Behavioral Ecology

Total Page:16

File Type:pdf, Size:1020Kb

Behavioral Ecology 8 Behavioral Ecology Baby Killers: A Case Study KEY CONCEPTS Lions are unique among cats in that they live in social groups called prides. CONCEPT 8.1 An evolutionary A typical lion pride contains anywhere from 2 to 18 adult females and their approach to the study of behavior cubs, along with a few adult males. The adult females form the core of the leads to testable predictions. pride, and they are closely related: they are mothers, daughters, aunts, and cousins. The adult males in a pride may be closely related as well (e.g., broth- CONCEPT 8.2 Animals make ers or cousins), or they may be a coalition of unrelated individuals that help behavioral choices that enhance their energy gain and reduce their one another. risk of becoming prey. The lions in a pride hunt cooperatively, and the females often feed, care for, and protect one another’s cubs. But life in a pride has a dark side as well. CONCEPT 8.3 Mating behaviors The male in Figure 8.1 is killing one of the cubs in his pride, a behavior that reflect the costs and benefits of seems both horrific and puzzling. Why do adult male lions do this? To shed parental investment and mate light on this murderous behavior, let’s consider some aspects of the life his- defense. tory of lions in more detail. CONCEPT 8.4 There are As young adults, male lions are driven from the pride into which they advantages and disadvantages to were born. A group of young males expelled from a pride may stay together living in groups. to form a “bachelor pride.” Bachelor prides may also consist of males from different prides that meet and begin to hunt together. By the time they are 4 or 5 years old, the young males in a bachelor pride are large and strong enough to challenge the adult males of an established pride. If their chal- lenge is successful, the new males drive off the “dethroned” males, and they typically try to kill any young cubs that were recently fathered by those males. Although the females fight back, the new males often succeed in killing cubs. If a female’sfemale s cubs are killed, sheshe becomes sexually receptive soon thereafter.thereafter. In contrast, it can take up tto two years for a female with cubs to resume sexual cycling.cycling. This delaydelay ini sexual receptivity can help us to understand the behavior of the incincomingom males. On average, incoming males remain with a pride for justjust twotw years before they are defeated and displaced byby a new groupgroup of youngeryou males. By killing cubs when hehe enters a ppride,ride, a new malemale increasesincrease the chance that he will reproduce beforebefore he is displaced byby a youngeryounger male.m As a result, incoming males that commit infanticideinfanticide shshould leave more offspring than do males that do not commitcomm infanticide. This logic suggests that infanticidal behabehaviorv by males is favored by natural Figure 8.1 Killing the Cub The male African lion shown here is attempting to kill the juvenile offspring of another male; such attempts often succeed. Why might this behavior be evolutionarily adaptive for the murdering male? ©2014 Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher. 08_Ecology3E_CH08.indd 182 2/7/14 12:38 PM Behavioral Ecology 183 a young trout that remains close to a hiding place while feeding may increase its chance of escaping predators, but in so doing, it may forgo the oppor- tunity to forage in areas that are rich with food but lacking in protective cover. As these examples suggest, the behavioral deci- sions made by individuals have very real costs and benefits that affect their ability to survive and re- produce. These examples also highlight the fact that animal behaviors take place in an ecological setting: the behavioral decisions of the lion and the trout are made in the presence of competitors and predators. As we’ll see in this chapter, the facts that behaviors occur in an ecological setting and that they affect survival and reproduction are central themes in the field of behavioral ecology, the study of the ecologi- cal and evolutionary basis of animal behavior. Behavioral ecology is a dynamic field, broad in scope. We cannot provide a comprehensive survey of this field in a single chapter (for that, see the text- books on behavioral ecology listed in the Suggested Figure 8.2 Females That Fight to Mate with Choosy Males Red phalarope Readings on the website). Instead, following up on (Phalaropus fulicarius) females (the two birds on the left) are larger and more the topics highlighted by life in lion prides, through- colorful than the male of their species (at the right). In this