SO2 Emissions from 32 Volcanoes During the Period 2005 - 2016

Total Page:16

File Type:pdf, Size:1020Kb

SO2 Emissions from 32 Volcanoes During the Period 2005 - 2016 ECMWF COPERNICUS REPORT Copernicus Atmosphere Monitoring Service CAMS_81 – Global and Regional emissions D81.3.12.3-M24: SO2 emissions from 32 volcanoes during the period 2005 - 2016 Issued by: Chalmers/ Bo Galle and Santiago Arellano Date: 09/17/2019 Ref: CAMS81_2017SC2_D81.3.12.3-M24-201909_v1.docx CAMS81_2017SC2_ D81.3.12.3-M24- 201909_volcanoes Official reference number service contract: 2017/CAMS_81/SC2 This document has been produced in the context of the Copernicus Atmosphere Monitoring Service (CAMS). The activities leading to these results have been contracted by the European Centre for Medium-Range Weather Forecasts, operator of CAMS on behalf of the European Union (Delegation Agreement signed on 11/11/2014). All information in this document is provided "as is" and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability. For the avoidance of all doubts, the European Commission and the European Centre for Medium-Range Weather Forecasts has no liability in respect of this document, which is merely representing the authors view. Copernicus Atmosphere Monitoring Service CHALMERS S. Arellano and B. Galle CNRS-OMP S. Darras CAMS81_2017SC1 – 2018 global anthropogenic emissions Page 3 of 24 Copernicus Atmosphere Monitoring Service Table of Contents 1. Summary 5 2. Volcanic SO2 emissions 7 3. Data overview 8 CAMS81_2017SC1 – 2018 global anthropogenic emissions Page 4 of 24 Copernicus Atmosphere Monitoring Service 1. Summary This report includes information on Volcanic SO2 emissions from 32 volcanoes during the period 2005 – 2016. The investigated volcanoes are listed below: Statistics of measured SO2 flux during 2005-2016 [kg/s] Volcano Latitude Longitude Altitude Country Observatory First Third Mean Std. dev. Median quartile quartile Arenal 10.4627 -84.7024 1610 Costa Rica OVSICORI 1.9 1.8 0.7 1.4 2.4 Concepcion 11.5385 -85.6224 1600 Nicaragua INETER 5.9 4.3 2.8 5.0 7.7 Copahue -37.8564 -71.1601 2756 Chile SERNAGEOMIN 9.4 7.4 4.4 7.6 12.1 Cotopaxi -0.6845 -78.4370 5800 Ecuador IGEPN 9.9 2.2 1.2 3.1 7.3 Etna 37.7506 14.9934 3330 Italy INGV 40.4 30.8 19.8 32.3 50.5 Fuego 14.4742 -90.8806 3763 Guatemala INSIVUMEH 3.5 2.1 1.9 3.3 4.7 Fuego de 19.5117 -103.6167 3850 Mexico UNAM 3.1 3.8 0.8 1.7 4.0 Colima Galeras 1.2214 -77.3592 4080 Colombia SGC 11.0 11.1 3.8 6.8 14.3 Isluga -19.1585 -68.8343 5372 Chile SERNAGEOMIN 8.2 6.2 4.1 6.7 10.7 Lascar -23.3631 -67.7314 5200 Chile SERNAGEOMIN 2.7 2.8 1.0 1.9 3.3 Llaima -38.6973 -71.7300 3030 Chile SERNAGEOMIN 8.1 6.0 3.6 7.4 11.2 Masaya 11.9841 -86.1684 460 Nicaragua INETER 3.7 2.1 2.2 3.3 4.8 Mayon 13.2542 123.6862 2370 Philippines PHIVOLCS 7.0 4.7 3.8 6.1 9.0 Momotombo 12.4238 -86.5388 1250 Nicaragua INETER 1.9 1.2 1.2 1.7 2.2 Nevado del 4.8920 -75.3188 5200 Colombia SGC 8.4 10.7 1.6 4.1 11.3 Ruiz Nyiragongo -1.5215 29.2495 3470 DR Congo GVO 19.0 16.5 7.8 14.5 25.1 CAMS81_2017SC1 – 2018 global anthropogenic emissions Page 5 of 24 Copernicus Atmosphere Monitoring Service Piton de la -21.2536 55.7138 2400 France IPGP 11.1 12.8 2.7 6.0 15.0 Fournaise Planchón -35.2859 -70.5824 3642 Chile SERNAGEOMIN 0.04 0.02 0.03 0.04 0.05 Peteroa Popocatépetl 19.0233 -98.6224 5070 Mexico UNAM 24.7 24.4 7.7 18.1 33.6 Sabancaya -15.7880 -71.8559 5967 Peru