<<

Index

2dF, see Two Degree Field survey black hole masses, implications 197–198 2MASS Point Source Catalog 261 black holes, 2MASS, see Two Micron All Sky Survey – accretion rate 161 – accretion time 161 active galactic nuclei 160, 161, 162, 164, – binary 181–183 167, 168, 170, 171, 173–175, 176, – cusp of , formation 179–181 183, 184, 185, 186 – estimates of masses 197–198 – feedback and cooling flows 173–175 – first, formation 162–163 – outflows from 342 – growth 161–170 – redshift evolution 167–168 – mass distribution 163, 186 adaptive optics 196, 205, 370, 371 – spin 199 AGN, see active galactic nuclei – volumic density 161 alkali elements, in substellar dwarfs – wandering 181 16–17 Borns approximation 216 ALMA, see Atacama Large Millimetre broad-line active galactic nuclei 184 Array broad line regions 197, 198 anomalous flux ratios 228 brown dwarfs, Antennae galaxies 117, 120, 131, 132, – definition 1 133 – first discovery 1 aperture-mass technique 241 – problem 235 California Extremely Large Telescope arc-statistics 235 367 Arp atlas, of peculiar galaxies 116, 117, carbon, nitrogen and oxygen chemistry 123, 125, 130 10–13 Atacama Large Millimetre Array 327, carbon-enhanced metal-poor stars 366, 386, 387 267–268 Cartwheel ring galaxy 132, 133, 135, BALs, see quasars, broad absorption line 138 bars, in galaxies 119, 120, 122, 124, 137 CELT, see California Extremely Large – in spiral galaxies, feedback 175–178 Telescope baryonic physics, in galaxy clusters 235 Chandra X-ray Observatory 38, 39, binary black holes 181–183 55–56, 173, 345, 385 black dwarfs 1 CIV absorption, in galaxies 357 black hole mass cloud layer models 7–9 – relation to bulge luminosity 184, 186 color-flavor locked phase 34 – relation to bulge mass 159–160, 161, condensate cloud formation 7–8 178–179 condensate cloud layers, in sub-stellar – relation to velocity dispersion, see dwarfs 7–9 Mbh–σ relation core starbursts 127, 128, 132, 137 392 Index cosmic infrared background 311–312 Extremely Large Telescopes 363–390 cosmic ray acceleration, – cost 371–372 – correlation function 242 – definition 365 – electron component 104–105 – enclosures 369 – hadronic component 105–106 – instrumentation 370–371 – in remnants 104–106 – mirror technology 367–368 cosmic shear 242 – mountings 369 cosmic telescopes 237 – observing sites 369–370 cosmological constant 214 – optical systems 368 Crab Nebula, 62–65 – science drivers 372–381 Crab pulsar 62–65 – scientific capabilities 384–385 CXO, see Chandra X-ray Observatory – structure 369 – surveys with 382–383 dark energy 214 – wide field applications 382–384 dark matter 214 – halo growth theory 287 FBQS, see FIRST Bright Quasar Survey – halo mass function 338 feedback – in Galaxy 224–225 – effect on galaxy evolution 339 dark matter haloes, formation 167 – from massive stars 340–341 Darwin (terrestrial planet search) 386 – in starburst galaxies 339 D-burning, see deuterium burning – variation with galactic mass 343 Deep Survey of the Southern Sky 1 feedback physics 339–342 DENIS, see Deep Survey of the Southern Fermat’s principle 215 Sky Fermi degeneracy pressure 30 density profiles FIRST Bright Quasar Survey 197, 199 – of galaxies 226, 232 Friedmann equations 214 – of galaxy clusters 240 deuterium burning, in sub-stellar dwarfs GAIA 366, 386 2 galactic halo 376, 377 downsizing 145, 148, 167–169, 338 galactic outflows dwarf galaxy formation, tidal 129–130 – and dynamical models 349 dwarf stars 1–2 – bipolar 344 – spectra 3 – properties 342–349 – velocity versus galactic rotation speed E and B modes of cosmic shear 243 351 Eddington limit 