species, the females out this chapter we’ll emphasize three aspects of fight over the right to mate with the males—and the males choose which female behavior: foraging behavior, mating behavior, and they will mate with. living in groups. We’ll begin by taking a closer look at the types of questions that behavioral ecologists address in their research. selection, leading us to expect that it would be common CONCEPT 8.1 in lion populations (which it is). An evolutionary approach to the study of Infanticide is just one of the seemingly odd behaviors behavior leads to testable predictions. we see in animals. Fruit flies, for example, sometimes lay their eggs in food sources that contain high concentra- tions of ethyl alcohol, a toxic substance. Why do they do An Evolutionary Approach this? And why is it that the females of many species are more “choosy” than the males in selecting a mate—and to Behavior yet in some species (such as the birds in Figure 8.2) the Researchers studying animal behavior can seek to answer males are choosy and the females try to mate with as questions at several different levels of explanation. You many males as possible? For answers, we turn to the might ask, for example, why a robin hopping around your strange and wonderful world of animal behavior. yard periodically tilts its head to the side. It turns out that the bird is listening for worms moving through the soil. Robins can do this because their sensory and nervous sys- Introduction tems can detect the faint sounds of worms moving through In nature, many of an animal’s activities are centered on the soil. (You can hear those sounds in Web Extension 8.1.) obtaining food, finding mates, or avoiding predators. Thus, one explanation for the robin’s behavior might focus The behavioral decisions an animal makes often play a on how the required sensory equipment works. Further- key role in its ability to meet these three critical needs. more, hunting by listening might enable a robin to detect Consider the dilemma facing a young male lion decid- otherwise hard-to-find prey. Hence, a second explanation ing whether to challenge the adult males of a lion pride. of the robin’s head-tilting behavior might focus on wheth- An incorrect decision by the young male could lead to er listening for worms increases the efficiency of foraging, serious injury or death (if he is defeated in combat), or thus enhancing the bird’s survival and reproductive suc- it could lead to a missed opportunity to join a pride and cess. If so, then this behavior may have become common reproduce (if he delays combat unnecessarily). Likewise, over time because it was favored by natural selection. ©2014 Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher. 08_Ecology3E_CH08.indd 183 2/7/14 12:38 PM 184 Chapter 8 Notice that the first explanation we mentioned ad- dresses a “how” question about behavior: it looks within 1.0 Wild type an individual bird to explain how the head-tilting behav- 0.8 ior functions. By focusing on events that take place during Insecticide-selected an animal’s lifetime, this approach seeks to explain behav- 0.6 iors in terms of their immediate or proximate causes. In 0.4 Wild-type contrast, the second explanation addresses a “why” ques- 0.2 cockroaches tion about behavior: it examines the evolutionary and his- did not avoid torical reasons for a particular behavior. By addressing 0.0 glucose. previous events that influenced the features of an animal –0.2 Cockroaches from as we know it today, this approach seeks to explain be- Feeding index insecticide-selected –0.4 haviors in terms of their evolutionary or ultimate causes. populations avoided –0.6 eating agar that Although behavioral ecologists examine both proxi- contained glucose. mate and ultimate causes in their research, they are pri- –0.8 marily concerned with ultimate explanations of animal –1.0 behaviors. We will follow their lead in this chapter, focus- Corn syrup 1 M fructose 1 M glucose ing on selected ultimate explanations for why animals behave as they do. We’ll begin by examining how natural Figure 8.3 An Adaptive Behavioral Response Feeding selection affects behavior. behavior in two populations of the German cockroach (Blat- tella germanica), one of which (“Wild type”) had no prior Natural selection shapes animal behaviors exposure to insecticides, while the other had been exposed over time to insecticides. Cockroaches could choose to eat plain (un- As we’ve seen in earlier chapters of this book, an individ- sweetened) agar, agar that contained one of three sources of ual’s ability to survive and reproduce depends in part on sugar—fructose, glucose, or corn syrup (which contains both its behavior.
