Stem Cells and Tissue Engineering Applications of the Genitourinary Tract

Total Page:16

File Type:pdf, Size:1020Kb

Stem Cells and Tissue Engineering Applications of the Genitourinary Tract 0031-3998/08/6305-0472 Vol. 63, No. 5, 2008 PEDIATRIC RESEARCH Printed in U.S.A. Copyright © 2008 International Pediatric Research Foundation, Inc. Stem Cells and Tissue Engineering Applications of the Genitourinary Tract JONATHAN L. YAMZON, PAUL KOKOROWSKI, AND CHESTER J. KOH Department of Urology [J.Y., P.K.], University of Southern California, Keck School of Medicine, Los Angeles, California 90033; Childrens Hospital Los Angeles, Division of Pediatric Urology [C.J.K.], University of Southern California, Keck School of Medicine, Los Angeles, California 90027 ABSTRACT: The field of regenerative medicine continues to make native tissue rehabilitation, or by development of functional substantial advancements in therapeutic strategies addressing uro- reproducible tissue substitutes with minimal immunogenicity logic diseases. Tissue engineering borrows principles from the fields and which resemble native tissues in biologic and mechanical of cell biology, materials science, transplantation and engineering in properties. an effort to repair or replace damaged tissues. This review is intended When autologous tissue is lacking, other possible sources of to provide a current overview of the use of stem cells and tissue tissue include homologous tissues from cadavers or donors, engineering technologies specifically in the treatment of genitouri- nary diseases. Current themes in the field include the use of adult heterologous tissues from animals (bovine), and synthetic stem cells seeded onto biocompatible resorbable matrices for implan- materials (silicone, polyurethane, Teflon, poly(lactic acid), tation as tissue substitutes, which is conducive to host tissue in- poly(glycolic acid), and poly(lactic-co-glycolic acid)), which growth. Injection therapy of adult stem cells for organ rehabilitation are often referred to as alloplastic materials. The use of is also making strong headway toward the restoration of organ allogeneic tissues, such as with organ transplantation, can be structure and function. With new data describing the molecular limited by the need for tissue matching, donor organ avail- mechanisms for differentiation, work has begun on targeting tissues ability, and lifelong immunosuppression. On the other hand, for regeneration by genetic modification methods. Promising labora- biocompatible and structurally similar alloplastic materials tory discoveries portend the emergence of a new class of clinical can be used for prosthetics and other clinical devices. How- therapies for regenerative medicine applications in the genitourinary tract. (Pediatr Res 63: 472–477, 2008) ever, functional recovery to the caliber of the original tissue is seldom achieved. TE offers the potential to circumvent many of these difficulties. he field of tissue engineering (TE) has evolved substan- TE approaches can be classified into two categories: acel- Ttially over the past four decades into an international area lular and cellular techniques. Acellular techniques entail the of science that is being investigated in virtually every country use of acellular matrices as a scaffold for organ regeneration, in the world. Early advances in the field were the result of requiring the host organ to incorporate new tissue onto the groundbreaking discoveries of the pioneers in the regenerative scaffold with proper layering and orientation. Collagen-rich medicine field including Joseph and Charles Vacanti, Robert matrices can be completely synthesized in the laboratory for Langer, and Eugene Bell. In fact, it was Joseph and Charles subsequent cellular in-growth. These matrices slowly degrade Vacanti who first used the term “Tissue Engineering” (1). They and eventually are replaced by host extracellular matrix in- eloquently described the interplay required by cells, scaffolds, vested with in-growing cells. Scaffolds can also be harvested and added growth factors in the microenvironment of mechano- from other autologous, allogeneic, or xenogenic tissues, and transducing bioreactors to develop cellular constructs that could then processed by chemical and mechanical means to remove ultimately serve as functional tissues suitable for