161, 164, 198 galactic winds Eddington ratio 162, 198 – cosmological impact 353–359 effective temperature, in substellar – outflow speeds 359 dwarfs, relation to luminosity 6 – role in galaxy formation 337–362 Einstein radius 218 galaxies ELTs, see Extremely Large Telescopes – density profiles 226, 232 emission-line filaments, in starburst – growth 378–380 galaxies 343 – sequential build-up 143 Equivalence principle 215 galaxy bias parameter 232 Euro50 367, 369 galaxy clusters, lensing in 232–241 extrasolar planets 372–375 galaxy collisions 115–158 – Earth-like satellites 375 – as drivers for galaxy evolution – physical properties 373 142–147 – spectroscopy 373–374 – bar formation 119, 120 – terrestrial 373 – double encounters 147–148 Index 393

– early studies 115–116 – differential light deflection 221 – high velocity 138–139 – giant arcs 232 – induced formation and winds – imaging properties 220–221 122–138 – index of refraction 216 – merger rate versus redshift 143–144 – isothermal sphere 222 – morphology versus redshift 145–147 – lens equation 217 – most recent studies 120–122 – – linearised 220 – numerical models 118, 119, 120, 135 – lens plane 216 – outstanding questions 121, 148–150 – lens statistics 230–231 – slow encounters 140–142 – lensing potential 218 – spiral waves 138, 140 ––effective220 – studies in the 1970s 116–118 – – elliptical 223 – studies in the 1980s and early 1990s – magnification 221 118–120 – missing images 227 – survey samples 124, 125, 126, 127 – multiple images 217, 221 – tidal mixing 123 – NFW profile 222 – tidal tails 119, 120, 121, 122, 123, – point mass 216, 222 124, 129, 130, 132, 133, 134 – quadruple images, fraction of 228 galaxy evolution 142–147 – radial arcs 234 Galaxy Evolution Explorer 198 – reduced deflection angle 217 galaxy formation 142–143, 148 – role of 215 – astrophysics of 337–339 – sheer 220 – hierarchical models 175 – simple lens models 222–224 galaxy formation models 321 – source plane 217 galaxy–galaxy lensing 231–232 galaxy luminosity function 353–354 – surface mass density 216 galaxy mergers, see galaxy collisions – – density, critical 218 GALEX, see Galaxy Evolution Explorer – time delay 219, 221, 227 Galileo entry probe 9 – triaxial haloes 230, 236 gamma-ray bursts 381 – wide-separation lenses 230 Gemini Telescopes 366 gravitational redshift 32 GEMS survey 143 GSMT, see Giant Segmented Mirror general relativity, theory 32, 213 Telescope Giant Magellan Telescope 366, 367, 368, 369, 382 Hale Telescope 364 Giant Segmented Mirror Telescope 367, Hamburg/ESO prism survey 369, 382 262–263 Gl 229B 1, 11, 12, 13, 24 Hamburg/ESO R-process Enhanced Gliese 229B, see Gl 229B Survey 276–278 GMT, see Giant Magellan Telescope heavy elements, dispersal 354 GOODS survey 143, 145, 288, 318, 319 HERES, see Hamburg/ESO R-process Gran Telescopio Canarias 366 Enhanced Survey gravitational lensing HK prism survey 260–262 – applications in cosmology 213–256 HK-II survey 261–262 – basic principles 215–224 Hobby-Eberly Telescope 366, 367 – by large-scale structures 242–248 Hobby-Eberly Telescope R-process – caustics 221 Enhanced Star survey 279 – convergence 218 Hubble Deep Fields 143, 145 – critical curves 221 Hubble Space Telescope 130, 132, 143, – deflection angle 216 196, 202, 259, 372, 385 394 Index

