General Acid Catalysis If Acetal Hydrolysis

Total Page:16

File Type:pdf, Size:1020Kb

General Acid Catalysis If Acetal Hydrolysis GENERAL ACID CATALYSIS IF ACETAL HYDROLYSIS by ICSITH NB3!0. A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF THE UNIVERSITY OF GLASGOW* September, 1971 Chemistry Departnen University of Glasy ProQuest Number: 11011971 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 11011971 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 To my wife - Isobel. Ac know! e d; ;c;.:e nts I should like to .record my sincere gratitude to Dr* 3* Capon, my supervisor, for his constant enthusia and the many informative and stimulating discussions I had with him. I am indebted also to the technical staff of this department for the many services they so willingly pro­ vided, and to Hiss A. Ltatheson who typed this thesis. Finally, I should like to acknowledge the finane:Uil support given by the Science Research Council for the undertaking* of this work. TCo Fimmo, Chemistry Departi:lent, September, 1971. University of Glstsgow. Abstract Recear advances in the study of acetal hydrolysis and the use of acetals in model systems for the investigation of enzymically catalysed hydrolysis are reviewed. The kinetics of the hydrolysis of benzaldehyde sub­ stituted (X) - phenyl methyl acetals and substituted (Y) - benzaldehyde phenyl methyl acetals were measured in pivalate, acetate, d-|_-deutero-acetate, 6 -cliloropropionate, formate and chloroacetate buffers, and in hydrochloric and deutero- chloric acids. The hydrolysis rates measured in buffer solutions, of the twelve acetals sin died were found to be dependent on the concentration of undissooiated acid and shorn to be authentic examples of general acid catalysis, with reference to current opinions that such observations might be manifestations of solvent, electrolyte or buffer effects. The d-g-acetic acid catalysed dy-methanolysis of benzf- aldehyde phenyl methyl acetal was followed in a high resolu­ tion 1J.M.R. spectrometer and the initial bond fission found to occur between carbon and the phenolic oxygen. It seemed not unreasonable to assume that the same process occurs also in the hydrolysis reaction. Breasted and Hamnett linear free energy relatronsnips were found to correlate m e ca calycic constants obrained from the ir^drolvsis of both (X) and (Y) substituted-acetal serves. Tne catalytic constants of the substituted (X) ~ phenyl acetals increased as the e le ctron-withdrawing power ox (X) increased,' and tlie positive p value increased con­ sistently as the catalytic power of the buffer decreased, vis« 0.43 in chloroaeetate to 1.25 in. pivalate. The P value for the hydronium ion catalysed reaction, was -0 .4 5 . Similarly, the negative p values obtained from the sub­ stituted (X) - benzaldehyde acetals increased in magnitude from. -2.04 in chloroaeetate to -2.34 in pivalate, with a value of -1 , 9 4 for the hydroniuni ion catalysed reaction. As the electron - withdrawing power of (X) increased, the Br-^nsteda value decreased consistently from 0.96 for X = p-IIeO to 0.49 forX = m - '102. Conversely as the electron - withdrawing power of (Y) increased, the a value increased from 0.63 for f = n - HeO to 1.05 for m - FO^. Solvent isotope effects k(IT^0+)/k(D^0+ ), indicated not only a consistency of mechanism in. the hydrolysis of all the substrates studied, but the trend in. values, from 0.62 for X = E-IIeO to 1.1 for X = n - H02, and 0.35 for T - n-HeO to 0 . 