INGEMMET 14.2 12.0 5.3 11.4 19.8 San Cristóbal 12.7049 -87.0013 1745 Nicaragua INETER 9.3 7.9 4.2 7.3 12.0 San Miguel 13.4319 -88.2719 2130 El Salvador SNET 22.3 13.3 9.4 20.3 33.1 Sangay -2.0056 -78.3408 5286 Ecuador IGEPN 6.8 4.9 2.8 5.7 10.3 Santa Ana 13.8486 -89.6309 2381 El Salvador SNET 1.9 0.9 1.4 1.8 2.4 Santiaguito 14.7383 -91.5681 2500 Guatemala INSIVUMEH 3.0 2.7 1.3 2.2 3.9 Sinabung 3.1693 98.3930 2460 Indonesia CVGHM 4.3 3.0 2.5 3.7 5.3 Telica 12.6051 -86.8421 1061 Nicaragua INETER 0.8 0.5 0.5 0.7 1.0 Tungurahua -1.4685 -78.4473 5023 Ecuador IGEPN 19.0 16.7 7.5 14.4 25.3 Turrialba 10.0167 -83.7655 3340 Costa Rica OVSICORI 11.9 10.4 4.7 9.0 16.0 Ubinas -16.3434 -70.8972 5672 Peru INGEMMET 3.5 3.8 1.2 2.5 4.6 Villarrica -39.4203 -71.9396 2847 Chile SERNAGEOMIN 7.2 6.7 2.9 5.3 9.3 Vulcano 38.4046 14.9618 250 Italy INGV 0.2 0.3 0.1 0.2 0.3 CAMS81_2017SC1 – 2018 global anthropogenic emissions Page 6 of 24 Copernicus Atmosphere Monitoring Service 2. Volcanic SO2 emissions This data-set presents volcanic gas emission data from NOVAC, the global Network for Observation of Volcanic and Atmospheric Change. For each volcano, data from one or several NOVAC Scanning mini-DOAS instruments are combined with meteorological information to derive daily statistics of total SO2 emission from the volcano. The gas emission is calculated using the ScanDOAS technique described in the paper: Galle, B., Johansson, M., Rivera, C., Zhang, Y., Kihlman, M., Kern, C., Lehmann, T., Platt, U., Arellano, S. and Hidalgo S. (2010), Network for Observation of Volcanic and Atmospheric Change (NOVAC) —A global network for volcanic gas monitoring: Network layout and instrument description, J. Geophys. Res., 115, D05304, doi:10.1029/2009JD011823. Details of the evaluation are described in a forthcoming publication: Arellano, S., Galle, B., the NOVAC collaboration (2019), Synoptic analysis of a decade of daily measurements of SO2 emission in the troposphere from volcanoes of the Network for Observation of Volcanic and Atmospheric Change, submitted. Different versions of the data exist, depending on the algorithms and meteorological information used in the evaluations. In this version, analysed wind data from ECMWF ERA-interim database was used, with a resolution of 0.125×0.125 deg, 6 h time resolution and up to 60 vertical levels from ground up to 0.1 hPa. Data is interpolated to the location of the volcanic vent and time of measurement for each flux calculation. Typically 1 – 3 instruments are installed on each volcano in order to cover different wind directions and facilitate plume height estimates. About 50 individual measurements are made by each instrument each day. Data from the different instruments are combined and if certain quality parameters are fulfilled a valid measurement results. Only daytime measurements are possible as the method uses sky light for the measurement. For days having 5 or more valid measurements an average emission, standard deviation and other statistics are calculated. Data files are provided in netCDF and ASCII formats, following the GEOMS standard that includes metadata and data in the same file. Also figure files in PNG format are provided for the daily emission rate of each volcano. CAMS81_2017SC1 – 2018 global anthropogenic emissions Page 7 of 24 Copernicus Atmosphere Monitoring Service 3. Data overview In the following plots, data from the