Hydrogen Bonding in Silanols and Their Adducts

Total Page:16

File Type:pdf, Size:1020Kb

Hydrogen Bonding in Silanols and Their Adducts Hydrogen Bonding in Silanols and their Adducts A Thesis presented by Lisa Dawn Cother In partial fulfilment of the requirements for the award of the degrees of Doctor of Philosophy of the University of London and Diploma of Imperial College Department of Chemistry Imperial College London SW7 2AY June 1998 Abstract ABSTRACT The work described in this thesis concentrates mainly on the formation of hydrogen bonded adducts of silanols with nitrogen and oxygen containing molecules. Hydrogen bonded adducts of triphenylsilanol, Ph3SiOH, and tetraphenyldisiloxane-1,3-diol, (HOPh2Si)20, with a range of amines, azacrowns, alcohols, ethers and crown ethers have been prepared and characterised by infrared (IR), multinuclear solution NMR and solid state 29Si CPMAS NMR spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The adducts [(Me3S03CSiPh2OH}2.TMEDA, (HOPh2Si)20. { {}10Ph2SiOSiPh20} [Et3N11] } , [(HOPh2Si)20]4.(Et2NH)2, (HOPh2S i)2 0 . dioxane, Ph3SiOH.tris(2-aminoethyl)amine, (Ph3SiOH)2.piperazine, (Ph3SiOH)2.TMEDA and (Ph3SiOH)2.18-crown-6.(H20)2 have also been characterised by X-ray crystallography which reveals a range of hydrogen bonded arrangements. Attempts were also made at preparing, and characterising by X-ray crystallography, unusual or interesting silanols The X-ray structure of tBu2Si(H)OH, a rare example of a stable hydridosilane, is reported. In infrared spectroscopy, the shift in OH streching frequency, AD, between a 'free' SiOH and one involved in hydrogen bonding to a suitable base is proportional to the enthalpy of hydrogen bonding, AH. This relationship was used to assess the relative hydrogen bonding capabilities of a variety of silanols towards bases in solution before adduct formation in the solid state was,attempted. By this method the hydrogen bonding interactions of Ph3SiOH with relatively weak hydrogen bond acceptor molecules such as silyl ethers, siloxanes and alkenes were studied since these species are important in industrial reaction mixtures. The low temperature X-ray structure of the cyclic siloxane (Me2SiO)5 was also determined and the relationship previously proposed between Si-O-Si bond angle and basicity further investigated. Variable temperature infrared spectroscopic studies also enabled the equilibrium constants and enthalpy of hydrogen bonding to be determined quantitatively for Ph3SiOH with a series of ethers. The application of 170 NMR spectroscopy to the study of organosilicon compounds is reviewed and 170 NMR studies carried out on a variety of silanols. The occurance of significant exchange between the OH groups in Ph3SiOH and 170 labelled water was also revealed. 2 Dedication To My Parents 3 Acknowledgements ACKNOWLEDGEMENTS Firstly, I would like to thank my supervisor, Dr. Paul Lickiss, for all his help, encouragement and advice throughout the course of this work. I would also like to thank my industrial supervisors, Dr. Sian Rees and Dr. Richard Taylor (Dow Corning Corporation), for their advice and support, and donations of samples. Thanks must also go to the following people for their help and invaluable services: Paul Hammerton for his time and patience setting up the 170 NMR experiment, as well as helpful discussions and advice on other NMR aspects of this work, also Simeon Bones for setting up the 170 NMR experiment at Dow Corning, Dr. Abil Aliev (University College, London) for the solid state 29Si CPMAS NMR spectra, Prof. David Williams, Dr. Andrew White and Dr. Ian Baxter (Imperial College), and Prof. Mary Mc Partlin and Dr. Nick Choi (University of North London) for X-ray crystallographic studies, Dr. Simon Parsons (Edinburgh University) for low temperature X-ray crystallographic studies, Simon Turner for the loan of many items of equipment, John Barton and Geoff Tucker for mass spectrometry, Hilary O'Callaghan for microanalyses, Dr. Alan Bailey for Raman spectra, and Izoldi Bezougli and Phil Blakeman for themogravimetric analyses. I would like to give a big thanks to the past and present members of the Lickiss research group for providing help, friendship and lots of entertainment over the years: Dipti Shah, Colin Smith, Mark Bronstrup, Phindile Masangane, Guilaine Veneziani and Chris Yates. These thanks are also extended to Carole Dupuy for preliminary research into this project before I started and for her generous hospitality