transplantation. cellular components for eventual implantation (8–10). The field of TE has exponentially grown in size such that it now Common cellular techniques employ the use of donor cells, claims its own international academic society, Tissue Engineer- which are processed before implantation. These cells can be ing Regenerative Medicine International Society, which the ex- directly injected into the host, or expanded and processed in panding community of scientists and physicians in the field have culture, seeded onto a support matrix or scaffold, and then steadfastly supported (1–4). As of today, the principles of TE are implanted into the recipient. Tissue or cell sources can vary being applied widely to create new tissue constructs in virtually from autologous, allogenic (same species, different individ- every organ system. ual), or heterologous (such as bovine), with the most preferred In general, the field of TE combines the principles of cell source being autologous so as to eliminate the risk of rejection biology, materials science, and engineering to devise thera- and associated complications of immunosuppression. For au- peutic strategies in various acquired and congenital diseases tologous sources, a tissue sample can be obtained from the (5–7). From a clinical perspective, the goal of regenerative patient by biopsy (10–15). Improvements in culture tech- medicine efforts is to restore end organ function, either by Abbreviations: hESC, human embryonic stem cells; NIH, National Insti- Received October 31, 2007; accepted January 4, 2008. Correspondence: Chester J. Koh, M.D., Childrens Hospital Los Angeles, 4650 Sunset tutes of Health; SIS, small intestine submucosa; SUI, stress urinary inconti- Boulevard, Mailstop 114, Los Angeles, CA 90027; e-mail: [email protected] nence; TE, tissue engineering 472 STEM CELLS AND ENGINEERING IN UROLOGY 473 niques have enabled the isolation of individual cell types from these cells is challenging due to their propensity to form these tissue biopsies, which are then selectively expanded to teratomas in vivo (24,25). amounts sufficient for implantation (6,9,16,17). Similar to The harvest of hESC requires the destruction of human acellular techniques, the scaffold material must be biocompat- embryos and has raised significant ethical and political con- ible, bioresorbable, and illicit minimal immunogenicity while cerns. In August 2001, the United States federal government expanded cellular components integrate into the local envi- ordered that only previously generated human embryonic stem ronment. These scaffold structures may be seeded or impreg- cell lines could be used in research supported by federal nated with growth factors and other cell signaling peptides to funding. Although over 70 existing cell lines met this criteria, regulate cell activity and mimic the microenvironment provided the National Institutes of Health reported that only 11 were by the extracellular matrix. Ideal scaffolds should also provide the available, most of which were grown on mouse feeder cells appropriate three-dimensional lattice where cell-adhesion may and were at one point in time potentially exposed to murine occur while performing the mechanical functions of the damaged viruses or proteins (26). These barriers to the development of tissues. Thus, the final steps of the regenerative process occur in hESC technologies have prompted the search for alternative vivo (18–20). stem cell sources including fetal tissues, parthenogenesis, Over the past two decades, research in TE techniques and amniotic fluid-derived stem cells, somatic cell nuclear trans- stem cell tissue sources has led to potentially viable replace- fer, and adult multipotent stem cells. These are briefly men- ments for a variety of genitourinary tissues including ureter, tioned below, and extensive discussion on these topics can be bladder, prostate, urethra, external urinary sphinctor, and pe- found elsewhere (27–35). nile structures. Multipotent stem cells are harvested from adult organs or developing tissues, thus avoiding any controversy surrounding STEM CELLS hESC. They can be extracted from many different tissues including bone marrow, striated muscle, fat, skin, testicle, and Many current strategies for TE rely on the presence of autol- synovial membrane. Adult-derived stem cells are gaining ogous