Adopt, Ignore, Or Kill? Male Poison Frogs Adjust Parental Decisions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Venoms of Heteropteran Insects: a Treasure Trove of Diverse Pharmacological Toolkits
Review Venoms of Heteropteran Insects: A Treasure Trove of Diverse Pharmacological Toolkits Andrew A. Walker 1,*, Christiane Weirauch 2, Bryan G. Fry 3 and Glenn F. King 1 Received: 21 December 2015; Accepted: 26 January 2016; Published: 12 February 2016 Academic Editor: Jan Tytgat 1 Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; [email protected] (G.F.K.) 2 Department of Entomology, University of California, Riverside, CA 92521, USA; [email protected] (C.W.) 3 School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia; [email protected] (B.G.F.) * Correspondence: [email protected]; Tel.: +61-7-3346-2011 Abstract: The piercing-sucking mouthparts of the true bugs (Insecta: Hemiptera: Heteroptera) have allowed diversification from a plant-feeding ancestor into a wide range of trophic strategies that include predation and blood-feeding. Crucial to the success of each of these strategies is the injection of venom. Here we review the current state of knowledge with regard to heteropteran venoms. Predaceous species produce venoms that induce rapid paralysis and liquefaction. These venoms are powerfully insecticidal, and may cause paralysis or death when injected into vertebrates. Disulfide- rich peptides, bioactive phospholipids, small molecules such as N,N-dimethylaniline and 1,2,5- trithiepane, and toxic enzymes such as phospholipase A2, have been reported in predatory venoms. However, the detailed composition and molecular targets of predatory venoms are largely unknown. In contrast, recent research into blood-feeding heteropterans has revealed the structure and function of many protein and non-protein components that facilitate acquisition of blood meals. -
Laboratory of Animal Physiology, Graduate School of Science, Osaka
Laboratory of Animal Physiology, Graduate School of Science, Osaka City University 2004 • Goto, S.G. & Kimura, M.T. Heat‐shock‐responsive genes are not involved in the adult diapause of Drosophila triauraria. Gene 326: 117‐122. DOI: 10.1016/j.gene.2003.10.017 • Tachibana, S.‐I. & Numata, H. Effects of temperature and photoperiod on the termination of larval diapause in Lucilia sericata (Diptera: Calliphoridae). Zool. Sci. 21: 197‐202. DOI: 10.2108/zsj.21.197 • Tachibana, S.‐I. & Numata, H. (2004) Parental and direct effects of photoperiod and temperature on the induction of larval diapause in the blow fly Lucilia sericata. Physiol. Entomol. 29 (1): 39‐44. DOI:10.1111/j.0307‐6962.2004.0360.x • Musolin, D. L. & Numata, H. Late‐season induction of diapause in Nezara viridula and its effect on post‐diapause reproductive performance. Entomol. Exp. Appl. 111: 1‐6. DOI: 10.1111/j.0013‐8703.2004.00137.x • Teraoka, T. & Numata, H. Winter survival and oviposition before and after overwintering in a parasitoid wasp, Ooencyrtus nezarae Ishii (Hymenoptera: Encyrtidae). Entomol. Sci. 7: 103‐109. DOI: 10.1111/j.1479‐ 8298.2004.00055.x • Tachibana, S.‐I. & Numata, H. Maternal induction of larval diapause and its sensitive stage in the blow fly Lucilia sericata. Entomol. Sci. 7: 231‐235. DOI: 10.1111/j.1479‐8298.2004.00068.x • Hamanaka, Y., Numata, H. & Shiga, S. Morphology and electrophysiological properties of neurons projecting to the retrocerebral complex in the blow fly, Protophormia terraenovae. Cell Tissue Res. 318: 403‐418. DOI: 10.1007/s00441‐004‐0935‐1 • Numata, H. -
Giant Water Bugs (Hemiptera: Heteroptera: Belostomatidae) of Israel
ISRAEL JOURNAL OF ENTOMOLOGY, Vol. 48 (1), pp. 119–141 (30 December 2018) A review of the giant water bugs (Hemiptera: Heteroptera: Nepomorpha: Belostomatidae) of Israel TANYA NOVOSELSKY 1, PING -P ING CHEN 2 & NI C O NIESER 2 1The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: [email protected] 2Naturalis Biodiversity Centre, P.O. Box 9517, 2300 RA Leiden, The Netherlands. E-mail: [email protected], [email protected] ABSTRACT An updated and annotated check-list of Israeli giant water bugs (Belostomatidae) is provided. The recorded species belong in the subfamilies Belostomatinae and Lethocerinae. The following six species occur in the country: Appasus urinator urinator, Limnogeton fieberi, Lethocerus patruelis, Lethocerus cordofanus (new record), Hydrocyrius colombiae colombiae (new record) and Belostoma bifo ve olatum (new record). Belostoma bifoveolatum was previously known only from South America, so it is recorded in the Old World for the first time. An illustrated identification key is compiled for the Israeli Belostomatidae species. A list of exotic Belostomatidae material accumulated in the collection of the Steinhardt Museum of Natural History is provided. KEYWORDS: Hemiptera, Heteroptera, Nepomorpha, Belostomatidae, aquatic in sects, giant water bugs, identification key, male genitalia, Middle East, ta xonomy. INTRODUCTION The Belostomatidae is a family of aquatic heteropterans of almost world-wide distribution, although its greatest diversity is observed in the tropics (Merritt & Cummins 1996; Schuh & Slater 1995). The family includes the largest—up to 120 mm long—representatives of Heteroptera, which are known as the giant water bugs or electric-light bugs, because they are attracted to light sources at night (Ri- beiro et al. -
Reproductive Strategies in Parasitic Wasps Ian Charles Wrighton Hardy
1 Reproductive Strategies in Parasitic Wasps by Ian Charles Wrighton Hardy A thesis submitted for the degree of Doctor of Philosophy of the University of London and for the Diploma of Imperial College Department of Biology and Centre for Population Biology, Imperial College at Silwood Park, Ascot, Berkshire, SL5 7PY, U.K. 1991 (Submitted November 1990) 2 Abstract This thesis investigates the evolutionary ecology of reproduction by parasitoid wasps. In haplodiploid populations some females are constrained to produce sons only, theor etically, the optimal progeny sex ratio of unconstrained females may be influenced. Prevalences of constrained females are assessed in parasitoids of D ro so p h ila and from the literature. Constrained oviposition is generally rare, however, in some species constrained females are sufficiently common to affect unconstrained female’s sex ratios. Goniozus nephantidis females remain with their broods until the offspring pupate. G. nephantidis competes for hosts with conspecific and non-conspecific parasitoids. The costs of remaining seem at least partially offset by the prevention of oviposition by competing parasitoids. To predict clutch size, the relationship to the p e r c a p ita fitness of offspring must be known and also the parental trade-off between present and future reproduction. Since trade-offs are assumed unimportant in G. nephantidis clutch fitness should be maximised, this is achieved at the ’Lack clutch size’. Females adjust clutch size to host size. Manipulation of clutch size on standard hosts shows that developmental mortality is unaffected by clutch size, but larger females emerge from smaller clutches and have greater longevity and fecundity. -
Giant Water Bugs, Electric Light Bugs, Lethocerus, Abedus, Belostoma (Insecta: Hemiptera: Belostomatidae)1 Paul M
EENY-301 Giant Water Bugs, Electric Light Bugs, Lethocerus, Abedus, Belostoma (Insecta: Hemiptera: Belostomatidae)1 Paul M. Choate2 and other organisms they are able to capture. Powerful enzymes are injected into prey to kill them. Adults of Lethocerus are considered a delicacy in Asia, and are eaten both fresh and cooked. Figure 1. Dorsal view of an adult giant water bug, Lethocerus sp. Credits: P. M. Choate, University of Florida Introduction The heteropteran family Belostomatidae contains the giant water bugs. These large, predatory, aquatic insects have the largest body size among the Heteroptera. Adults of some South American species reach 4 inches in length. Individu- als occur in ponds and ditches where they suspend below the surface, respiring through two abdominal appendages which act as siphons. During mating season they fly from Figure 2. Ventral view of the head of an adult Lethocerus sp., a giant pond to pond or pool of water. It is during these flights that water bug, showing the beak. these insects fly to lights in large numbers, earning their Credits: P. M. Choate, University of Florida other common name, “electric light bugs”. Individuals are capable of inflicting a painful bite with their strong beak Life Cycle and may also pinch with their front legs. Individuals prey Eggs of Lethocerus are deposited above water on vegetation on aquatic insects, small fish, frogs, tadpoles, small birds, and other objects. Eggs of Abedus and Belostoma are glued 1. This document is EENY-301, one of a series of the Department of Entomology and Nematology, UF/IFAS Extension. Original publication date July 2003. -