Recommended publications
  • Venoms of Heteropteran Insects: a Treasure Trove of Diverse Pharmacological Toolkits
    Review Venoms of Heteropteran Insects: A Treasure Trove of Diverse Pharmacological Toolkits Andrew A. Walker 1,*, Christiane Weirauch 2, Bryan G. Fry 3 and Glenn F. King 1 Received: 21 December 2015; Accepted: 26 January 2016; Published: 12 February 2016 Academic Editor: Jan Tytgat 1 Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; [email protected] (G.F.K.) 2 Department of Entomology, University of California, Riverside, CA 92521, USA; [email protected] (C.W.) 3 School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia; [email protected] (B.G.F.) * Correspondence: [email protected]; Tel.: +61-7-3346-2011 Abstract: The piercing-sucking mouthparts of the true bugs (Insecta: Hemiptera: Heteroptera) have allowed diversification from a plant-feeding ancestor into a wide range of trophic strategies that include predation and blood-feeding. Crucial to the success of each of these strategies is the injection of venom. Here we review the current state of knowledge with regard to heteropteran venoms. Predaceous species produce venoms that induce rapid paralysis and liquefaction. These venoms are powerfully insecticidal, and may cause paralysis or death when injected into vertebrates. Disulfide- rich peptides, bioactive phospholipids, small molecules such as N,N-dimethylaniline and 1,2,5- trithiepane, and toxic enzymes such as phospholipase A2, have been reported in predatory venoms. However, the detailed composition and molecular targets of predatory venoms are largely unknown. In contrast, recent research into blood-feeding heteropterans has revealed the structure and function of many protein and non-protein components that facilitate acquisition of blood meals.
    [Show full text]
  • Laboratory of Animal Physiology, Graduate School of Science, Osaka
    Laboratory of Animal Physiology, Graduate School of Science, Osaka City University 2004 • Goto, S.G. & Kimura, M.T. Heat‐shock‐responsive genes are not involved in the adult diapause of Drosophila triauraria. Gene 326: 117‐122. DOI: 10.1016/j.gene.2003.10.017 • Tachibana, S.‐I. & Numata, H. Effects of temperature and photoperiod on the termination of larval diapause in Lucilia sericata (Diptera: Calliphoridae). Zool. Sci. 21: 197‐202. DOI: 10.2108/zsj.21.197 • Tachibana, S.‐I. & Numata, H. (2004) Parental and direct effects of photoperiod and temperature on the induction of larval diapause in the blow fly Lucilia sericata. Physiol. Entomol. 29 (1): 39‐44. DOI:10.1111/j.0307‐6962.2004.0360.x • Musolin, D. L. & Numata, H. Late‐season induction of diapause in Nezara viridula and its effect on post‐diapause reproductive performance. Entomol. Exp. Appl. 111: 1‐6. DOI: 10.1111/j.0013‐8703.2004.00137.x • Teraoka, T. & Numata, H. Winter survival and oviposition before and after overwintering in a parasitoid wasp, Ooencyrtus nezarae Ishii (Hymenoptera: Encyrtidae). Entomol. Sci. 7: 103‐109. DOI: 10.1111/j.1479‐ 8298.2004.00055.x • Tachibana, S.‐I. & Numata, H. Maternal induction of larval diapause and its sensitive stage in the blow fly Lucilia sericata. Entomol. Sci. 7: 231‐235. DOI: 10.1111/j.1479‐8298.2004.00068.x • Hamanaka, Y., Numata, H. & Shiga, S. Morphology and electrophysiological properties of neurons projecting to the retrocerebral complex in the blow fly, Protophormia terraenovae. Cell Tissue Res. 318: 403‐418. DOI: 10.1007/s00441‐004‐0935‐1 • Numata, H.