different volcanoes are shown: Emissions from the Villarica volcano in Chile. Emissions from Ubinas volcano in Peru. CAMS81_2017SC1 – 2018 global anthropogenic emissions Page 8 of 24 Copernicus Atmosphere Monitoring Service Emissions from the Turrialba volcano in Costa Rica. Emissions from the Tungurahua volcano in Ecuador. CAMS81_2017SC1 – 2018 global anthropogenic emissions Page 9 of 24 Copernicus Atmosphere Monitoring Service Emissions from the Telica volcano in Nicaragua. Emissions from the Sinabung volcano in Indonesia. CAMS81_2017SC1 – 2018 global anthropogenic emissions Page 10 of 24 Copernicus Atmosphere Monitoring Service Emissions from the Santiaguito volcano in Chile. Emissions from the Santa Ana volcano in El Salvador. CAMS81_2017SC1 – 2018 global anthropogenic emissions Page 11 of 24 Copernicus Atmosphere Monitoring Service Emissions from the Sangay volcano in Ecuador. Emissions from the San Cristobal volcano in Nicaragua. CAMS81_2017SC1 – 2018 global anthropogenic emissions Page 12 of 24 Copernicus Atmosphere Monitoring Service Emissions from the San Miguel volcano in Salvador Emissions from the Sabancaya volcano in Peru CAMS81_2017SC1 – 2018 global anthropogenic emissions Page 13 of 24 Copernicus Atmosphere Monitoring Service Emissions from the Popocatepetl volcano in Mexico Emissions from the Planchon Peteroa volcano in Argentina CAMS81_2017SC1 – 2018 global anthropogenic emissions Page 14 of 24 Copernicus Atmosphere Monitoring Service Emissions from the Piton de la Fournaise volcano in La Reunion Island Emissions from the Nyiragongo volcano in The Republic of Congo CAMS81_2017SC1 – 2018 global anthropogenic emissions Page 15 of 24 Copernicus Atmosphere Monitoring Service Emissions from the Nevado del Ruiz volcano in Colombia Emissions from the Momotombo volcano in Nicaragua CAMS81_2017SC1 – 2018 global anthropogenic emissions Page 16 of 24 Copernicus Atmosphere Monitoring Service Emissions from the Mayon volcano in the Philippines Emissions from the Masaya volcano in Nicaragua CAMS81_2017SC1 – 2018 global anthropogenic emissions Page 17 of 24 Copernicus Atmosphere Monitoring Service Emissions from the Llaima volcano in Chile Emissions from the Lascar volcano in Chile CAMS81_2017SC1 – 2018 global anthropogenic emissions Page 18 of 24 Copernicus Atmosphere Monitoring Service Emissions from the Isluga volcano in Chile Emissions from the Galeras volcano in Colombia CAMS81_2017SC1 – 2018 global anthropogenic emissions Page 19 of 24 Copernicus Atmosphere Monitoring Service Emissions from the Fuego volcano in Guatemala Emissions from the Fuego de Colima volcano in Mexico CAMS81_2017SC1 – 2018 global anthropogenic emissions Page 20 of 24 Copernicus Atmosphere Monitoring Service Emissions from the Etna volcano in Italy Emissions from the Cotopaxi volcano in Ecuador CAMS81_2017SC1 – 2018 global anthropogenic emissions Page 21 of 24 Copernicus Atmosphere Monitoring Service Emissions from the Copahue volcano in Chile Emissions from the Concepcion volcano in Nicaragua CAMS81_2017SC1 – 2018 global anthropogenic emissions Page 22 of 24 Copernicus Atmosphere Monitoring Service Emissions from the Arenal volcano in Costa Rica CAMS81_2017SC1 – 2018 global anthropogenic emissions Page 23 of 24 Copernicus Atmosphere Monitoring Service ECMWF - Shinfield Park, Reading RG2 9AX, UK Contact: [email protected] atmosphere.copernicus.eu copernicus.eu ecmwf.int .