tissue samples from which specific cells types can be popularity as researchers are finding a more extensive differ- isolated, expanded, and seeded onto a matrix for subsequent entiation potential than previously thought and were fre- reimplantation. However, in instances of severe end organ failure quently used in the studies below (29–31). or neoplasia, retrieval of normal cells is often problematic. The In addition, several multipotent or pluripotent stem cell ability of stem cells to expand and differentiate into desired tissue populations derived from fetal tissues have been shown to types makes them an attractive alternative cell source for regen- produce a number of lineages including bone marrow, hepatic, erative medicine applications. Novel therapeutic strategies are and neural tissues. Fetal mesenchymal stem cells do not emerging and utilize stem cells as the primary cellular component express human leukocyte antigen class II antigens and are of various TE constructs. thought to exist in a preimmune state. Both differentiated and Stem cells are
Recommended publications
  • Regenerative Robotics
    This is a repository copy of Regenerative robotics. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/147130/ Version: Published Version Article: Damian, D. orcid.org/0000-0002-0595-0182 (2019) Regenerative robotics. Birth Defects Research. ISSN 2472-1727 https://doi.org/10.1002/bdr2.1533 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Received: 15 May 2019 Accepted: 19 May 2019 DOI: 10.1002/bdr2.1533 REVIEW ARTICLE Regenerative robotics Dana D. Damian Department of Automatic Control and Systems Engineering, University of Abstract Sheffield, Sheffield, United Kingdom Congenital diseases requiring reconstruction of parts of the gastrointestinal tract, skin, or bone are a challenge to alleviate especially in rapidly growing children. Correspondence Dana D. Damian, Department of Automatic Novel technologies may be the answer. This article presents the state-of-art in regen- Control and Systems Engineering, erative robotic technologies, which are technologies that assist tissues and organs to University of Sheffield, Sheffield, United regenerate using sensing and mechanotherapeutical capabilities.
    [Show full text]
  • A Blueprint for Engineering Cell Fate: Current Technologies to Reprogram Cell Identity
    Cell Research (2013) 23:33-48. © 2013 IBCB, SIBS, CAS All rights reserved 1001-0602/13 $ 32.00 npg REVIEW www.nature.com/cr A blueprint for engineering cell fate: current technologies to reprogram cell identity Samantha A Morris1, 2, 3, George Q Daley1, 2, 3 1Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Manton Center for Orphan Disease Re- search, Howard Hughes Medical Institute, Children’s Hospital Boston and Dana Farber Cancer Institute, Boston, MA, USA; 2De- partment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; 3Harvard Stem Cell Institute, Cambridge, MA, USA Human diseases such as heart failure, diabetes, neurodegenerative disorders, and many others result from the deficiency or dysfunction of critical cell types. Strategies for therapeutic tissue repair or regeneration require the in vitro manufacture of clinically relevant quantities of defined cell types. In addition to transplantation therapy, the generation of otherwise inaccessible cells also permits disease modeling, toxicology testing and drug discovery in vitro. In this review, we discuss current strategies to manipulate the identity of abundant and accessible cells by dif- ferentiation from an induced pluripotent state or direct conversion between differentiated states. We contrast these approaches with recent advances employing partial reprogramming to facilitate lineage switching, and discuss the mechanisms underlying the engineering of cell fate. Finally, we address the current limitations of the field and how the resulting cell types can be assessed to ensure the production of medically relevant populations. Keywords: reprogramming; direct fate conversion; directed differentiation Cell Research (2013) 23:33-48. doi:10.1038/cr.2013.1; published online 1 January 2013 Introduction could only transition to progressively more differentiated states, with de-differentiation seen only in cases of tissue Cell differentiation has long been thought to be a uni- pathology (e.g., metaplasia or malignancy).