    [Show full text]
  • Giant Water Bugs (Hemiptera: Heteroptera: Belostomatidae) of Israel
    ISRAEL JOURNAL OF ENTOMOLOGY, Vol. 48 (1), pp. 119–141 (30 December 2018) A review of the giant water bugs (Hemiptera: Heteroptera: Nepomorpha: Belostomatidae) of Israel TANYA NOVOSELSKY 1, PING -P ING CHEN 2 & NI C O NIESER 2 1The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: [email protected] 2Naturalis Biodiversity Centre, P.O. Box 9517, 2300 RA Leiden, The Netherlands. E-mail: [email protected], [email protected] ABSTRACT An updated and annotated check-list of Israeli giant water bugs (Belostomatidae) is provided. The recorded species belong in the subfamilies Belostomatinae and Lethocerinae. The following six species occur in the country: Appasus urinator urinator, Limnogeton fieberi, Lethocerus patruelis, Lethocerus cordofanus (new record), Hydrocyrius colombiae colombiae (new record) and Belostoma bifo ve­ olatum (new record). Belostoma bifoveolatum was previously known only from South America, so it is recorded in the Old World for the first time. An illustrated identification key is compiled for the Israeli Belostomatidae species. A list of exotic Belostomatidae material accumulated in the collection of the Steinhardt Museum of Natural History is provided. KEYWORDS: Hemiptera, Heteroptera, Nepomorpha, Belostomatidae, aquatic in sects, giant water bugs, identification key, male genitalia, Middle East, ta­ xonomy. INTRODUCTION The Belostomatidae is a family of aquatic heteropterans of almost world-wide distribution, although its greatest diversity is observed in the tropics (Merritt & Cummins 1996; Schuh & Slater 1995). The family includes the largest—up to 120 mm long—representatives of Heteroptera, which are known as the giant water bugs or electric-light bugs, because they are attracted to light sources at night (Ri- beiro et al.
    [Show full text]
  • Assessing Animal Welfare with Behavior: Onward with Caution
    Perspective Assessing Animal Welfare with Behavior: Onward with Caution Jason V. Watters *, Bethany L. Krebs and Caitlin L. Eschmann Wellness and Animal Behavior, San Francisco Zoological Society, San Francisco, CA 94132, USA; [email protected] (B.L.K.); [email protected] (C.L.E.) * Correspondence: [email protected] Abstract: An emphasis on ensuring animal welfare is growing in zoo and aquarium associations around the globe. This has led to a focus on measures of welfare outcomes for individual animals. Observations and interpretations of behavior are the most widely used outcome-based measures of animal welfare. They commonly serve as a diagnostic tool from which practitioners make animal welfare decisions and suggest treatments, yet errors in data collection and interpretation can lead to the potential for misdiagnosis. We describe the perils of incorrect welfare diagnoses and common mistakes in applying behavior-based tools. The missteps that can be made in behavioral assessment include mismatches between definitions of animal welfare and collected data, lack of alternative explanations, faulty logic, behavior interpreted out of context, murky assumptions, lack of behavior definitions, and poor justification for assigning a welfare value to a specific behavior. Misdiagnosing the welfare state of an animal has negative consequences. These include continued poor welfare states, inappropriate use of resources, lack of understanding of welfare mechanisms and the perpetuation of the previously mentioned faulty logic throughout the wider scientific community. We provide recommendations for assessing behavior-based welfare tools, and guidance for those developing Citation: Watters, J.V.; Krebs, B.L.; tools and interpreting data. Eschmann, C.L. Assessing Animal Welfare with Behavior: Onward with Keywords: behavioral diagnosis; zoo; behavioral diversity; anticipatory behavior; stereotypy; natural Caution.
    [Show full text]
  • Female Mate Choice Based Upon Male Motor Performance
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Eileen Hebets Publications Papers in the Biological Sciences 4-2010 Female mate choice based upon male motor performance John Byers University of Idaho, [email protected] Eileen Hebets University of Nebraska - Lincoln, [email protected] Jeffrey Podos University of Massachusetts, Amherst, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/bioscihebets Part of the Behavior and Ethology Commons Byers, John; Hebets, Eileen; and Podos, Jeffrey, "Female mate choice based upon male motor performance" (2010). Eileen Hebets Publications. 45. https://digitalcommons.unl.edu/bioscihebets/45 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Eileen Hebets Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Animal Behaviour 79:4 (April 2010), pp. 771–778; doi: 10.1016/j.anbehav.2010.01.009 Copyright © 2010 The Association for the Study of Animal Behaviour; published by Elsevier Ltd. Used by permission. Submitted October 12, 2009; revised November 19, 2009; accepted January 11, 2010; published online February 19, 2010. Female mate choice based upon male motor performance John Byers,1 Eileen Hebets,2 and Jeffrey Podos 3 1. Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3051, USA 2. School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, NE 68588, USA 3. Department of Biology, University of Massachusetts, Amherst, MA 01003, USA Corresponding author — J. Byers, email [email protected] Abstract Our goal in this essay is to review the hypothesis that females choose mates by the evaluation of male motor performance.