6 6 for f = m - F, correlated with the « and p values in determining the relative amount of bond making and brak- • ing in the transition states. The results obtained were all indicative of an A-SB 2 mechanism in the general acid catalysed hydrolysis of aromatic ar^l methvi acetals, with concerted proton transfer to phenolic oxygen and carbon-phenolic oxygon bond fission in •tne rate limiting step and where incipient carbonium ion stability and leaving group ability, rather than a high relative degree of proton, transfer in the transition state, were commensurate to faster hydrolysis rates. The com­ parison of this data with that obtained in. other reaction series indicates that incipient carbonium ion stability and leaving group ability are prerequisites for the obser­ vation. of general acid catalysis in acetal hydrolysis, although relief of steric strain through carbonium ion ' formation is also relevant. The hydrolysis of benzaldehyde methyl acetyl acylal, the possible intermediate of acetate anion nucleophilic attack, on benzaldehyde phenyl methyl acetal, was found to be general acid catalysed, and is believed to be the first reported example of buffer catalysis in acylal hydrolysis. The hydrolysis of r-methylbenzaldehyde metnyl S—phenyl thioacetal was carried out in weak—acid Duffers, and the results suggested, although not conclusively, that this substrate might also be catalysed by undissociateo. acid. General: Enzymic Reactions; Model System: General Acid Catalysis; Model System Acetal Hydrolysis: A-l: Transition-State Theories: Electrolyte and Solvent Effects; 3r/nsted Correlation:- Isotope Effects: Hammett Correlation: Discussion/ C 0 IT T B :i rp 3 (cont'd) Paye lo, Discussion 1 Buffer Catalysis: (Solvent-Electrolyte Effects) 62 2 Site-of Bond fission 78 3 Kinetic Hate Law 85 4 Mechanism 93 5 Br^nsted Correlation 95 6 Hamnett Congelation 107 7 Solvent Isotope Effect 117 Results: 125 Experimental: Kinetic: 229 Preparative: 233 References: 218 I H f H O D U C 0? 1.0 IT IITTR ODD C TI PIT' ,TIt is not generally appreciated how little is under­ stood about the mechanism by which enzymes bring about their extraordinary and specific rate accelerations". W.P. Jeneks.1 (1969) The mechanism of the enzymically catalysed reaction has been studied over many years, and the recent statement by Jeneks indicates the complexity of this important cata­ lytic system. A more specific example of the problem is that the elucidation of the amino acid sequence and ultim- 2 ately the three dimensional structure of the glycosidase lysozyne led to an intensive chemical and biophysical investigation of that system which has not yet revealed the exact mechanistic principles involved. Workers in this field have sought model systems in an attempt to explain the mechanistic and rate differences observed between gly­ coside hydrolysis in the enzymic and non-enzymic systems. The significance of the "non-general" behaviour propounded in more recent work must be interpreted with caution, although it is hoped that it will lend itself to a closer insight of the enzyme problem. The aim of this introduction will be to outline the most significant of the mechanisms suggested to account for the "extraordinary and specific rate accelerations" of the enzymically catalysed hydrolysis of glycosides, and the model systems used to explore these hypotheses. A briej. review of the generally accepted mechanism of acetal hydrolysis will be followed by a more detailed discussion of the requirements necessary for the observation of general acid catalysis and the physical parameters incor­ porated in such an investigation. The enzyme lysozyme will frequently be referred to because of the more detailed knowledge surrounding it, although it must be remembered that "\7e do not understand the mechanism of action of any glycosidase". B. Capon.5 (1971) The existence of enzyme-substrate complexes as inter­ mediates in enzymically catalysed reactions has been shown either by isolation and chemical characterisation of the complex, by accommodating observed rates with the formation and breakdown of such intermediates, or showing that a common intermediate is formed with specific substrates in the enzymatic reaction (see Ref* 1)0 The general enzy­ matically catalysed reaction is then described, on this basis, by equation (1) in which ES represents the inter­ mediate complex. k-> k’z E+S = = £ BS — ^ E + P ............. (1) k2 The formation and nature of this intermediate complex is critical to the observed rate enhancements brought about by enzyme tion (tej) of products (P) will depend on the ease of the chemical breakdown of the substrate within this environment0 G-lycosidase catalysed hydrolysis resemble the acid catalysed hydrolysis of alkyl and anyl glycosides in that bond fission in the substrate usually occurs between carbon 1 and the anomeric oxygen. Pig. 1. This has been demonstrated for several glycosidase 5 catalysed hydrolysis, including the lysozyme catalysed 18 hydrolysis of tri-lT-acetylchitotriose in 0 -enriched water, where the products, di-IT-acetyl chitobiose and N-acetylglucosamine contain the label at position 1 only.