Recommended publications
  • VOCALS Site Survey Report
    VOCALS Site Survey 30 September – 12 October 2007 Arica, Iquique, Santiago, Chile Brigitte Baeuerle, Henry Boynton, Bob Hannigan, José Meitín, Vidal Salazar, Rob Wood, Pete Daum, Juan Aravena GENERAL INFORMATION: Area 756,950 sq. km Population: 16,284,741 (2007 estimate) Government Type Republic President Michelle Bachelet Jeria Capital City Santiago GDP per capita $12,600 Unemployment Rate 7.8% Life expectancy 77 years Infant Mortality Rate 8.36 death / 1000 life births Currency unit Peso Highest point 22,572 ft (Nevado Ojos del Salado) Main cities Concepción, Viña del Mar, Valparaiso National Holiday Independence Day, 18 September OVERVIEW Chile is unique for its very long (2,650 miles) and comparatively narrow (maximum 250 miles) shape and for its great variety of natural features. It extends from latitudes 18 to 56 degrees south and contains one of the driest regions in the world and one of the wettest areas in South America. It is bound on the north by Peru, on the northeast by Bolivia, on its long eastern border (3,200 miles) by Argentina and on the west by the Pacific Ocean. In its economy and public services, Chile is one of the most developed countries in the Andean region. Climate: Extending over 38 degrees of latitude, from the tropics to the vicinity of Antarctica, and from sea level to altitudes of over 20,000 feet, Chile has a wide variety of climatic conditions. Extreme aridity prevails over the northern part of the country; the average annual rainfall in this region is 0.04 inches. Temperatures are moderate along the coast throughout the year and more extreme inland, especially in the central basin.
    [Show full text]
  • Morphological and Geochemical Features of Crater Lakes in Costa Rica: an Overview
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/307656088 Morphological and geochemical features of crater lakes in Costa Rica: an overview Article in Journal of limnology · August 2009 DOI: 10.4081/jlimnol.2009.193 CITATIONS READS 13 45 7 authors, including: Antonio Delgado Huertas Maria Martinez Cruz CSIC-UGR Instituto Andaluz de Ciencias de la Tierra (IACT) National University of Costa Rica 354 PUBLICATIONS 6,671 CITATIONS 102 PUBLICATIONS 496 CITATIONS SEE PROFILE SEE PROFILE Emelia Duarte Orlando Vaselli Stephen F. Austin State University University of Florence 20 PUBLICATIONS 230 CITATIONS 572 PUBLICATIONS 6,516 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Geochemical study of the fluids of the Copahue and Planchón-Peteroa volcanic-hydrothermal systems (Southern Volcanic Zone of the Andes) View project Reconocimiento del sistema kárstico de Venado de San Carlos y sus implicaciones espeleológicas, hidrogeológicas, geológicas y geo-turísticas View project All content following this page was uploaded by Franco Tassi on 29 June 2017. The user has requested enhancement of the downloaded file. J. Limnol., 68(2): 193-205, 2009 DOI: 10.3274/JL09-68-2-04 Morphological and geochemical features of crater lakes in Costa Rica: an overview Franco TASSI*, Orlando VASELLI, Erik FERNANDEZ1), Eliecer DUARTE1), Maria MARTINEZ1), Antonio DELGADO HUERTAS2) and Francesco BERGAMASCHI Department of Earth Sciences, Via G. La Pira 4, 50121, University of Florence (Italy) 1)Volcanological and Seismological Observatory, Nacional University, Heredia (Costa Rica) 2)Estacion Experimental de Zaidin (CSIC), Prof. Albareda 1, 18008, Granada (Spain) *e-mail corresponding author: [email protected] ABSTRACT This paper describes the compositional and morphological features of the crater lakes found in the volcanoes of Rincón de La Vieja, Poás, Irazú, Congo and Tenorio volcanoes (Costa Rica).
    [Show full text]
  • Wfp Lac Situp 10 200923 Exter
    WFP LATIN AMERICA & CARIBBEAN REGION COVID-19 Logistics Situation Update #10 23 September 2020 Date 07 July 2020 Month YYYY 1. Highlights Constraints Hurricane Season (Source: National Hurricane Center) Atlantic: • Hurricane Sally (CAT 2): Sally made landfall at Mobile, Alabama on 16 September early morning as a category 2 hurricane. As a slow-moving storm, Sally brought life-threatening storm surge and flash flooding to Alabama, Mississippi and Florida. Hundreds of people were rescued from flooding areas and more than half million population were left without electricity. Sally weakened to a tropical depression on 16 September. • Major Hurricane Teddy (CAT 4): Teddy is expected to transition to a powerful post-tropical cyclone as it moves near or over portions of Atlantic Canada on 22 September through 24 September where direct impacts from wind, rain and storm surge are expected. Very large swells produced by Teddy are expected to affect portions of Bermuda, the Leeward Islands, the Greater Antilles, the Bahamas, the east coast of the United States, and the Atlantic Canada during the next few days. These swells are expected to cause life-threatening surf and rip current conditions. • Tropical Storm Vicky: Last advisory on Vicky was issued on 17 September. The remnant low should remain on a west south-westward heading while it is steered by the low-level north-easterly trade wind flow over 18-19 September. • Tropical Storm Beta: Beta weakened to a tropical depression on 22 September. Significant flash and urban flooding are occurring and will continue to occur for coast of Texas today. The slow motion of Beta will continue to produce a long duration rainfall event from the middle Texas coast to southern Louisiana.