    [Show full text]
  • Adopt, Ignore, Or Kill? Male Poison Frogs Adjust Parental Decisions
    www.nature.com/scientificreports OPEN Adopt, ignore, or kill? Male poison frogs adjust parental decisions according to their territorial status Received: 22 September 2016 Eva Ringler1,2, Kristina Barbara Beck2, Steffen Weinlein2, Ludwig Huber1 & Max Ringler2,3 Accepted: 25 January 2017 Systematic infanticide of unrelated young has been reported in several animal taxa. Particular attention Published: 06 March 2017 has been given to carnivores and primates, where infanticide is a sexually selected strategy of males to gain increased access to female mating partners. Cannibals must ensure avoiding their own offspring and targeting only unrelated young. Therefore, decision rules are needed to mediate parental and cannibalistic behaviour. Here we show experimentally that male poison frogs adjust their parental responses – care or infanticide – towards unrelated clutches according to their territorial status. Male frogs followed the simple rule ‘care for any clutch’ inside their territory, but immediately switched to cannibalism when establishing a new territory. This demonstrates that simple cognitive rules can mediate complex behaviours such as parental care, and that care and cannibalism are antagonistically linked. Non-parental infanticide is mediated by territorial cues and presumably serves to prevent misdirected care in this poison frog. Our results thus prompt a re-consideration of evolutionary and causal aspects of parental decision making, by suggesting that selective infanticide of unrelated young may generally become adaptive when the risks and costs of misdirected care are high. Supportive behaviour towards one’s own offspring can increase the parent’s fitness directly, while detrimental behaviour towards unrelated progeny can increase individual fitness relative to others1. parents are expected to employ behavioural strategies that minimize the errors of accidentally adopting unrelated offspring or penalizing one’s own offspring, by following reliable decision rules across varying social, temporal and spatial contexts2.
    [Show full text]
  • Reproductive Strategies in Parasitic Wasps Ian Charles Wrighton Hardy
    1 Reproductive Strategies in Parasitic Wasps by Ian Charles Wrighton Hardy A thesis submitted for the degree of Doctor of Philosophy of the University of London and for the Diploma of Imperial College Department of Biology and Centre for Population Biology, Imperial College at Silwood Park, Ascot, Berkshire, SL5 7PY, U.K. 1991 (Submitted November 1990) 2 Abstract This thesis investigates the evolutionary ecology of reproduction by parasitoid wasps. In haplodiploid populations some females are constrained to produce sons only, theor­ etically, the optimal progeny sex ratio of unconstrained females may be influenced. Prevalences of constrained females are assessed in parasitoids of D ro so p h ila and from the literature. Constrained oviposition is generally rare, however, in some species constrained females are sufficiently common to affect unconstrained female’s sex ratios. Goniozus nephantidis females remain with their broods until the offspring pupate. G. nephantidis competes for hosts with conspecific and non-conspecific parasitoids. The costs of remaining seem at least partially offset by the prevention of oviposition by competing parasitoids. To predict clutch size, the relationship to the p e r c a p ita fitness of offspring must be known and also the parental trade-off between present and future reproduction. Since trade-offs are assumed unimportant in G. nephantidis clutch fitness should be maximised, this is achieved at the ’Lack clutch size’. Females adjust clutch size to host size. Manipulation of clutch size on standard hosts shows that developmental mortality is unaffected by clutch size, but larger females emerge from smaller clutches and have greater longevity and fecundity.