^ Further, since these reactions are formally nucleo- philic substitutions of the saturated carbon 1, the hydro­ lysis by the enzymes proceed either with inversion or retention of configuration (Fig. 2) Fig. 2. Retention Inversion Several processes have "been forwarded to explain the facilitation of glycosidic oxygen bond fission after forma­ tion of the enzyme substrate complex, and thus the enhanced rate of enzymic catalysis. Six such processes are des­ cribed below, although it is unlikely that one
Recommended publications
  • Physical Organic Chemistry
    CHM 8304 Physical Organic Chemistry Catalysis Outline: General principles of catalysis • see section 9.1 of A&D – principles of catalysis – differential bonding 2 Catalysis 1 CHM 8304 General principles • a catalyst accelerates a reaction without being consumed • the rate of catalysis is given by the turnover number • a reaction may alternatively be “promoted” (accelerated, rather than catalysed) by an additive that is consumed • a heterogeneous catalyst is not dissolved in solution; catalysis typically takes place on its surface • a homogeneous catalyst is dissolved in solution, where catalysis takes place • all catalysis is due to a decrease in the activation barrier, ΔG‡ 3 Catalysts • efficient at low concentrations -5 -4 -5 – e.g. [Enz]cell << 10 M; [Substrates]cell < 10 - 10 M • not consumed during the reaction – e.g. each enzyme molecule can catalyse the transformation of 20 - 36 x 106 molecules of substrate per minute • do not affect the equilibrium of reversible chemical reactions – only accelerate the rate of approach to equilibrium end point • most chemical catalysts operate in extreme reaction conditions while enzymes generally operate under mild conditions (10° - 50 °C, neutral pH) • enzymes are specific to a reaction and to substrates; chemical catalysts are far less selective 4 Catalysis 2 CHM 8304 Catalysis and free energy • catalysis accelerates a reaction by stabilising a TS relative to the ground state ‡ – free energy of activation, ΔG , decreases – rate constant, k, increases • catalysis does not affect the end point
    [Show full text]
  • Aldehydes Can React with Alcohols to Form Hemiacetals
    340 14 . Nucleophilic substitution at C=O with loss of carbonyl oxygen You have, in fact, already met some reactions in which the carbonyl oxygen atom can be lost, but you probably didn’t notice at the time. The equilibrium between an aldehyde or ketone and its hydrate (p. 000) is one such reaction. O HO OH H2O + R1 R2 R1 R2 When the hydrate reverts to starting materials, either of its two oxygen atoms must leave: one OPh came from the water and one from the carbonyl group, so 50% of the time the oxygen atom that belonged to the carbonyl group will be lost. Usually, this is of no consequence, but it can be useful. O For example, in 1968 some chemists studying the reactions that take place inside mass spectrometers needed to label the carbonyl oxygen atom of this ketone with the isotope 18 O. 16 18 By stirring the ‘normal’ O compound with a large excess of isotopically labelled water, H 2 O, for a few hours in the presence of a drop of acid they were able to make the required labelled com- í In Chapter 13 we saw this way of pound. Without the acid catalyst, the exchange is very slow. Acid catalysis speeds the reaction up by making a reaction go faster by raising making the carbonyl group more electrophilic so that equilibrium is reached more quickly. The the energy of the starting material. We 18 also saw that the position of an equilibrium is controlled by mass action— O is in large excess.