whilst attending the XIth International Symposium on Organosilicon Chemistry in Montpellier. I would also like to thank everyone on the sixth floor for making it an enjoyable and fun place to work. In particular, thanks go to Brent, Nige, Big Steve, Mine and Colin (GBY group), and Phil Dyer, Little Steve, Crispin and Phil B. (DMPM group). Additional thanks go to Phil Dyer for many helpful discussions and practical advice. Many thanks are also due to Edie for brightening up the mornings and her endless kindness and generosity. Thanks go to everyone I met in R & D at Dow Corning, Barry, for their help and for making my time spent there very enjoyable, including the Doonans for their warm hospitality and excellent food. Outside college, I would especially like to thank Sarah Lancaster for being a great friend and flatmate over the last three years and for providing me with such luxurious accomodation. These thanks are also extended to her parents, Mike and Gill, and her sister, Karen, for everything that they have done for me, and for the fun I had. I would also like to thank Roxy, Betty, Alex and Laura for many entertaining evenings out and 4 Acknowledgements dim sum lunches, and Andy for all his patience and encouragement, especially whilst writing up. The EPSRC and Dow Corning Corporation are thanked for financial support via the CASE sheme. Last, but not least, I would like to thank my parents for their continuous support and encouragement throughout my studies. 5 Contents CONTENTS Title Page 1 Abstract 2 Dedication 3 Acknowledgements 4 Contents 6 List of Figures 11 List of Tables 15 List of Schemes 17 List of Abbreviations 18 Chapter 1 Introduction 1.1 General introduction 22 1.1.1 The silanol group in nature 22 1.1.2 The silanol group in industry 24 1.1.3 The degradation of polydimethylsiloxanes (silicones) to silanols in the environment 25 1.2 Synthesis of silanols 27 1.3 Acidity and basicity of silanols 29 1.3.1 Acidity 29 1.3.2 Basicity 30 1.4 Hydrogen bonding interactions of silanols 31 1.4.1 The hydrogen bond 31 1.4.2 Infrared spectroscopy in the study of hydrogen bonding 32 1.4.2.1 Correlation between Aus and the enthalpy of hydrogen bond formation, AH 34 1.4.3 Infrared spectroscopic studies of the hydrogen bonding interactions of silanols in solution 35 1.4.4 X-ray crystallographic studies of the hydrogen bonded structures formed by silanols in the solid state 39 1.4.4.1 Compounds containing one SiOH group, silanols 39 1.4.4.2 Compounds containing an Si(OH)2 group, silanediols, or two Si-OH groups, oc,co-siloxanediols 42 1.4.4.3 Compounds containing an Si(OH)3 group, silanetriols 43 1.4.4.4 Compounds containing both Si-OH and other functional groups 44 6 Contents 1.4.5 Hydrogen bonded adducts of silanols with other molecules in the 48 solid state and their X-ray structures Chapter 2 Infrared spectroscopic studies of the hydrogen bonding interactions of silanols in solution 2.1 Introduction 57 2.2 The relative propensity of a series of silanols towards hydrogen bonding interactions with suitable bases 58 2.3 Infrared spectroscopic studies of the hydrogen bonding interactions between mixtures of silanols in solution 64 2.4 Qualitative infrared spectroscopic studies of the hydrogen bonding interactions between Ph3SiOH and other suitable molecules 65 2.4.1 With silyl ethers and siloxanes 65 2.4.1.1 Low temperature crystal structure of D5 72 2.4.2 With alkenes 75 2.5 Determination of thermodynamic data for hydrogen bonded adducts of Ph3SiOH by infrared spectroscopy 78 2.5.1 Method 78 2.5.2 Thermodynamic data for hydrogen bonded adducts of Ph3SiOH with ethers 82 2.5.3 Thermodynamic data for hydrogen bonded adducts of Ph3SiOH with amines 87 Chapter 3 Hydrogen bonded adducts of silanols 3.1 Introduction 89 3.2 General methods for the preparation of adducts of silanols 90 3.3 Identification and characterisation of adducts of silanols 92 3.4 Adducts of (HOPh2S020 97 3.4.1 With amines 98 3.4.1.1 Primary amines 98 3.4.1.2 Secondary amines 99 3.4.1.2.1 Crystal structure of RHOPh2Si)2014.