    [Show full text]
  • And Gas-Based Geochemical Prospecting Of
    Water- and gas-based geochemical prospecting of geothermal reservoirs in the Tarapacà and Antofagasta regions of northern Chile Tassi, F.1, Aguilera, F.2, Vaselli, O.1,3, Medina, E.2, Tedesco, D.4,5, Delgado Huertas, A.6, Poreda, R.7 1) Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121, Florence, Italy 2) Departamento de Ciencias Geológicas, Universidad Católica del Norte, Av. Angamos 0610, 1280, Antofagasta, Chile 3) CNR-IGG Institute of Geosciences and Earth Resources, Via G. La Pira 4, 50121, Florence, Italy 4)Department of Environmental Sciences, 2nd University of Naples, Via Vivaldi 43, 81100 Caserta, Italy 5) CNR-IGAG National Research Council, Institute of Environmental Geology and Geo-Engineering, Pzz.e A. Moro, 00100 Roma, Italy. 6) CSIS Estacion Experimental de Zaidin, Prof. Albareda 1, 18008, Granada, Spain. 7) Department of Earth and Environmental Sciences, 227 Hutchinson Hall, Rochester, NY 14627, U.S.A.. Studied area The Andean Central Volcanic Zone, which runs parallel the Central Andean Cordillera crossing from North to This study is mainly focused on the geochemical characteristics of water and gas South the Tarapacà and Antofagasta regions of northern Chile, consists of several volcanoes that have shown phases of thermal fluids discharging in several geothermal areas of northern Chile historical and present activity (e.g. Tacora, Guallatiri, Isluga, Ollague, Putana, Lascar, Lastarria). Such an intense (Fig. 1); volcanism is produced by the subduction process thrusting the oceanic Nazca Plate beneath the South America Plate. The anomalous geothermal gradient related to the geodynamic assessment of this extended area gives El Tatio, Apacheta, Surire, Puchuldiza-Tuya also rise to intense geothermal activity not necessarily associated with the volcanic structures.
    [Show full text]
  • Muon Tomography Sites for Colombian Volcanoes
    Muon Tomography sites for Colombian volcanoes A. Vesga-Ramírez Centro Internacional para Estudios de la Tierra, Comisión Nacional de Energía Atómica Buenos Aires-Argentina. D. Sierra-Porta1 Escuela de Física, Universidad Industrial de Santander, Bucaramanga-Colombia and Centro de Modelado Científico, Universidad del Zulia, Maracaibo-Venezuela, J. Peña-Rodríguez, J.D. Sanabria-Gómez, M. Valencia-Otero Escuela de Física, Universidad Industrial de Santander, Bucaramanga-Colombia. C. Sarmiento-Cano Instituto de Tecnologías en Detección y Astropartículas, 1650, Buenos Aires-Argentina. , M. Suárez-Durán Departamento de Física y Geología, Universidad de Pamplona, Pamplona-Colombia H. Asorey Laboratorio Detección de Partículas y Radiación, Instituto Balseiro Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Bariloche-Argentina; Universidad Nacional de Río Negro, 8400, Bariloche-Argentina and Instituto de Tecnologías en Detección y Astropartículas, 1650, Buenos Aires-Argentina. L. A. Núñez Escuela de Física, Universidad Industrial de Santander, Bucaramanga-Colombia and Departamento de Física, Universidad de Los Andes, Mérida-Venezuela. December 30, 2019 arXiv:1705.09884v2 [physics.geo-ph] 27 Dec 2019 1Corresponding author Abstract By using a very detailed simulation scheme, we have calculated the cosmic ray background flux at 13 active Colombian volcanoes and developed a methodology to identify the most convenient places for a muon telescope to study their inner structure. Our simulation scheme considers three critical factors with different spatial and time scales: the geo- magnetic effects, the development of extensive air showers in the atmosphere, and the detector response at ground level. The muon energy dissipation along the path crossing the geological structure is mod- eled considering the losses due to ionization, and also contributions from radiative Bremßtrahlung, nuclear interactions, and pair production.
