular genetics, structural biology, drug discovery, and clinical applications. All of these advances have greatly influenced physiology and medicine. While SGLT1 is essential for fast absorption of glucose and galactose in the intestine, the expression of SGLT2 is largely confined to the early part of the kidney proximal tubules, where it reabsorbs the bulk part of filtered glucose. SGLT2 has been successfully exploited by the pharmaceutical industry to develop effective new drugs for the treatment of diabetic patients. These SGLT2 inhibitors, termed gliflozins, also exhibit favorable nephroprotective effects and likely also cardioprotective effects.
    [Show full text]
  • Plasma Membrane Integrity: Implications for Health and Disease Dustin A
    Ammendolia et al. BMC Biology (2021) 19:71 https://doi.org/10.1186/s12915-021-00972-y REVIEW Open Access Plasma membrane integrity: implications for health and disease Dustin A. Ammendolia1,2, William M. Bement3 and John H. Brumell1,2,4,5* Abstract Plasma membrane integrity is essential for cellular homeostasis. In vivo, cells experience plasma membrane damage from a multitude of stressors in the extra- and intra-cellular environment. To avoid lethal consequences, cells are equipped with repair pathways to restore membrane integrity. Here, we assess plasma membrane damage and repair from a whole-body perspective. We highlight the role of tissue-specific stressors in health and disease and examine membrane repair pathways across diverse cell types. Furthermore, we outline the impact of genetic and environmental factors on plasma membrane integrity and how these contribute to disease pathogenesis in different tissues. Keywords: Plasma membrane, Membrane damage, Lipid peroxidation, Pore formation, Membrane repair, Vesicle trafficking, Cell biology, Tissue injury, Disease Plasma membrane integrity signaling to shape the tissue environment. Alternatively, Confinement of a cell from its surrounding environment plasma membrane damage inflicted by microbial patho- is a universal trait of microscopic life. The plasma mem- gens and immune cells can have deleterious conse- brane fulfills this role whereby its integrity is vital for quences on cell fate during infection and inflammation cell function and survival. Accordingly, plasma mem- [4, 5]. The prevalence of membrane damage across func- brane architecture and composition varies to provide re- tionally distinct processes, from cell death to cancer cell sistance to injury in different cellular contexts.
    [Show full text]
  • 5.3 Active Transport
    Chapter 5 | Structure and Function of Plasma Membranes 159 fish actively take in salt through their gills and excrete diluted urine to rid themselves of excess water. Saltwater fish live in the reverse environment, which is hypertonic to their cells, and they secrete salt through their gills and excrete highly concentrated urine. In vertebrates, the kidneys regulate the water amount in the body. Osmoreceptors are specialized cells in the brain that monitor solute concentration in the blood. If the solute levels increase beyond a certain range, a hormone releases that slows water loss through the kidney and dilutes the blood to safer levels. Animals also have high albumin concentrations, which the liver produces, in their blood. This protein is too large to pass easily through plasma membranes and is a major factor in controlling the osmotic pressures applied to tissues. 5.3 | Active Transport By the end of this section, you will be able to do the following: • Understand how electrochemical gradients affect ions • Distinguish between primary active transport and secondary active transport Active transport mechanisms require the cell’s energy, usually in the form of adenosine triphosphate (ATP). If a substance must move into the cell against its concentration gradient—that is, if the substance's concentration inside the cell is greater than its concentration in the extracellular fluid (and vice versa)—the cell must use energy to move the substance. Some active transport mechanisms move small-molecular weight materials, such as ions, through the membrane. Other mechanisms transport much larger molecules. Electrochemical Gradient We have discussed simple concentration gradients—a substance's differential concentrations across a space or a membrane—but in living systems, gradients are more complex.
    [Show full text]
  • Transport Across Cell Membrane 1
    Transport across cell membrane 1. Non-carrier mediated • Diffusion • Osmosis 2. Carrier-mediated • Facilitated diffusion • Active transport 3. Vesicle mediated • Exocytosis • Endocytosis • Pinocytosis • phagocytosis Non carrier mediated Diffusion • Diffusion is the tendency for molecules to spread out evenly into the available space • Substances diffuse down their concentration gradient, the difference in concentration of a substance from one area to another • The diffusion of a substance across a biological membrane is passive transport because it requires no energy from the cell to make it happen Rate of Diffusion dependent upon • The magnitude of concentration gradient. • Permeability of the membrane. • Temperature. • Higher temperature, faster diffusion rate. • Surface area of the membrane. • Microvilli increase surface area. Osmosis • Osmosis is the diffusion of water across a selectively permeable membrane • Water diffuses across a membrane from the region of lower solute concentration to the region of higher solute concentration Water Balance of Cells Without Walls • Tonicity is the ability of a solution to cause a cell to gain or lose water • Isotonic solution: Solute concentration is the same as that inside the cell; no net water movement across the plasma membrane • Hypertonic solution: Solute concentration is greater than that inside the cell; cell loses water • Hypotonic solution: Solute concentration is less than that inside the cell; cell gains water Fig. 7-13 Hypotonic solution Isotonic solution Hypertonic solution H2O H2O H2O H2O (a) Animal cell Lysed Normal Shriveled H2O H2O H2O H2O (b) Plant cell Turgid (normal) Flaccid Plasmolyzed Reverse osmosis A way to get clean water out of dirty water or salt water by forcing water under pressure through a membrane.
    [Show full text]
  • Ion Transport Through Cell Membrane: a Few Nonpolar
    Ion Transport through Cell Membrane: Class :M.Sc III Sem Subject: Biophysical Chemistry A few nonpolar compounds can dissolve in the lipid bilayer and cross the membrane, but for polar or charged compounds or ions, a membrane protein is essential for trans membrane movement. In some cases a membrane protein simply facilitates the diffusion of a solute down its concentration gradient, but transport often occurs against a gradient of concentration, electrical charge, or both, in which case solutes must be “pumped” in a process that requires energy . The energy may come directly from ATP hydrolysis or may be supplied in the form of movement of another solute down its electrochemical gradient with enough energy to carry another solute up its gradient. Ions may also move across membranes via ion channels formed by proteins, or they may be carried across by ionophores, small molecules that mask the charge of the ions and allow them to diffuse through the lipid bilayer. With very few exceptions, the traffic of small molecules across the plasma membrane is mediated by proteins such as transmembrane channels, carriers, or pumps. Passive Transport When two aqueous compartments containing unequal concentrations of a soluble compound or ion are separated by a permeable divider (membrane), the solute moves by simple diffusion from the region of higher concentration, through the membrane, to the region of lower concentration, until the two compartments have equal solute concentrations. When ions of opposite charge are separated by a permeable membrane, there is a transmembrane electrical gradient, a membrane potential, Vm (expressed in volts or millivolts).
    [Show full text]