IMBH, see intermediate mass black holes L-M dwarf transition, cloud layer Infra-Red Astronomical Satellite 118, structure 8 286, 287 Lord Rosse 387 intermediate mass black holes 160, 162, Low Frequency Array 207, 366, 386 163, 164–166, 179, 185, 186 low-luminosity active galactic nuclei – formation 162 175–176, 184 – number in Milky Way 163 L-T dwarf transition 12–13, 24 interstellar absorption, in galaxy spectra luminosity function, of galaxies 338 347–349 Luminous Infrared Galaxies 127, 128, intrinsic alignment of source galaxies 137, 146, 287, 291, 298, 302, 304, 244 312, 313, 314, 318, 323 inversion techniques for galaxy clusters Lyman Break Galaxies 146 238 IRAS, see Infra-Red Astronomical M dwarfs Satellite – classification 4–5 iron abundance – effective temperature 2, 6, 23 – lowest 259 – emission 2 – solar 259 – model atmosphere isothermal mass models for galaxy – spectral features 2, 3 clusters 235 – sub-typing 4, 5 MACHO project 224–225 Jacobian matrix 220 flares 37, 45–47 James Webb Space Telescope 207, 327, 30, 37, 45–47 366, 385 mass discrepancy in galaxy clusters 234 Jupiter, cloud layer structure 8, 9 mass-to-light ratio – of galaxies 227, 232 Keck Telescope(s) 85, 204, 265, 294, – of galaxy clusters 238, 241 296, 298, 366 MAXAT, see Maximum Aperture Telescope L dwarfs Maximum Aperture Telescope 367 – chemical temperature scale 21–24 Mbh–σ relation 159–160, 161, 162, 163, – classification 4–5 164–166, 170–179, 184–185 – cloud layer structure 7–8, 16–17 Mbh–σ relation – definition 2 – causes of scatter 175 – effective temperature 2, 6–7, 23 – extrapolation to low masses 164–166 – emission 2 – interpretation 170–179 – spectral features 2, 3, 4, 5 Distribution Function – sub-typing 4, 5 263–265 Large Binocular Telescope 366, 367 metallicity of stars, definition 259 large-scale structure, of Universe 383 metal-poor stars LBT, see Large Binocular Telescope – bias in selection 261 lensing galaxies, substructure 228–230 – elemental abundances 265–267 Leviathan of Parsonstown 387 – large surveys 265 LIGs, see Luminous Infrared Galaxies methane dwarfs 4 LIRGs, see Luminous Infrared Galaxies MgII absorption, in galaxies 358 burning, in sub-stellar dwarfs 2 microlensing 222–224 lithium chemistry 16–18 – event 224 LLAGN, see low-luminosity active – optical depth 224 galactic nuclei millisecond 36, 37, 42–43 Index 395 mini-quasars, formation 164 – in galaxies 354–356 mirrors OWL, see Overwhelmingly Large – segmented 366 Telescope – spun-cast 366 – telescope 366–368 Palomar 200-inch telescope 364 – thick, lightweight 366 Planck (measuring cosmic microwave – thin, monolithic meniscus 366 background) 366, 386 M-L dwarf transition 5 Poisson’s equation 218 MMT 366 Population II stars 258 momentum-driven outflows 340–341 Population III stars 162, 257, 258 mountings, telescope 369 Population III supernovae 381 population synthesis models 339 NaI absorption, in starburst galaxies pulsar wind nebulae 62–78 347–348 PWN, see pulsar wind nebulae element-rich metal-poor stars 268–274 QPOs, see quasiperiodic oscillations neutron stars 29–54 QSOs, see quasars – burst oscillations 35–36, 37, 40–42, quasar luminosity function 197 48–49 quasar outflows 342 – density 30 quasar feedback 171 – detection 30 quasars 146, 287, 290, 291, 293, 296, – escape velocity 31 306, 310, 311, 313, 319, 321, 324, – fast X-ray timing observations 35–37 325, 326, 380, 381 – formation 29–30, 31 – accretion rate 198 – high resolution X-ray spectroscopy – and host galaxies 195–211 37–40, 47–48 – black hole masses 161 – hot spots 41 – broad absorption line 201 – magnetic fields 30 – clustering 200 – mass 30, 43 – detection of host galaxies 196 – mass–radius relations 31, 32, 42, 44, – finding obscured population 201–202 45 – high-z 200 – number in Galaxy 30 – – contribution to re-ionisation – quasiperiodic oscillations 35, 37, 200–201 44–45 – – number density 200 – radius 30, 43 – host