    [Show full text]
  • Project Final Report
    PROJECT FINAL REPORT Grant Agreement number: 229289 Project acronym: NANOII Project title: Nanoscopically-guided induction and expansion of regulatory hematopoietic cells to treat autoimmune and inflammatory processes Funding Scheme: Period covered: from month 1 to month 48 Name of the scientific representative of the project's co-ordinator, Title and Organisation: Prof. Dr. Joachim P. Spatz, Max-Planck-Institute, Stuttgart Tel: +49 711 689-3611 Fax: +49 711 689-3612 E-mail: [email protected] Project website address: http://www.mf.mpg.de/NanoII 1 4.1 Final publishable summary report Executive Summary NanoII Nanoscopically-guided induction and expansion of regulatory hematopoietic cells to treat autoimmune and inflammatory processes NanoII has been a colaborative project within the EU 7th framework program for research on Nanoscopically-guided induction and expansion of regulatory hematopoietic cells to treat autoimmune and inflammatory processes. This project has been developing novel approaches for directing the differentiaton, proliferation and tissue tropism of specific hematopoietic lineages, using micro-and nanofabricated cell chips. We are using advanced nanofabricated surfaces functionalized with specific biomolecules, and microfluidic cell chips to specify and expand regulatory immune cell for treating of important inflammatory and autoimmune disorders in an organ and antigen-specific manner. A new chip system creates ex vivo microenvironments mimicking in vivo cell-cell-interactions and molecular signals involved in differentiation and proliferation of hematopoietic cells. Key element of the project is the development of a novel high-throughput microscopy system for the identification of optimal conditions. The educated cells are employed in in-vivo experiments in new mouse models.
    [Show full text]
  • Directed Differentiation of Human Embryonic Stem Cells
    DirectedDirected differentiationdifferentiation ofof humanhuman embryonicembryonic stemstem cellscells TECAN Symposium 2008 Biologics - From Benchtop to Production Wednesday 17 September 2008 Andrew Elefanty Embryonic Stem Cell Differentiation Laboratory, MISCL ES cells as a system to dissect development hES ES cells derived from inner cell mass of preimplantation blastocyst Functionally similar, patient specific cells generated by reprogramming adult or fetal cells: • Somatic cell nuclear transfer (SCNT) - oocyte cytoplasm reprograms somatic cell • Induced pluripotential stem cell (iPS) – reprogramming is initiated by genes and/or growth factors introduced into adult cells ES cells can differentiate into all the cell types in the body blood cells differentiation liver heart muscle pancreas ES cell line nerve In vitro differentiation of embryonic stem cells provides an avenue to • study early development • generate tissue specific stem cells and mature end cells to study disease to screen drugs/therapeutic agents for cell therapies Directed differentiation of ES cells Recapitulate embryonic development in vitro to derive lineage precursors hES Mesendoderm Ectoderm Mesoderm Endoderm Factors that play key roles in embryogenesis also direct differentiation of ES cells hES BMP/Activin/Wnt/FGF Mesendoderm FGF/noggin BMP/Wnt Activin Ectoderm Mesoderm Endoderm Elements that facilitate directed differentiation of HESCs in vitro •large, uniform populations of undifferentiated HESCs •robust, reproducible differentiation protocol incorporating a
    [Show full text]
  • Chemical Engineering (CH E) 1
    Chemical Engineering (CH E) 1 CH E 210: Material and Energy Balances CHEMICAL ENGINEERING (CH (3-0) Cr. 3. F.S. E) Prereq: Chem 178, Math 166, CH E 160 Introduction to chemical processes. Physical behavior of gases, liquids, Courses primarily for undergraduates: and solids. Application of material and energy balances to chemical engineering equipment and processes. CH E 104: Chemical Engineering Learning Community Cr. R. F. CH E 220: Introduction to Biomedical Engineering Prereq: Enrollment in Chemical Engineering Learning Team (Cross-listed with B M E). (3-0) Cr. 3. S. (1-0) Curriculum in career planning and academic course support for Prereq: BIOL 212, ENGR 160 or equiv, MATH 166, CHEM 167 or CHEM 178, Freshmen learning team. PHYS 222 Engineering analysis of basic biology and engineering problems CH E 160: Chemical Engineering Problems with Computer Applications associated with living systems and health care delivery. The course Laboratory will illustrate biomedical engineering applications in such areas as: (2-2) Cr. 3. F.S. biotechnology, biomechanics, biomaterials and tissue engineering, and Prereq: MATH 143 or satisfactory scores on mathematics placement biosignal and image processing, and will introduce the basic life sciences examinations; credit or enrollment in MATH 165 and engineering concepts associated with these topics. Formulation and solution of engineering problems. Significant figures. Use of SI units. Graphing and curve-fitting. Flowcharting. Introduction CH E 310: Computational Methods in Chemical Engineering to material balances, engineering economics, and design. Use of (3-0) Cr. 3. F.S. spreadsheet programs to solve and present engineering problems. Prereq: CH E 160, CH E 205, CH E 210, MATH 265 Solution of engineering problems using computer programming Numerical methods for solving systems of linear and nonlinear equations, languages.