    [Show full text]
  • Magmatic Evolution of the Nevado Del Ruiz Volcano, Central Cordillera, Colombia Minera1 Chemistry and Geochemistry
    Magmatic evolution of the Nevado del Ruiz volcano, Central Cordillera, Colombia Minera1 chemistry and geochemistry N. VATIN-PÉRIGNON “‘, P. GOEMANS “‘, R.A. OLIVER ‘*’ L. BRIQUEU 13),J.C. THOURET 14J,R. SALINAS E. 151,A. MURCIA L. ” Abstract : The Nevado del RU~‘, located 120 km west of Bogota. is one of the currently active andesitic volcanoes that lies north of the Central Cordillera of Colombia at the intersection of two dominant fault systems originating in the Palaeozoïc basement. The pre-volcanic basement is formed by Palaeozoïc gneisses intruded by pre-Cretaceous and Tertiarygranitic batholiths. They are covered by lavas and volcaniclastic rocks from an eroded volcanic chain dissected during the late Pliocene. The geologic history of the Nevado del Ruiz records two periods of building of the compound volcano. The stratigraphie relations and the K-Ar dating indicate that effusive and explosive volcanism began approximately 1 Ma ago with eruption of differentiated andesitic lava andpyroclastic flows and andesitic domes along a regional structural trend. Cataclysmic eruptions opened the second phase of activity. The Upper sequences consist of block-lavas and lava domes ranging from two pyroxene-andesites to rhyodacites. Holocene to recent volcanic eruptions, controled by the intense tectonic activity at the intersection of the Palestina fawlt with the regional fault system, are similar in eruptive style and magma composition to eruptions of the earlier stages of building of the volcano. The youngest volcanic activity is marked by lateral phreatomagmatic eruptions, voluminous debris avalanches. ash flow tuffs and pumice falls related to catastrophic collapse during the historic eruptions including the disastrous eruption of 1985.
    [Show full text]
  • DIPECHO VI Central America FINAL
    European Commission Instructions and Guidelines for DG ECHO potential partners wishing to submit proposals for a SIXTH DIPECHO ACTION PLAN IN CENTRAL AMERICA COSTA RICA, EL SALVADOR, GUATEMALA, HONDURAS, NICARAGUA, PANAMA Budget article 23 02 02 Deadline for submitting proposals: 30 April 2008 1 Table of contents BACKGROUND................................................................................................................................ 3 1. OBJECTIVES OF THE PROGRAMME AND PRIORITY ISSUES FOR THE 6TH ACTION PLAN FOR CENTRAL AMERICA .............................................................................................................. 6 1.1 Principal objective .......................................................................................................................... 5 1.2 Specific objective ............................................................................................................................ 5 1.3 Strategic programming imperatives (sine qua non)......................................................................... 6 1.4 Type of activities ............................................................................................................................. 8 1.5 Priorities in terms of geographical areas, hazards and sectors ...................................................... 11 1.6 Visibility and Communication requirements................................................................................. 16 2. FINANCIAL ALLOCATION PROVIDED ...................................................................................