    [Show full text]
  • Kinetic and Theoretical Insights Into the Mechanism of Alkanol Dehydration on Solid Brønsted Acid Catalysts
    Article pubs.acs.org/JPCC Kinetic and Theoretical Insights into the Mechanism of Alkanol Dehydration on Solid Brønsted Acid Catalysts William Knaeble and Enrique Iglesia* Department of Chemical and Biomolecular Engineering University of California, Berkeley, California 94720, United States *S Supporting Information ABSTRACT: Elementary steps that mediate ethanol dehydration to alkenes and ethers are determined here from rate and selectivity data on solid acids of diverse acid strength and known structure and free energies derived from density functional theory (DFT). Measured ethene and ether formation rates that differed from those expected from accepted monomolecular and bimolecular routes led to our systematic enumeration of plausible dehydration routes and to a rigorous assessment of their contributions to the products formed. H-bonded monomers, protonated alkanol dimers, and alkoxides are the prevalent bound intermediates at conditions relevant to the practice of dehydration catalysis. We conclude that direct and sequential (alkoxide-mediated) routes contribute to ether formation via SN2-type reactions; alkenes form preferentially from sequential routes via monomolecular and bimolecular syn-E2-type eliminations; and alkoxides form via bimolecular SN2-type substitutions. The prevalence of these elementary steps and their kinetic relevance are consistent with measured kinetic and thermodynamic parameters, which agree with values from DFT-derived free energies and with the effects of acid strength on rates, selectivities, and rate constants; such effects reflect the relative charges in transition states and their relevant precursors. Dehydration turnover rates, but not selectivities, depend on acid strength because transition states are more highly charged than their relevant precursors, but similar in charge for transition states that mediate the competing pathways responsible for selectivity.
    [Show full text]
  • Acid-Base Catalysis Application of Solid Acid-Base Catalysts
    Modern Methods in Heterogeneous Catalysis Research Acid-Base Catalysis Application of Solid Acid-Base Catalysts Annette Trunschke 18 February 2005 Outline 1. Introduction - basic principles 2. Substrates and products 3. Kinds of acid / base catalysts - examples 4. Characterization of surface acidity / basicity - examples 5. Acid catalyzed reactions 6. Base catalyzed reactions 7. Acid-base bifunctional catalysis 8. Summary and outlook Modern Methods in Heterogeneous Catalysis Research : 18/02/2005 2 1. Introduction - Basic definitions concept acid base - + Brønsted H2O OH + H - - Lewis FeCl3 + Cl [FeCl4] Hydrogen transfer reactions intermediates acid-catalyzed + H+ carbenium ions base-catalyzed + H+ carbanions Modern Methods in Heterogeneous Catalysis Research : 18/02/2005 3 1. Introduction - Basic definitions specific acid / base general acid / base catalysis catalysis + - active H3O or OH undissociated acid or base species groups; a variety of species may be simultaneously active reaction •in solution •gas phase reactions medium / •on the surface of •high reaction temperatures conditions a hydrated solid Advantages of solid acid-base catalysts: • Easier separation from the product • Possible reuse and regeneration • Fewer disposal problems • Non-corrosive and environmentally friendly (but not always!) Modern Methods in Heterogeneous Catalysis Research : 18/02/2005 4 2. Substrates and products solid acid catalysis solid base catalysis substrates •Alkanes, aromatics •Alkenes (components of crude •Alkynes petrolium) •Alkyl aromatics •Alkenes (products of •Carbonyl compounds petrolium cracking (FCC, steam cracking)) products •Gasoline components •Chemical intermediates •Chemical intermediates •Fine chemicals •Fine chemicals Industrial processes in 1999: 103 solid acids worldwide production by catalytic cracking: 500x106 tonnes/y 10 solid bases 14 solid acid-base bifunctional catalysts K.Tanabe, W.F.Hölderich, Applied Catalysis A 181 (1999) 399.