    [Show full text]
  • Gene Technology in Tissue Engineering
    American Journal of Biochemistry and Biotechnology 2 (2): 66-72, 2006 ISSN 1553-3468 © 2006 Science Publications Gene Technology in Tissue Engineering 1Xiao-Dan Sun and 2In-Seop Lee 1Laboratory of Advanced Materials, Department of Materials Science & Engineering, Tsinghua University, Beijing 100084, China 2Institute of Physics & Applied Physics, and Atomic-scale Surface Science Research Center, Yonsei University, Seoul 120-749, Korea Abstract: Scaffold, cells and signaling factors are regarded as the three essential components in tissue engineering. With the development of molecular and cell biology, gene technology is beginning to show a promising position in tissue engineering as it can influence these essential components at DNA-level. By introducing plasmid DNA or genes encoding certain signaling factors (growth factors/cytokines) into the cells, required growth factors/cytokines can be expressed and secreted spatially and temporally by the transfected cells, which will promote the differentiation, proliferation and organization of the cells on the scaffold. Protein-based scaffolds which have specific structures can also be prepared genetically to induce attachment and spreading of the cells. This paper reviews research work of gene technology developed in tissue engineering. Key words: Gene engineering, tissue engineering, molecular biology, cell biology 1. INTRODUCTION Scaffold S D g n u n n o Tissue engineering refers to the science of e p i i io r l s t e p i e a e v r n o h e generating new living tissues to replace, repair or o i r t d p g r r n y o E A augment the diseased/damaged tissue and restore c ķ In tissue/organ function [1].
    [Show full text]
  • Health Services Research (Including System Process Change)
    April 2013 Roadmap to the Research Hospital of the Future 1 Table of Contents INTRODUCTION ............................................................................................................. 3 KEY ASSUMPTIONS ...................................................................................................... 5 THEMES AND DEFINITIONS ......................................................................................... 6 TRENDS SUMMARY ...................................................................................................... 8 REGENERATIVE MEDICINE ........................................................................................ 11 EXPERIMENTAL THERAPEUTICS…………………..……………………………….…….19 MEDICAL TECHNOLOGY ............................................................................................ 29 INFORMATICS AND PATIENT INFORMATION COLLECTION & ASSESSMENT ...... 46 HEALTH SERVICES RESEARCH (INCLUDING SYSTEM PROCESS CHANGE) ....... 55 MECHANISMS OF DISEASE ....................................................................................... 73 RESEARCH AND EDUCATION ................................................................................... 89 APPENDIX .................................................................................................................... 94 GLOSSARY OF TERMS & ABBREVIATIONS ............................................................. 95 2 Introduction The UHN Research community undertook a major strategic planning exercise in 2002 in response to the release of the
    [Show full text]
  • Tissue Engineering
    An Introduction to Tissue Engineering Lesley W. Chow [email protected] October 30, 2015 disclosure: not Lehigh bear Tissue Engineering is... “an interdisciplinary field that applies the principles of engineering and life sciences towards the development of biological substitutes that restore, maintain, or improve tissue function or a whole organ” Langer and Vacanti, Science 1993 Classic Tissue Engineering: The Vacanti Mouse landmark study from 1997 that helped launched the field Cao, Vacanti, Paige, Upton, and Vacanti, Plastic and Reconstructive Surgery 100:297, 1997 Classic Tissue Engineering: The Vacanti Mouse 1 1 scaffold made from poly(glycolic acid) (PGA) and poly(lactic acid) (PLA) cast from plaster replica of an actual ear Cao, Vacanti, Paige, Upton, and Vacanti, Plastic and Reconstructive Surgery 100:297, 1997 Classic Tissue Engineering: The Vacanti Mouse 1 2 SEM micrograph showing cells and ECM on scaffold 1 2 scaffold made from scaffold seeded with poly(glycolic acid) chondrocytes and (PGA) and poly(lactic cultured for 1 week acid) (PLA) cast from plaster replica of an actual ear Cao, Vacanti, Paige, Upton, and Vacanti, Plastic and Reconstructive Surgery 100:297, 1997 Classic Tissue Engineering: The Vacanti Mouse 1 2 SEM micrograph showing cells and ECM on scaffold 1 2 scaffold made from scaffold seeded with poly(glycolic acid) chondrocytes and 3 (PGA) and poly(lactic cultured for 1 week acid) (PLA) cast from plaster replica of an 3 actual ear implanted subcutaneously on the back of a mouse Cao, Vacanti, Paige, Upton, and