    [Show full text]
  • Giant Water Bugs, Electric Light Bugs, Lethocerus, Abedus, Belostoma (Insecta: Hemiptera: Belostomatidae)1 Paul M
    EENY-301 Giant Water Bugs, Electric Light Bugs, Lethocerus, Abedus, Belostoma (Insecta: Hemiptera: Belostomatidae)1 Paul M. Choate2 and other organisms they are able to capture. Powerful enzymes are injected into prey to kill them. Adults of Lethocerus are considered a delicacy in Asia, and are eaten both fresh and cooked. Figure 1. Dorsal view of an adult giant water bug, Lethocerus sp. Credits: P. M. Choate, University of Florida Introduction The heteropteran family Belostomatidae contains the giant water bugs. These large, predatory, aquatic insects have the largest body size among the Heteroptera. Adults of some South American species reach 4 inches in length. Individu- als occur in ponds and ditches where they suspend below the surface, respiring through two abdominal appendages which act as siphons. During mating season they fly from Figure 2. Ventral view of the head of an adult Lethocerus sp., a giant pond to pond or pool of water. It is during these flights that water bug, showing the beak. these insects fly to lights in large numbers, earning their Credits: P. M. Choate, University of Florida other common name, “electric light bugs”. Individuals are capable of inflicting a painful bite with their strong beak Life Cycle and may also pinch with their front legs. Individuals prey Eggs of Lethocerus are deposited above water on vegetation on aquatic insects, small fish, frogs, tadpoles, small birds, and other objects. Eggs of Abedus and Belostoma are glued 1. This document is EENY-301, one of a series of the Department of Entomology and Nematology, UF/IFAS Extension. Original publication date July 2003.
    [Show full text]
  • Arxiv:2002.12429V1 [Q-Bio.PE] 27 Feb 2020 Ilgclsga a Enoeo H Udmna Ujcsi Subjects Fundamental the of Owren One Imals
    A modeling study of predator–prey interaction propounding honest signals and cues∗ Ahd Mahmoud Al-Salman1, Joseph P´aez Ch´avez2,1, and Karunia Putra Wijaya1,∗ 1Mathematical Institute, University of Koblenz, 56070 Koblenz, Germany 2Center for Applied Dynamical Systems and Computational Methods (CADSCOM), Faculty of Natural Sciences and Mathematics, Escuela Superior Polit´ecnica del Litoral, P.O. Box 09-01-5863, Guayaquil, Ecuador ∗Corresponding author. Email: [email protected] Honest signals and cues have been observed as part of interspecific and intraspecific com- munication among animals. Recent theories suggest that existing signaling systems have evolved through natural selection imposed by predators. Honest signaling in the interspecific communication can provide insight into the evolution of anti-predation techniques. In this work, we introduce a deterministic three-stage, two-species predator–prey model, which modulates the impact of honest signals and cues on the interacting populations. The model is built from a set of first principles originated from signaling and social learning theory in which the response of predators to transmitted honest signals or cues is determined. The predators then use the signals to decide whether to pursue the attack or save their energy for an easier catch. Other members from the prey population that are not familiar with signaling their fitness observe and learn the technique. Our numerical bifurcation analysis indicates that increasing the predator’s search rate and the corresponding assimilation efficiency gives a journey from predator–prey abundance and scarcity, a stable transient cycle between persistence and near-extinction, a homoclinic orbit pointing towards extinction, and ultimately, a quasi-periodic orbit.
    [Show full text]
  • I ADAPTIVE RHETORIC
    ADAPTIVE RHETORIC: EVOLUTION, CULTURE, AND THE ART OF PERSUASION By ALEX CORTNEY PARRISH A dissertation submitted in partial fulfillment of The requirements for the degree of DOCTOR OF PHILOSOPY IN ENGLISH WASHINGTON STATE UNIVERSITY FEBRUARY 2012 © Copyright by ALEX CORTNEY PARRISH, 2012 All Rights Reserved i UMI Number: 3517426 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent on the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI 3517426 Copyright 2012 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 ACKNOWLEDGEMENT The author would like to thank the (non-exhaustive) list of people who have volunteered their time, expertise, effort, and money to help make this dissertation possible, and also to indemnify those acknowledged from any shortcomings this work may contain. Foremost, Kristin Arola was the most helpful, generous dissertation adviser that could have been hoped for, especially after having inherited the position from the incomparable Victor Villanueva. She was absolutely essential to this process, and her help is greatly appreciated. Also greatly appreciated is the help of my other committee members, including the woman whose graduate course inspired further inquiry into consilient paradigms, Anne Stiles. Michelle Scalise-Sugiyama offered invaluable advice from an evolutionary psychologist’s perspective, and helped keep this dissertation on track from an ethological standpoint.