    [Show full text]
  • Review and Reassessment of Hazards Owing to Volcano–Glacier Interactions in Colombia
    128 Annals of Glaciology 45 2007 Review and reassessment of hazards owing to volcano–glacier interactions in Colombia Christian HUGGEL,1 Jorge Luis CEBALLOS,2 Bernardo PULGARI´N,3 Jair RAMI´REZ,3 Jean-Claude THOURET4 1Glaciology and Geomorphodynamics Group, Department of Geography, University of Zurich, 8057 Zurich, Switzerland E-mail: [email protected] 2Instituto de Meteorologı´a, Hidrologı´a y Estudios Ambientales, Bogota´, Colombia 3Instituto Colombiano de Geologı´a y Minerı´a, Bogota´, Colombia 4Laboratoire Magmas et Volcans UMR 6524 CNRS, Universite´ Blaise-Pascal, Clermont-Ferrand, France ABSTRACT. The Cordillera Central in Colombia hosts four important glacier-clad volcanoes, namely Nevado del Ruiz, Nevado de Santa Isabel, Nevado del Tolima and Nevado del Huila. Public and scientific attention has been focused on volcano–glacier hazards in Colombia and worldwide by the 1985 Nevado del Ruiz/Armero catastrophe, the world’s largest volcano–glacier disaster. Important volcanological and glaciological studies were undertaken after 1985. However, recent decades have brought strong changes in ice mass extent, volume and structure as a result of atmospheric warming. Population has grown and with it the sizes of numerous communities located around the volcanoes. This study reviews and reassesses the current conditions of and changes in the glaciers, the interaction processes between ice and volcanic activity and the resulting hazards. Results show a considerable hazard potential from Nevados del Ruiz, Tolima and Huila. Explosive activity within environments of snow and ice as well as non-eruption-related mass movements induced by unstable slopes, or steep and fractured glaciers, can produce avalanches that are likely to be transformed into highly mobile debris flows.
    [Show full text]
  • Eruptive Activity of Planchón-Peteroa Volcano for Period 2010-2011, Southern Andean Volcanic Zone, Chile
    Andean Geology 43 (1): 20-46. January, 2016 Andean Geology doi: 10.5027/andgeoV43n1-a02 www.andeangeology.cl Eruptive activity of Planchón-Peteroa volcano for period 2010-2011, Southern Andean Volcanic Zone, Chile *Felipe Aguilera1, 2, Óscar Benavente3, Francisco Gutiérrez3, Jorge Romero4, Ornella Saltori5, Rodrigo González6, Mariano Agusto7, Alberto Caselli8, Marcela Pizarro5 1 Servicio Nacional de Geología y Minería, Avda. Santa María 0104, Santiago, Chile. 2 Present address: Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile. [email protected] 3 Departamento de Geología, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile. [email protected]; [email protected] 4 Centro de Investigación y Difusión de Volcanes de Chile, Proyecto Archivo Nacional de Volcanes, Santiago, Chile. [email protected] 5 Programa de Doctorado en Ciencias mención Geología, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile. [email protected]; [email protected] 6 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile. [email protected] 7 Departamento de Ciencias Geológicas, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, 1428EHA, Buenos Aires, Argentina. [email protected] 8 Laboratorio de Estudio y Seguimiento de Volcanes Activos (LESVA), Universidad Nacional de Río Negro, Roca 1242, (8332) Roca, Argentina. [email protected] * Corresponding author: [email protected] ABSTRACT. Planchón-Peteroa volcano started a renewed eruptive period between January 2010 and July 2011. This eruptive period was characterized by the occurrence of 4 explosive eruptive phases, dominated by low-intensity phreatic activity, which produced almost permanent gas/steam columns (200-800 m height over the active crater).
    [Show full text]
  • Evaluación Del Riesgo Volcánico En El Sur Del Perú
    EVALUACIÓN DEL RIESGO VOLCÁNICO EN EL SUR DEL PERÚ, SITUACIÓN DE LA VIGILANCIA ACTUAL Y REQUERIMIENTOS DE MONITOREO EN EL FUTURO. Informe Técnico: Observatorio Vulcanológico del Sur (OVS)- INSTITUTO GEOFÍSICO DEL PERÚ Observatorio Vulcanológico del Ingemmet (OVI) – INGEMMET Observatorio Geofísico de la Univ. Nacional San Agustín (IG-UNSA) AUTORES: Orlando Macedo, Edu Taipe, José Del Carpio, Javier Ticona, Domingo Ramos, Nino Puma, Víctor Aguilar, Roger Machacca, José Torres, Kevin Cueva, John Cruz, Ivonne Lazarte, Riky Centeno, Rafael Miranda, Yovana Álvarez, Pablo Masias, Javier Vilca, Fredy Apaza, Rolando Chijcheapaza, Javier Calderón, Jesús Cáceres, Jesica Vela. Fecha : Mayo de 2016 Arequipa – Perú Contenido Introducción ...................................................................................................................................... 1 Objetivos ............................................................................................................................................ 3 CAPITULO I ........................................................................................................................................ 4 1. Volcanes Activos en el Sur del Perú ........................................................................................ 4 1.1 Volcán Sabancaya ............................................................................................................. 5 1.2 Misti ..................................................................................................................................