    [Show full text]
  • Nano-Biosensor for Monitoring the Neural Differentiation of Stem Cells
    nanomaterials Review Nano-Biosensor for Monitoring the Neural Differentiation of Stem Cells Jin-Ho Lee 1,2,†, Taek Lee 1,2,† and Jeong-Woo Choi 1,2,* 1 Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742, Korea; [email protected] (J.-H.L.); [email protected] (T.L.) 2 Institute of Integrated Biotechnology, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742, Korea * Correspondence: [email protected]; Tel.: +82-2-718-1976; Fax: +82-2-3273-0331 † These authors contributed equally to this work. Academic Editors: Chen-Zhong Li and Ling-Jie Meng Received: 6 July 2016; Accepted: 17 November 2016; Published: 28 November 2016 Abstract: In tissue engineering and regenerative medicine, monitoring the status of stem cell differentiation is crucial to verify therapeutic efficacy and optimize treatment procedures. However, traditional methods, such as cell staining and sorting, are labor-intensive and may damage the cells. Therefore, the development of noninvasive methods to monitor the differentiation status in situ is highly desirable and can be of great benefit to stem cell-based therapies. Toward this end, nanotechnology has been applied to develop highly-sensitive biosensors to noninvasively monitor the neural differentiation of stem cells. Herein, this article reviews the development of noninvasive nano-biosensor systems to monitor the neural differentiation of stem cells, mainly focusing on optical (plasmonic) and eletrochemical methods. The findings in this review suggest that novel nano-biosensors capable of monitoring stem cell differentiation are a promising type of technology that can accelerate the development of stem cell therapies, including regenerative medicine.
    [Show full text]
  • Advancing Tissue Science and Engineering
    ADVANCING TISSUE SCIENCE AND ENGINEERING A MULTI-AGENCY StRatEGIC PLAN ABOUT THE MATES IWG The Multi-Agency Tissue Engineering Science (MATES) Interagency Working Group (IWG), organized under the auspices of the Subcommittee on Biotechnology of the National Science and Technology Council (NSTC), is the means by which Federal agencies involved in tissue engineering stay informed of each other’s activities and coordinate their efforts in a timely and efficient manner. The goals of the MATES IWG are: • To facilitate communication across departments/agencies by regular information exchanges and a common website • To enhance cooperation through co-sponsorship of scientific meetings and workshops, and facilitation of the development of standards • To monitor technology by undertaking cooperative assessments of the status of the field • To provide for support of tissue engineering research through interagency tissue engineering funding opportunity announcements For more information, see the MATES website at http://www.tissueengineering.gov. ABOUT THE NATIONAL SCIENCE AND TECHNOLOGY COUNCIL The National Science and Technology Council (NSTC) was established by Executive Order on November 23, 1993. This cabinet-level council is the principal means by which the President coordinates science, space, and technology policies across the Federal Government. NSTC coordinates diverse paths of the Federal research and development enterprise. An important objective of the NSTC is the establishment of clear national goals for Federal science and technology investments in areas ranging from information technologies and health research to improving transportation systems and strengthening fundamental research. The Council prepares research and development strategies that are coordinated across the Federal agencies to form a comprehensive investment package aimed at accomplishing multiple national goals.