Field Observation of an Adult Lesser Treefrog Dendropsophus Minutus (Anura: Hylidae) Being Consumed by a Neotropical Lethocerus Sp
SCIENTIFIC NOTE 2014 | VOLUME 31 | PAGES 37-39 Field observation of an adult Lesser treefrog Dendropsophus minutus (Anura: Hylidae) being consumed by a neotropical Lethocerus sp. (Hemiptera: Belostomatidae) nymph Ricardo Rocha1,2,3*, Thaís Almeida4, Adrià López-Baucells1,3,5 1. Centro de Biologia Ambiental, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Bloco C2, Campo Grande, 1749-016 Lisboa, Portugal 2. Metapopulation Research Group, Faculty of Biosciences, University of Helsinki, PO Box 65 (Viikinkaari 1), FI-00014 Helsinki, Finland 3. Biological Dynamics of Forest Fragments Project, National Institute for Amazonian Research (INPA) and Smithsonian Tropical Research Institute, C.P. 478, Manaus, AM 69011-970, Brazil 4. Laboratório de Citotaxonomia e Insetos Aquáticos, Coordenação de Pesquisas em Entomologia – CPEN/Instituto Nacional de Pesquisas da Amazônia – INPA, Av. André Araújo, 2936, Aleixo, CEP 69060-001, Manaus, AM, Brazil. 5. Museu de Ciències Naturals de Granollers, Àrea Investigació en Quiròpters, Av. Francesc Macià 51, 08402 Granollers, Catalonia, Spain Amphibians constitute important items in the diet of many predators. Giant water bugs have been reported to feed on several species of amphibians; however, there is still a poor understanding of the complexity of their food webs. Here, we report the consumption of an adult Dendropsophus minutus (Anura: Hylidae) by a Lethocerus sp. (Hemiptera: Belostomatidae) nymph, in Central Amazon, Brazil. This represents the first observation of thropic interaction between Lethocerus sp. and D. minutus and the first report of a neotropical Lethocerus sp. nymph feeding upon an adult vertebrate. Giant water bugs of the family Belostomatidae are widely distributed throughout the world’s tropical and temperate regions (Hungerford, 1919) and are rapid colonizers of newly formed temporary shallow water environ- ments where they are often found in relatively high densities (Williams, 2006). -
Scientific Note Predation on Eupemphix Nattereri Steindachner
Scientific Note Predation on Eupemphix nattereri Steindachner, 1863 (Anura, Leiuperidae) by giant water bugs, Lethocerus delpontei De Carlo, 1930 and L. annulipes (Herrich-Schäffer, 1845) (Hemiptera, Belostomatidae) 1 1 VINICIUS GUERRA BATISTA , IGOR DE PAIVA AFFONSO , 1 1,2 ROGÉRIO FERNANDES HANISCH & FABRÍCIO HIROIUKI ODA 1Universidade Estadual de Maringá, Nupélia - Núcleo de Pesquisas em Limnologia, Ictiologia e Aqüicultura, Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Bloco G-90, Av. Colombo, 5790, CEP 87020-900. Maringá, PR, Brazil. 2Universidade Estadual de Maringá, Nupélia - Núcleo de Pesquisas em Limnologia, Ictiologia e Aqüicultura Laboratório de Ictioparasitologia, Maringá, PR, Brazil. Corresponding author: [email protected] Abstract. Here we report two cases of predation on Eupemphix nattereri by Lethocerus delpontei and L. annulipes in farm ponds. Key words: adult males, aquatic insect, amphibians, preys Resumo. Predação de Eupemphix nattereri Steindachner, 1863 (Anura, Leiuperidae) por Lethocerus delpontei De Carlo, 1930 e L. annulipes (Herrich-Schäffer, 1845) (Heteroptera, Belostomatidae). Registramos dois casos de predação de Eupemphix nattereri por Lethocerus delpontei e L. annulipes em poças de paisagens agrícolas. Palavras chave: machos adultos, inseto aquático, anfíbios, presas Eupemphix nattereri is a medium to large- variety of vertebrates (Toledo et al. 2007), sized frog (29.8 to 50.6 mm; Nascimento et al. invertebrates (Toledo 2005), and even carnivorous 2005), widely distributed -
Oflethoceruscolossjcus
1T. eugenii en México Folia Entorno/. Mex., 42(2): 161-168 (2003) · ows. Media Cybemetics, Silver Spring, . A WHARTON. 2000. Toxoneuron (Hy mdae): designation of a neotype for its ON THE REPRODUCTIVE BEHAVIOR AND POPULATION ECOLOGY and discovery of a possible senior syno ow species, T. nigriceps. Annals of the OFLETHOCERUSCOLOSSJCUSSTÁL tety ofAmerica, 93(2): 208-219 . (HETEROPTERA: BELOSTOMATIDAE) .enópteros parasitoides de Apion spp. honmdea: Apionidae) en Tepoztlán Mo- ológica Mexicana, 63: 39-46. ' R. A WHARTON 1997. Morphology and RüGELIO MACÍAS-ORDÓÑEZ 9-37. In: Wharton, R. A, P M. Marsh eds.). Manual ofthe New World Genera nidae (Hymenoptera). lntemational So Departamento de Ecología de Comportamiento Animal, Instituto de Ecología, A.C., Apartado Postal 63, Xalapa, Veracruz ists. Special publication l. 91000, México. Correo electrónico: <[email protected]> UDDLESTON. 