    [Show full text]
  • 629 Acid/Base Catalysis 154–157
    629 Index a – – Horvath–Kawazoe (HK) method acid/base catalysis 154–157 525–526 – bimolecular, acid catalyzed reaction 155 – Nonlocal Density Functional Theory – bimolecular, base catalyzed reaction 156 (NL–DFT) 530–532 – Brønsted–Lowry theory 155 – physical adsorption 514–516 – RNA hydrolysis catalyzed by enzyme – theoretical description of adsorption RNase-A 157 519–523 acids 132–143, See also solid acids and bases ––BETtheoryofadsorption 521 Acinetobacter calcoaceticus 181 – – Langmuir isotherm 519–521 activated carbon supports 439 – – standard isotherms 522–523 activation, catalyst 58–64 – – t-method 522–523 – induction periods as catalyst activation – xenon porosimetry 533–534 ® 59–60 Aerosil process 435 active sites 269–273 alcohols activity of catalyst, in homogeneous catalysis – carbonylations of 245–247 54–58 – synthesis 176–177 acylases 185–186, 256 aldolases 190–193 adaptive chemistry methods 370 alkene metathesis 402–406 adiabatic reactor 569 altered surface reactivity 38–39 adsorption entropy 27–30 alumina (Al2O3) and other oxides adsorption methods for porous materials 436–438 characterization 514–534 amidases 185–186 – adsorption isotherms 517–518 amidases catalyzed reactions 256 – application of adsorption methods amino acid dehydrogenases (AADHs) 518–519 177, 253 – Barret–Joyner–Halada (BJH) method amino acids synthesis 177–178 529–530 6-aminopenicillanic acid (6-APA) 256 – classification of porous materials 517 7-aminocephalosporanic acid (7-ACA) 256 – mercury porosimetry 533 ammonia synthesis 114–119, 289–299 – mesoporous
    [Show full text]
  • Factors Affecting the Relative Efficiency of General Acid Catalysis
    Factors Affecting the Relative Efficiency of General Acid Catalysis Eugene E. Kwan Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada* * Now at Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA Electronic mail: [email protected] Abstract Specific acid catalysis (SAC) and general acid catalysis (GAC) play an important role in many organic reactions. Elucidation of SAC or GAC mechanisms requires an understanding of the factors that affect their relative efficiency. A simple model reaction in which SAC and GAC occur concurrently is analyzed to provide guidelines for such analyses. Simple rules which predict the effect of pH on the relative efficiency of GAC are discussed. An explicit expression for determining the optimal pH at which the effects of GAC are maximized is provided as well as an analogous expression for the general base case. The effects of the pKa of the general acid and the total catalyst concentration on GAC efficiency are described. The guidelines are graphically illustrated using a mixture of theoretical data and literature data on the hydrolysis of di-tert-butyloxymethylbenzene. The relationship between the model and the Brønsted equation is developed to explain the common observation that GAC is most easily observable when the Brønsted coefficient α is near 0.5. The ideas presented enable systematic evaluations of experimental kinetic data to provide quantitative support for SAC or GAC mechanisms. This material is suitable for the curriculum of a senior-level undergraduate course in physical-organic chemistry. Keywords: Organic chemistry; physical chemistry; curriculum; acid-base chemistry; catalysis; kinetics.
    [Show full text]
  • Microwave-Assisted Homogeneous Acid Catalysis and Chemoenzymatic Synthesis of Dialkyl Succinate in a Flow Reactor
    catalysts Article Microwave-Assisted Homogeneous Acid Catalysis and Chemoenzymatic Synthesis of Dialkyl Succinate in a Flow Reactor Laura Daviot 1, Thomas Len 1, Carol Sze Ki Lin 2 and Christophe Len 1,3,* 1 Centre de Recherche de Royallieu, Université de Technologie Compiègne, Sorbonne Universités, Cedex BP20529, F-60205 Compiègne, France; [email protected] (L.D.); [email protected] (T.L.) 2 School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China; [email protected] 3 Institut de Recherche de Chimie Paris, PSL Research University, Chimie ParisTech, CNRS, UMR 8247, Cedex 05, F-75231 Paris, France * Correspondence: [email protected]; Tel.: +33-144-276-752 Received: 12 February 2019; Accepted: 8 March 2019; Published: 16 March 2019 Abstract: Two new continuous flow systems for the production of dialkyl succinates were developed via the esterification of succinic acid, and via the trans-esterification of dimethyl succinate. The first microwave-assisted continuous esterification of succinic acid with H2SO4 as a chemical homogeneous catalyst was successfully achieved via a single pass (ca 320 s) at 65–115 ◦C using a MiniFlow 200ss Sairem Technology. The first continuous trans-esterification of dimethyl succinate with lipase Cal B as an enzymatic catalyst was developed using a Syrris Asia Technology, with an optimal reaction condition of 14 min at 40 ◦C. Dialkyl succinates were produced with the two technologies, but higher productivity was observed for the microwave-assisted continuous esterification using chemical catalysts. The continuous flow trans-esterification demonstrated a number of advantages, but it resulted in lower yield of the target esters.