galaxies – spectral lines 38 – – spectroscopy 204–205 – structure 33 – – stellar populations 206 – temperature 31 – host galaxy studies 202–206 – X-ray bursts 35 – in early Universe 161 – ionising radiation from 342 objective-prism technique 260 – lifetimes 169–170 observing sites 369–370 – link with galaxy evolution 195 oldest ‘living’ stars 257–283 – luminosity function 172 ouflow velocity, versus – new surveys 197 rate 348–349 – outstanding questions 206–207 Overwhelmingly Large Telescope 365, – properties, dependence on black hole 367, 368, 369, 371, 372, 382 mass 195 OVI absorber redshifts 356 – radio-loudness 198–199 OVI absorption – samples, selection effects 196 – statistics 355 – total number 202 396 Index quasiperiodic oscillations 35, 37, 44–45 SSCs, see Super Star Clusters quasi-stellar objects, see quasars star clusters, massive, see Super Star Clusters radiative feedback 170 star formation 375–376 radio astronomy facilities 386–387 – collisionally-induced 122–123 ram pressure stripping 139–140 – enhancement before galactic mergers reionisation 120, 123–128 – in early Universe 164 – history, in galaxies 337–338 – of Universe) 380–381 – in host galaxy 200 rock forming elements, in condensate – in induced disk waves 129 cloud layers 15–16 – in tidal bridges and tails 129 ROSAT X-ray survey 196 – numerical models 135–136 Rossi X-ray Timing Explorer 35 star formation rate 376 r-process enhanced stars 269–271 – as function of redshift 144–145 r-process, the nature of 271–274 – in galaxies 124, 126, 128, 135 RXTE, see Rossi X-ray Timing Explorer starburst events 339 starburst galaxies 339 SALT, see Southern African Large starburst galaxy, Telescope – metallicity 346–347 SDSS, see Sloan Digital Sky Survey – NGC 1569 343, 344, 347 SDSS-II survey 278–279 starbursts, core 127, 128, 132, 137 segmented mirrors 366–367 stars, low-metallicity 259, 260 SEGUE survey 278–279 – lowest metallicity 274–275 self-interacting dark matter 237, 239 – next generation surveys 275–279 self-regulation growth models 171–173 stars of different metallicity, nomencla- SELT, see Swedish ELT ture 260 Seyfert 1 galaxies 342 stellar populations, identification Seyfert 1 galaxies 375–376 – broad-line 167 , supersonic outflow 341 – bulge luminosities 197 strangulation 138, 140 – narrow-line 167 strong cluster lensing 232–237 Seyfert 2 galaxies 342 structure formation, in the Universe shell velocities 343 337 SKA, see Square Kilometre Array Subaru Telescopes 366 Sloan Digital Sky Survey 1, 196, 199 submillimetre galaxies 316–318 SMBH, see supermassive black holes sub-stellar dwarfs 1–28 SMGs, see submillimetre galaxies – alkali elements 16–17 SNRs, see supernova remnants – atmosphere, thermochemical reactions Southern African Large Telescope 18–21 366 – carbon, nitrogen and oxygen chemistry space-based astronomy facilities 10–13 385–386 – deuterium burning 2 Spitzer Space Telescope 132, 136, 138, – infrared spectra 2 143, 146, 147, 198, 286, 288, 289, – lithium burning 2 294, 295, 299, 307, 310, 316, 318, – maximum temperature 2 319, 320, 323, 324, 325, 326, 327 – upper mass limit 2 s-process enhanced stars 268–269 sub-stellar objects, see sub-stellar dwarfs spun-cast mirrors 366, 367 superbubbles, mechanics 341 Square Kilometre Array 207, 327, 366, supermassive black holes, 386 – accretion 183–184 Index 397