1991. Classification and wasps. Handbooksfor the Identification (11): 1-126. Macías-Ordóñez, R. 2003. On the reproductive behavior and population ecology of Lethocerus colossicus Sta! (Heteroptera: nidae. Chapter 12.2, pp. 431-463,/n: Belostomatidae). Folia Enlomo/. Mex., 42(2): 161-168. ~u!~ [eds.]. The Hymenoptera ofCos vemty Press, Oxford. ABSTRACT. The reproductive behavior and dispersa! patterns of Lelhocerus colossicus (Heteroptera: Belostomatidae) were 0: Braconidae 2: Helconinae [sic], Ca studied in the field and in the laboratory, in Puerto Morelos, S tate ofQuintana Roo, in the Yucatán Península. A female skewed mae, Triaspinae./n: Ferriere, Ch. and sex ratio and sexual dimorphism were found in field populations Adults migrate short after the final molt, and apparently remain .) Hymenopterorum Catalogus (nov. in the same pond throughout their lives once they ha ve started to breed. -
Integrated Biodiversity Management in Paddy Fields
Integrated Pest Management Reviews 5: 175–183, 2000. © 2001 Kluwer Academic Publishers. Printed in the Netherlands. Integrated biodiversity management in paddy fields: shift of paradigm from IPM toward IBM Keizi Kiritani National Institute of Agro-Environmental Sciences, 3-1-1 Kannondai, Tsukuba 305-8604, Japan (e-mail kiritani@niaes affrc.go.jp) Accepted in final form 13 September 2000 Key words: paddy agroecosystem, minor insects, non-target insects, conservation, agroecology, aquatic insects Abstract The insect fauna in paddy fields is composed of resident, migratory and aquatic species each corresponding to the continuous cropping of rice in the same field, harvesting rice as an annual crop, and originating from still water habitats in wetlands. Although IPM is becoming popular in the control of rice pests, those ‘minor’ insects and aquatic insects that have no direct economic impact on rice production have received little attention. Consequently, some of them are in danger of extinction requiring conservation. A new concept, ‘Integrated biodiversity management (IBM)’, is proposed under which IPM and conservation are reconciled and made compatible with each other. As an operational concept in agroecology, premises for implementing IBM are suggested. Introduction water scorpions, Laccotrephes japonensis and Ranatra chinensis, dytiscid beetles, hydrophilid beetles, and The beginning of rice cultivation dates back 3000 years fireflies are known to reproduce in paddy fields. in Japan. In Asia, 80% of the rice land is irrigated In Japan, the endemic damage caused by the rice under monsoon climate. The paddy agroecosystem, borers, Chilo suppressalis and Scirpophaga incertulas, a man-modified environment, is an integrated water- and the sudden occurrence of epidemics of the dependent system, which may include humans, rice brown planthopper, Nilaparvata lugens, were the major plant, animals and plants, and crops other than rice causes of loss in rice yield during the pre-World War II (Kiritani 1979). -
Short Communication Mass Mortality of Giant Water Bug Lethocerus
Rec. zool. Surv. India: Vol. 121(2)/315–317, 2021 ISSN (Online) : 2581-8686 DOI: 10.26515/rzsi/v121/i2/2021/152535 ISSN (Print) : 0375-1511 Short Communication Mass mortality of Giant Water Bug Lethocerus indicus (Lepeletiler & Serville, 1825) [Heteroptera: Belostomatidae] in Thiruvananthapuram, Kerala State, South India Sainudeen Pattazhy1 and Muhamed Jafer Palot2* 1Department of Zoology, University of Kerala, Kariavattom Post, Thiruvananthapuram - 695581, Kerala, India; Email: [email protected] 2Zoological Survey of India, Western Regional Centre, Vidhya Nagar, PCNT Post Pune - 411044, Maharashtra, India; Email: [email protected] Abstract Mass mortality of Giant Water Bug, Lethocerus indicus India from Thiruvananthpuram district, Kerala. As many as 700 specimens were found dead around the locality. The high (Lepeletiler & Serville, 1825) was reported for the first time from mass movement and the mortality, are discussed in the present paper. intensity of floodlight, the less availability of the water in the vicinity and the lunar phase are the possible reasons for the Keywords: Giant Water Bug, Kerala, Lethocerus indicus, Mass Mortality Introduction Pradesh, Jammu & Kashmir, Karnataka, Kerala, Madhya Pradesh, Manipur, Maharashtra, Meghalaya, Mizoram, On 24th February, 2020, at around 5.30am, while walking Orissa, Pondicherry, Punjab, Rajasthan, Tamil Nadu, along the International Green Field Stadium, Kariavattom, Tripura, Uttar Pradesh and West Bengal (Thirumalai, Thiruvananthapuram, we (SP) came across unusually large 2007; Nesemann & Sharma, 2013). The other two species number of giant water bugs underneath the flood light. are Lethocerus deyrollei (Vuillefroy, 1864) and Lethocerus Most of the bugs were dead or partially in live condition patruelis (Stal, 1854) known from north and north eastern (Figure 1). -