    [Show full text]
  • Brønsted and Lewis Solid Acid Catalysts in the Valorization of Citronellal
    catalysts Article Brønsted and Lewis Solid Acid Catalysts in the Valorization of Citronellal Federica Zaccheria 1, Federica Santoro 1, Elvina Dhiaul Iftitah 2 and Nicoletta Ravasio 1,* 1 CNR Institute of Molecular Science and Technology, Via Golgi 19, 20133 Milano, Italy; [email protected] (F.Z.); [email protected] (F.S.) 2 Chemistry Department Faculty of Science, Brawijaya University Jl. Veteran, Malang 65145, Indonesia; [email protected] * Correspondence: [email protected]; Tel.: +39-02-5031-4382 Received: 30 July 2018; Accepted: 12 September 2018; Published: 22 September 2018 Abstract: Terpenes are valuable starting materials for the synthesis of molecules that are of interest to the flavor, fragrance, and pharmaceutical industries. However, most processes involve the use of mineral acids or homogeneous Lewis acid catalysts. Here, we report results obtained in the liquid-phase reaction of citronellal with anilines under heterogeneous catalysis conditions to give tricyclic compounds with interesting pharmacological activity. The terpenic aldehyde could be converted into octahydroacridines with a 92% yield through an intramolecular imino Diels–Alder reaction of the imine initially formed in the presence of an acidic clay such as Montmorillonite KSF. Selectivity to the desired product strongly depended on the acid sites distribution, with Brønsted acids favoring selectivity to octahydroacridine and formation of the cis isomer. Pure Lewis acids such as silica–alumina with a very low amount of alumina gave excellent results with electron-rich anilines like toluidine and p-anisidine. This protocol can be applied starting directly from essential oils such as kaffir lime oil, which has a high citronellal content.
    [Show full text]
  • Asymmetric Catalysis in Aqueous Media*
    Pure Appl. Chem., Vol. 79, No. 2, pp. 235–245, 2007. doi:10.1351/pac200779020235 © 2007 IUPAC Asymmetric catalysis in aqueous media* Shu– Kobayashi Graduate School of Pharmaceutical Sciences, The University of Tokyo, The HFRE Division, ERATO, Japan Science and Technology Agency (JST), Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Abstract: Lewis acid catalysis has attracted much attention in organic synthesis because of unique reactivity and selectivity attained under mild conditions. Although various kinds of Lewis acids have been developed and applied in industry, these Lewis acids must be gener- ally used under strictly anhydrous conditions. The presence of even a small amount of water handles the reactions owing to preferential reactions of the Lewis acids with water rather than the substrates. In contrast, rare earth and other metal complexes have been found to be water- compatible. Several catalytic asymmetric reactions in aqueous media, including hydroxy- methylation of silicon enolates with an aqueous solution of formaldehyde in the presence of Sc(OTf)3–chiral bipyridine ligand or Bi(OTf)3–chiral bipyridine ligand, Sc- or Bi-catalyzed asymmetric meso-epoxide ring-opening reactions with amines, and asymmetric Mannich- type reactions of silicon enolates with N-acylhydrazones in the presence of a chiral Zn cata- lyst have been developed. Water plays key roles in these asymmetric reactions. Keywords: reactions in aqueous media; Lewis acids; catalytic asymmetric reactions; hydroxymethylation of silicon enolates; Sc(OTf)3–chiral bipyridine ligand. INTRODUCTION Organic reactions in aqueous media are of current interest owing to the key role played by water as a solvent for green chemistry [1].