(Et2NH)2 104 3.4.1.3 Tertiary amines 107 3.4.1.3.1 Crystal structure of (HOPh2S020. ( [HOPh2SiOSiPh20][Et3N11] } 113 3.4.1.4 With nitrogen heterocycles 115 3.4.2 With alcohols 118 3.4.3 With ethers 119 Contents 3.4.3.1 Crystal structure of (HOPh2Si)20.1,4-dioxane 120 3.4.4 With crown ethers 123 3.4.5 With amino acids 123 3.4.6 With mixtures of amines and oxygen containing molecules 124 3.4.7 With phosphines 125 3.5 Adducts of Ph3SiOH 126 3.5.1 With amines 126 3.5.1.1 Primary amines 126 3.5.1.1.1 Crystal structure of Ph3SiOH.tris(2- aminoethyl)amine 127 3.5.1.2 Secondary amines 129 3.5.1.2.1 Crystal structure of (Ph3SiOH)2.piperazine 130 3.5.1.3 Tertiary amines 130 3.5.1.3.1 Crystal structure of (Ph3SiOH)2.TMEDA 135 3.5.1.4 With nitrogen heterocycles 135 3.5.2 With azacrowns 135 3.5.3 With crown ethers 140 3.5.3.1 Crystal structure of (Ph3SiOH)2.18-crown-6.(H20)2 146 3.5.4 With azacrown ethers 149 3.5.5 With amine hydrochlorides 151 3.5.6 With carboxylic acids 152 3.5.7 With phosphines 152 3.6 Adducts of other silanols 153 3.6.1 Adducts of Ph2Si(OH)2 153 3.6.2 Adducts of HO(SiPh2O)3H 154 3.6.3 Adducts of meso-(HOMePhSi)20 and
Recommended publications
  • Silylation and Characterization of of Piroxicam with Some Silylating Reagents
    Silylation and characterization of of piroxicam with some silylating reagents Mohammad Galehassadi ( [email protected] ) Azarbaijan Shahid Madani University Somayeh Jodeiri Azarbaijan Shahid Madani University Research Article Keywords: Piroxicam, Silyl ether, Organosilicon, Drug delivery, Lipophilic Posted Date: March 22nd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-345479/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Silylation and characterization of of piroxicam with some silylating reagents Mohammad. galehassadi, *, a Somayeh Jodeiri a Department of Chemistry, Azarbaijan Shahid Madani University, Tabriz, Iran; e-mail: Email:[email protected] Tel: +984134327541 Mobile: +989144055400 Abstract: In this work, we synthesized some organosilicon derivatives of piroxicam. Due to the some properties of organosilicon compounds, including increased lipophilicity and thermal stabilization and prodrug for drugs, some silyl ethers of this drug were synthesized and characterized..Increasing of the lipophilic properties of this drug can be very important in the rate of absorption and its effectiveness. Graphic abstract: Keywords: Piroxicam, Silyl ether, Organosilicon, Drug delivery, Lipophilic 1.Introduction: Piroxicam is a painkiller and its main use is to reduce or stop pain. In osteoarthritis, this drug has anti-inflammatory effects. This drug is used to treat many diseases such as headache and toothache, leg pain and piroxicam reduces the production of prostaglandins by controlling cyclooxygenase, thus showing its effectiveness in reducing and eliminating pain. It is also used to relieve joint, bone and muscle pain. It is even used to control gout and menstrual cramps. It binds to a large amount of protein and is metabolized in the liver and then excreted in the urine.
    [Show full text]
  • Silyl Ketone Chemistry. Preparation and Reactions of Silyl Allenol Ethers. Diels-Alder Reactions of Siloxy Vinylallenes Leading to Sesquiterpenes2
    J. Am. Chem. SOC.1986, 108, 7791-7800 7791 pyrany1oxy)dodecanoic acid, 1.38 1 g (3.15 mmol) of GPC-CdCIz, 0.854 product mixture was then filtered and concentrated under reduced g (7.0 mmol) of 4-(dimethylamino)pyridine, and 1.648 g (8.0 mmol) of pressure. The residue was dissolved in 5 mL of solvent B and passed dicyclohexylcarbodiimide was suspended in 15 mL of dry dichloro- through a 1.2 X 1.5 cm AG MP-50 cation-exchange column in order to methane and stirred under nitrogen in the dark for 40 h. After removal remove 4-(dimethylamino)pyridine. The filtrate was concentrated under of solvent in vacuo, the residue was dissolved in 50 mL of CH30H/H20 reduced pressure, dissolved in a minimum volume of absolute ethanol, (95/5, v/v) and stirred in the presence of 8.0 g of AG MP-50 (23 OC, and then concentrated again. Chromatographic purification of the res- 2 h) to allow for complete deprotection of the hydroxyl groups (monitored idue on a silica gel column (0.9 X 6 cm), eluting first with solvent A and by thin-layer chromatography)." The resin was then removed by fil- then with solvent C (compound 1 elutes on silica as a single yellow band), tration and the solution concentrated under reduced pressure. The crude afforded, after drying [IO h, 22 OC (0.05 mm)], 0.055 g (90%) of 1 as product (2.75 g). obtained after drying [12 h, 23 OC (0.05 mm)], was a yellow solid: R 0.45 (solvent C); IR (KBr) ucz0 1732, uN(cH3)3 970, then subjected to chromatographic purification by using a 30-g (4 X 4 1050, 1090cm-'; I' H NMR (CDCI,) 6 1.25 (s 28 H, CH2), 1.40-2.05 (m, cm) silica gel column, eluting with solvents A and C, to yield 0.990 g 20 H, lipoic-CH,, CH2CH20,CH2CH,C02), 2.3 (t.