    [Show full text]
  • Biomimetic Coatings Obtained by Combinatorial Laser Technologies
    coatings Review Biomimetic Coatings Obtained by Combinatorial Laser Technologies Emanuel Axente 1 , Livia Elena Sima 2 and Felix Sima 1,* 1 Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor, Magurele 077125, Romania; emanuel.axente@inflpr.ro 2 Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei, Bucharest 060031, Romania; [email protected] * Correspondence: felix.sima@inflpr.ro; Tel.: +4-021-457-4243 Received: 13 April 2020; Accepted: 7 May 2020; Published: 9 May 2020 Abstract: The modification of implant devices with biocompatible coatings has become necessary as a consequence of premature loosening of prosthesis. This is caused mainly by chronic inflammation or allergies that are triggered by implant wear, production of abrasion particles, and/or release of metallic ions from the implantable device surface. Specific to the implant tissue destination, it could require coatings with specific features in order to provide optimal osseointegration. Pulsed laser deposition (PLD) became a well-known physical vapor deposition technology that has been successfully applied to a large variety of biocompatible inorganic coatings for biomedical prosthetic applications. Matrix assisted pulsed laser evaporation (MAPLE) is a PLD-derived technology used for depositions of thin organic material coatings. In an attempt to surpass solvent related difficulties, when different solvents are used for blending various organic materials, combinatorial MAPLE was proposed to grow thin hybrid coatings, assembled in a gradient of composition. We review herein the evolution of the laser technological process and capabilities of growing thin bio-coatings with emphasis on blended or multilayered biomimetic combinations.
    [Show full text]
  • Tissue Engineering: from Cell Biology to Artificial Organs
    干细胞之家www.stemcell8.cn ←点击进入 Tissue Engineering Essentials for Daily Laboratory Work W. W. Minuth, R. Strehl, K. Schumacher 干细胞之家www.stemcell8.cn ←点击进入 干细胞之家www.stemcell8.cn ←点击进入 Tissue Engineering W. W. Minuth, R. Strehl, K. Schumacher 干细胞之家www.stemcell8.cn ←点击进入 Further Titles of Interest Novartis Foundation Symposium Kay C. Dee, David A. Puleo, Rena Bizios Tissue Engineering An Introduction to Tissue- of Cartilage and Bone – Biomaterial Interactions No. 249 2002 ISBN 0-471-25394-4 2003 ISBN 0-470-84481-7 Alan Doyle, J. Bryan Griffiths (Eds.) Rolf D. Schmid, Ruth Hammelehle Cell and Tissue Culture Pocket Guide to Biotechnology for Medical Research and Genetic Engineering 2000 2003 ISBN 0-471-85213-9 ISBN 3-527-30895-4 R. Ian Freshney Michael Hoppert Culture of Animal Cells: Microscopic Techniques A Manual of Basic Technique, in Biotechnology 4th Edition 2003 ISBN 3-527-30198-4 2000 ISBN 0-471-34889-9 R. Ian Freshney, Mary G. Freshney Oliver Kayser, Rainer H. Mu¨ller (Eds.) (Eds.) Pharmaceutical Biotechnology: Culture of Epithelial Cells, Drug Discovery and Clinical 2nd Edition Applications 2002 2004 ISBN 0-471-40121-8 ISBN 3-527-30554-8 干细胞之家www.stemcell8.cn ←点击进入 Tissue Engineering Essentials for Daily Laboratory Work W. W. Minuth, R. Strehl, K. Schumacher 干细胞之家www.stemcell8.cn ←点击进入 Authors This book was carefully produced. Nevertheless, editors, authors and publisher do not warrant the Dr. Will W. Minuth, PhD information contained therein to be free of errors. Raimund Strehl, PhD Readers are advised to keep in mind that state- Karl Schumacher, M.D. ments, data, illustrations, procedural details or other items may inadvertently be inaccurate.
    [Show full text]