    [Show full text]
  • Boletín Mensual Sismos Y Volcanes De Nicaragua Enero, 2021
    Boletín Sismos y Volcanes de Nicaragua. Enero, 2021. Dirección General de Geología y Geofísica Instituto Nicaragüense de Estudios Territoriales Dirección General de Geología y Geofísica Boletín mensual Sismos y Volcanes de Nicaragua Enero, 2021 Mapa epicentral de sismos localizados en Nicaragua. Enero, 2021 pág. 1 Boletín Sismos y Volcanes de Nicaragua. Enero, 2021. Dirección General de Geología y Geofísica Instituto Nicaragüense de Estudios Territoriales (INETER) Dirección General de Geología y Geofísica Boletín Sismológico, Vulcanológico y Geológico Enero, 2021 Las observaciones rutinarias de sismicidad, vulcanismo y otros fenómenos geológicos en NIC, resultan del sistema de monitoreo y vigilancia desarrollado y mantenido por INETER. El contenido de este boletín se basa en el trabajo de las siguientes personas: Monitoreo Sismológico – Turno Sismológico Antonio Acosta, Greyving Argüello, Amilcar Cabrera, Milton Espinoza, Petronila Flores, Miguel Flores Ticay, Fernando García, Juan Carlos Guzmán, Ulbert Grillo, Martha Herrera, Domingo Ñamendi, Ana Rodríguez Lazo, Wesly Rodríguez, Jacqueline Sánchez, Emilio Talavera, Virginia Tenorio. Procesamiento Final de los Registros Sísmicos Jacqueline Sánchez, Virginia Tenorio Monitoreo Volcánico Eveling Espinoza, Armando Saballos, Martha Ibarra, David Chavarría, Teresita Olivares, Dodanis Matus, Elvis Mendoza, Rinath José Cruz Talavera Mantenimiento de la Red Sísmica y Sistemas Electrónicos Antonio Acosta, Martha Herrera, Fernando García, Domingo Ñamendis, Allan Morales, Ulbert Grillo Departamento Tecnología Información y Comunicación Miguel Flores, Norwing Acosta, Ernesto Mendoza Geología Carmen Gutiérrez, Gloria Pérez, Francisco Mendoza, Ada Mercado Rodríguez, Bianca Vanegas, Rosario Avilés Preparación Final del Catálogo Virginia Tenorio Febrero, 2021 Algunos artículos particulares llevan los nombres de los autores respectivos, quienes Son responsables por la veracidad de los datos presentados y las conclusiones alcanzadas.
    [Show full text]
  • Revision 2 Understanding Magmatic Processes at Telica Volcano
    Revision 2 Understanding magmatic processes at Telica volcano, Nicaragua: Crystal size distribution and textural analysis Molly Witter1,2*, Tanya Furman1, Peter LaFemina1, Maureen Feineman1 1 Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA 2 Now at: Department of Geological Sciences, Stanford University, 397 Panama Mall, Stanford CA, 94305 USA * Corresponding author: [email protected] 1 Abstract 1 Telica volcano in Nicaragua currently exhibits persistent activity with continuous seismicity and 2 degassing, yet it has not produced lava flows since 1529. To provide insight into magma 3 chamber processes including replenishment and crystallization, crystal size distribution (CSD) 4 profiles of plagioclase feldspar phenocrysts were determined for Quaternary Telica basalts and 5 basaltic andesites. Textural analysis of fourteen highly crystalline lavas (>30 vol.% phenocrysts) 6 indicates that the samples are dominated by sieve-textured plagioclase feldspar phenocrysts 7 whose origin requires thermochemical disequilibrium within the magmatic system. The CSD 8 curves display an inverse relationship between phenocryst length and population density. 9 Concave-up patterns observed for the Telica lava samples can be represented by linear segments 10 that define two crystal populations: a steeply-sloping segment for small crystals (<1.5 mm) and a 11 gently-sloping segment for crystals >1.5 mm in length. The two crystal populations may be 12 explained by magma replenishment and a mixing model in which a mafic magma is introduced 13 to a stable chamber that is petrologically and geochemically evolving. Residence times 14 calculated using the defined linear segments of the CSD curves suggest these magmatic 15 processes occur over time scales on the order of decades to centuries.
    [Show full text]