The Wildlife in Japan
T he 日本 Wildlife in の J apan 自然 The Wildlife in Japan Published in March 2015 Chuo-godochosha No. 5, 1-2-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-8975, Japan http://www.env.go.jp/ © Ministry of the Environment 2015 This brochure is printed on recycled paper. Edited and published by : Wildlife Division, Nature Conservation Bureau Editorial work : Japan Wildlife Research Center Design : artpost inc. Photos provided by : Hitoshi Imai, Harumi Iida, Kazuo Unno, Yoshiteru Eguchi, Katsumi Kawasaki, Kenji Kitaura, Masahide Kubota, Kano Koide, Yasumasa Kobayashi, Atsushi Sakurai, Yasushi Sugawara, Takao Sugeta, Hiroshi Takahashi, Tomonari Nakajima, Kenji Numata, Fumihiko Ban, Shinichi Hirasawa, Yukio Horiguchi, Misaki Mizukami, Kazuo Minato, Katsuhiko Mori, Noriaki Yamamoto, Shiro Yabe, Hisashi Yokota, Pika Fan Club and Society of Scientific Photography(SSP) 1 1 Flora of Japan The flora of Japan can be roughly classified into the following four categories based on the differences in temperature and precipitation: alpine zone, subalpine zone, summer-green broad-leaved forest zone and evergreen broad-leaved forest zone. The alpine zone is dominated by stone pines, the subalpine zone is dominated by spruces, and evergreen needle-leaved trees, the summer-green broad-leaved forest zone is dominated by deciduous broad-leaved trees such as Japanese beeches and Japanese oaks, and the evergreen broad-leaved forest zone is dominated by evergreen broad-leaved trees such as Yabutsubaki (Camellia japonica) and Shii (Castanopsis spp.) The Japanese archipelago is long, stretching from north to south, and has mountain ranges exceeding 3,000 m ; therefore, its vegetation changes both horizontally (with latitude) and vertically (with altitude). -
Hemiptera: Belostomatidae) Turning Behavior?
Montclair State University Montclair State University Digital Commons Theses, Dissertations and Culminating Projects 5-2020 Do Chemical Cues Influence Giant aterbugW Belostoma flumineum Say (Hemiptera: Belostomatidae) Turning Behavior? Olivia Paradis Follow this and additional works at: https://digitalcommons.montclair.edu/etd Part of the Biology Commons Abstract Lateral biases and alternation of directional turns influence impact navigation, foraging, and predator avoidance in diverse animal species. Extended alternating turn successions are known to reflect anti-predation escape behaviors of organisms in complex environments. This study examined the effects of chemosensory cues from bluegill sunfish, Lepomis macrochirus, red-eared slider turtles Trachemys scripta elegans, American bullfrogs, Rana catesbeiana, and conspecific giant waterbugs on turning behaviors of Belostoma flumineum in a multiple T-maze. As a study population, B. flumineum were found to perform significantly different alternating turn behaviors than those predicted, but overall were not influenced by any one specific treatment. When compared by sex, males and females were found to make significantly different alternating turn responses when exposed to bluegill sunfish cues, reflecting possible sex-dependent cue reception and/or perception. As seen in prior turn- behavioral studies, a left-turn bias was expressed throughout the entire experiment, by both males and females, across all treatments except for conspecific waters, another example of cue association, however, these observations were only noticeably important, but not statistically significant. While overall female lateralized (right- and left-) frequencies were noticeably different from expected frequencies, only overall alternating turn frequencies of males throughout the entire study were found to significantly differ from those expected. This may be explained by the distinct inverse lateralized turn frequencies observed between conspecific and slider responses.