– formation 161, 167 – SNR 130.7+3.1, 3C58 (SN1181) – – and evolution 159–193 79–81 – gravitational action, distance 171 – SNR 266.2–1.2 59–60 – mass distribution 162 – SNR 292.0+1.8 79, 80, 94 – mass function 169 – SNR 292.2–0.5 67 – maximum mass 171 – SNR 293.8+0.6 69–70 supernova remnant – SNR 296.5+10.0 78–79 –blastwave88 – SNR 315.4–2.30 83 – reverse shock 88–89 – SNR 347.3–0.5 62 supernova remnants – SNR 359.23–0.82, The Mouse 76, 77 – 1E 0102.2–72.2, in SMC 84, 92–93 – SNR 39.2–0.3 68–69 – B0453–685, in LMC 73–74 – SNR 41.1–0.3 83 – Cas A 57–59, 90–91 – SNR 54.1+0.3 68 – Chandra observations 55–113 – SNR 69.0+2.7 75–76 – compact central objects 57–62 – SNR 78.2+2.1, γ Cygni 82–83 – cosmic ray acceleration 104–106 – studies of ejecta 89–102 – Crab Nebula (SN1054) 62–65 – Tycho (SN1572) 97–98 – debris and gaseous parts 88–89 – Vela pulsar 65–66 – DEM L71 101–102 – young core collapse supernovae 89–97 – electron-ion temperature equilibrium supernova shockwave 341 103–104 supernovae 376, 378 – finding pulsars 78–82 – Population III 381 – Geminga 76–78 – Type Ia 376 – Ho 12, in NGC 6822 87–88 – Type II 376 – IC443 81–82 Super Star Clusters, formation 129, – Kes 73 84–85 130–132, 179 – N103B, in LMC 99–100 Swedish ELT 367 – N157B, in LMC 72 – N158A, in LMC 70–72 T dwarfs – N49, in LMC 86–87, 94 – chemical temperature scale 21–24 – N63A, in LMC 84, 95 – classification 4–5 – names of 56 – cloud layer structure 7–9, 16–17 – not finding compact objects 82–84 – definition 2 – of Type Ia supernovae 97–102 – effective temperature 2, 6–7, 24 – point sources 57–87 – spectral features 2, 3–4, 5, 13 – PSR1509–58 66 – sub-typing 4, 5 – pulsars with pulsar wind nebulae telescope, development 363–364 62–78 Terrestrial Planet Finder 207, 386 – Puppis A 60–81 thermochemical reactions 18–21 – shock properties 103–106 Thirty Metre Telescope 367 – SN1006 100–101 tidal tails and bridges, mapping 119 – SN1987A, in LMC 82, 89 Tolman-Oppenheimer-Volkoff equations – SNR 0049–73.6 96 30–31 – SNR 0103–72.6 96–97 TPF, see Terrestrial Planet Finder – SNR 0509–67.5 99 Two Degree Field survey 196, 199 – SNR 084.2+0.8 83 Two Micron All Sky Survey 1 – SNR 093.3+6.9 83 Type I supernovae 200 – SNR 109.1–1.0 85–86 Type Ia supernovae 173, 376 – SNR 119.5+10.2 74–75 Type II supernova explosion 29 – SNR 127.1+0.5 83 Type II supernovae 339, 376 398 Index

UK Schmidt Telescope 382 – re-ionisation 380–381 ULIRGs, see Ultraluminous infrared UV background, from first stars 164 galaxies Ultraluminous infrared galaxies 118– Vela bullets 95 119, 123, 136–137, 143, 146, 147, Vela pulsar 65–66 285–336, 352 Very Large Array 119 – ‘biggest and best’ 285–286 Very Large Optical Telescope 367, 369 – and large-scale structure 320–323 Very Large Telescope 296, 366 –at01.5 314–319 VLIGs, see Very Luminous Infrared – discovery 286–287, 289–291 Galaxies – in infrared surveys 288 VLIRGs, see Very Luminous Infrared – in local universe 308–311 Galaxies – maser emission 304–306 VLOT, see Very Large Optical Telescope – mid-infrared spectroscopy 297–302 VLT, see Very Large Telescope – molecular gas, CO & HCN observations 303–304 weak cluster lensing 238–241 – need for larger samples 326 – optical and near-IR spectroscopy Westerbork array 119 294–297 Wilkinson Microwave Anisotropy Probe – optical to mid-IR imaging 292–294 376, 380 – outstanding questions 323–327 William Herschel 363, 364 – physics 291–308 William Huggins 387 – radio continuum studies 302–303 WMAP, see Wilkinson Microwave – role in galaxy formation 286, 289, Anisotropy Probe 326 – X-ray emission 306–308 XMM-Newton 38, 39, 173, 345, 385 Ultraluminous X-ray sources 133–134, X-ray emission, in starbursts 345 163 ULXs, see Ultraluminous X-ray sources Y dwarfs, Universe, – definition 2 – large-scale structure 383 – effective temperature 2 Printing: Mercedes-Druck, Berlin Binding: Stein + Lehmann, Berlin