    [Show full text]
  • The Application of Animal Signaling Theory to Human Phenomena: Some Thoughts and Clari®Cations
    Biology and social life Biologie et vie sociale Lee Cronk The application of animal signaling theory to human phenomena: some thoughts and clari®cations Abstract. Animal signaling theory has recently become popular among anthropologists as a way to study human communication. One aspect of animal signaling theory, often known as costly signaling or handicap theory, has been used particularly often. This article makes four points regarding these developments: (1)signaling theory is broader than existing studies may make it seem; (2)costly signaling theory has roots in the social as well as the biological sciences; (3)not all honest signals are costly and not all costs borne by signalers serve to ensure honesty; and (4)hard-to-fake signals are favored when the interests of broad categories of signalers and receivers con¯ict but the interests of individual signalers and receivers converge. Key words. Costly signaling theory ± Costly signals ± Hard-to-fake signals ± Honest signals ± Receiver psychology ± Signaling theory ± Signals ReÂsumeÂ. La theÂorie des systeÁmes de signaux chez l'animal est reÂcemment devenue populaire parmi les anthropologues en tant qu'outil d'eÂtude de la communication humaine. L'un des aspects de cette theÂorie, souvent connu sous le nom de theÂorie des systeÁmes de signaux couÃteux, a eÂte le plus souvent utiliseÂ. Cet article tente de faire quatre points sur la question: (1)la theÂorie des systeÁmes de signaux chez l'animal est plus large que les eÂtudes actuelles peuvent le laisser croire; (2)la theÂorie des systeÁmes de signaux couÃteux prend ses racines dans les sciences sociales et les sciences biologiques; I should like to thank Carl Bergstrom, William Irons, Beth L.
    [Show full text]
  • Lecture 17 Notes: Anti-Predation Behavior
    9.20 M.I.T. 2013 Lecture #17 Anti-predator behavior 1 Scott ch 7, “Avoiding predation” 3. Many predators develop search images by perceptual learning. – Octopus and squid species can counter this ability. What do they do? – How is this related to mimicry as an evolutionary strategy? – Give an example of Batesian or Mullerian mimicry. p 147, 150-151 2 More than only changes in coloration: The “mimic octopus” • http://www.break.com/index/mimic-octopus-in- action-1945423 (Less than 2 min.) 3 Scott ch 7, “Avoiding predation” 3. Many predators develop search images by perceptual learning. – Octopus and squid species can counter this ability. What do they do? – How is this related to mimicry as an evolutionary strategy? – Give examples of Batesian and Mullerian mimicry. p 147, 150-151 4 Scott ch 7, “Avoiding predation” 3. Many predators develop search images by perceptual learning. Octopus and squid species can counter this ability. How? p 147 Related concept: Mimicry, pp 150-151: Mullerian mimicry—different unpalatable species look alike, e.g., different species of Vespid wasps. Batesian mimicry—A palatable species evolves so it looks like another species that is bad to eat, e.g., like a monarch butterfly. Digger wasps are avoided because they resemble the unpalatable Vespid wasps. 5 Vespid wasps: examples of two species Right is courtesy of kim fleming on Flickr. License CC BY-NC-SA. Left is courtesy of Scott Sherrill-Mix on Flickr. License CC BY-NC. The probability of any individual vespid wasp being eaten is reduced when any wasp of any of the vespids is eaten, thus, Mullerian mimicry has evolved.
    [Show full text]