    [Show full text]
  • Ester Hydrolysis: Conditions for Acid Autocatalysis and a Kinetic Switch
    This is a repository copy of Ester hydrolysis: Conditions for acid autocatalysis and a kinetic switch. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/116706/ Version: Accepted Version Article: Bánsági, T. and Taylor, A.F. orcid.org/0000-0003-0071-8306 (2017) Ester hydrolysis: Conditions for acid autocatalysis and a kinetic switch. Tetrahedron, 73 (33). pp. 5018-5022. ISSN 0040-4020 https://doi.org/10.1016/j.tet.2017.05.049 Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/ Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Accepted Manuscript Ester hydrolysis: Conditions for acid autocatalysis and a kinetic switch Tamás Bánsági, Annette F. Taylor PII: S0040-4020(17)30537-9 DOI: 10.1016/j.tet.2017.05.049 Reference: TET 28715 To appear in: Tetrahedron Received Date: 2 April 2017 Revised Date: 10 May 2017 Accepted Date: 12 May 2017 Please cite this article as: Bánsági Tamá, Taylor AF, Ester hydrolysis: Conditions for acid autocatalysis and a kinetic switch, Tetrahedron (2017), doi: 10.1016/j.tet.2017.05.049.
    [Show full text]
  • Paul M a & Long F A. HO and Related Indicator Acidity Functions. Chem. Rev. 57:1-45, 1957
    Number 4 January 23, 1978 Citation Classics Paul M A & Long F A. HO and related indicator acidity functions. Chem. Rev. 57:1-45, 1957. The authors review the literature pertaining to function (a logarithmic measure of acidity indicator acidity functions and their reducing to pH in dilute aqueous solutions) is applications to elucidating the mechanisms of derived from indicators of charge type: B° + H+ acid catalysis. [The SCI® indicates $$$ BH + that this paper was cited 699 times in “In concentrated aqueous solutions of strong the period 1961-1976.] acids, HO is observed to decrease (indicating increasing acidity) with increasing acid concentration C significantly more rapidly than does -log C, and furthermore the HO values for the different strong acids are spread apart. Since the rates of certain acid- Professor M. A. Paul (retired) catalyzed reactions were found to correlate and Professor FA. Long rather well with the behavior of HO whereas Department of Chemistry the rates of others showed poor correlation, Cornell University interest grew in the possibility of using the Ithaca, New York 14853 presence or absence of such correlation as evidence for the particular mechanism of acid catalysis involved. Our review was prepared January 31, 1977 at a time when interest in acid catalysis had been renewed by the ideas of C.K. Ingold and his associates on the mechanisms of homogeneous organic reactions in general. By “This article, together with a companion assembling and critically evaluating the article on the application of the HO acidity published data on acidity functions and their function to kinetics and mechanisms of acid applications to the study of acid catalysis (252 catalysis, 1 reviewed twenty-five years of references), we evidently helped many research stemming from the establishment by investigators in further research on the subject.
    [Show full text]
  • Catalysis 9.1 General Principles of Catalysis Turnover Number: the Average Number of Reactants That a Catalyst Acts on Before the Catalyst Loses Its Activity
    Chapter 9 Catalysis 9.1 General principles of catalysis Turnover number: the average number of reactants that a catalyst acts on before the catalyst loses its activity. The catalyst increases rate of reaction (decreases activation energy). The thermodynamics of a catalyzed reaction are unaffected by the catalyst. A heterogeneous catalyst: one that does not dissolve in the solution. Ex) Pd/C A homogeneous catalyst: one that dissolves in the solution. All calaysts operate by the same general principle – that is, the activation energy of the rds must be lowered in order for a rate enhancement to occur. 9.1.1 Binding the transition state better than the ground state Substrate: any material (reactant) used in a catalytic reaction Activated complex: simply referred to as the transition state Rate enhancement: the ratio of the rate constant for the catalyzed reaction to that for the uncatalyzed one. To achieve catalysis, the catalyst must stabilize the transition state more than it stabilizes the ground state. That is, the transition state must be bound better than the ground state. 1 2 9.1.3 A spatial temporal approach To achieve catalysis, the catalyst must stabilize the transition state more than it stabilizes the ground state. That is, the transition state must be bound better than the ground state. Another explanation for catalysis: spatial temporal postulate, many intramolecular reactions are often much faster than corresponding intermolecular reactions. -> the rate of reaction between functionalities A and B is proportional to the time that A and B reside within a critical distance. The longer that A and B spend together in the correct geometry for reaction, the greater that probability.
    [Show full text]