    [Show full text]
  • Activation of Silicon Bonds by Fluoride Ion in the Organic Synthesis in the New Millennium: a Review
    Activation of Silicon Bonds by Fluoride Ion in the Organic Synthesis in the New Millennium: A Review Edgars Abele Latvian Institute of Organic Synthesis, 21 Aizkraukles Street, Riga LV-1006, Latvia E-mail: [email protected] ABSTRACT Recent advances in the fluoride ion mediated reactions of Si-Η, Si-C, Si-O, Si-N, Si-P bonds containing silanes are described. Application of silicon bonds activation by fluoride ion in the syntheses of different types of organic compounds is discussed. A new mechanism, based on quantum chemical calculations, is presented. The literature data published from January 2001 to December 2004 are included in this review. CONTENTS Page 1. INTRODUCTION 45 2. HYDROSILANES 46 3. Si-C BOND 49 3.1. Vinyl and Allyl Silanes 49 3.2. Aryl Silanes 52 3.3. Subsituted Alkylsilanes 54 3.4. Fluoroalkyl Silanes 56 3.5. Other Silanes Containing Si-C Bond 58 4. Si-N BOND 58 5. Si-O BOND 60 6. Si-P BOND 66 7. CONCLUSIONS 66 8. REFERENCES 67 1. INTRODUCTION Reactions of organosilicon compounds catalyzed by nucleophiles have been under extensive study for more than twenty-five years. In this field two excellent reviews were published 11,21. Recently a monograph dedicated to hypervalent organosilicon compounds was also published /3/. There are also two reviews on 45 Vol. 28, No. 2, 2005 Activation of Silicon Bonds by Fluoride Ion in the Organic Synthesis in the New Millenium: A Review fluoride mediated reactions of fluorinated silanes /4/. Two recent reviews are dedicated to fluoride ion activation of silicon bonds in the presence of transition metal catalysts 151.
    [Show full text]
  • The Synthesis of N-Substituted Ferrocenes and C–H Activation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publikationsserver der RWTH Aachen University The Synthesis of N -Substituted Ferrocenes and C–H Activation Towards the Synthesis of Organosilanols Salih Oz¸cubuk¸cu¨ Dissertation The Synthesis of N -Substituted Ferrocenes and C–H Activation Towards the Synthesis of Organosilanols Von der Fakult¨at f¨ur Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westf¨alischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Master of Science Salih Oz¸cubuk¸cu¨ aus Gaziantep (T¨urkei) Berichter: Universit¨atsprofessor Dr. Carsten Bolm Universit¨atsprofessor Dr. Dieter Enders Tag der m¨undlichen Pr¨ufung: 22 Januar 2007 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verf¨ugbar. For everybody The work presented in this thesis was carried out at the Institute of Organic Chemistry of the RWTH-Aachen University, under the supervision of Prof. Dr. Carsten Bolm between January 2003 and July 2006. I would like to thank Prof. Dr. Carsten Bolm for giving me the opportunity to work on this exciting research topic, excellent conditions and support in his research group. I would like to thank Prof. Dr. Dieter Enders for his kind assumption of the co-reference. Parts of this work have already been published or submitted: ’Organosilanols as Catalysts in Asymmetric Aryl Transfer Reactions’ Oz¸cubuk¸cu,¨ S.; Schmidt, F.; Bolm, C. Org. Lett. 2005, 7, 1407. (This article has been highlighted in Synfact 2005, 0, 41.) ’A General and Efficient Synthesis of Nitrogen-Substituted Ferrocenes’ Oz¸cubuk¸cu,¨ S.; Scmitt, E.; Leifert, A.; Bolm, C.; Synthesis 2007, 389.
    [Show full text]
  • Copyrighted Material
    525 Index a alcohol racemization 356, 357 acetophenone 50–53, 293, 344, 348, 443 alkali metals 398 acetoxycyclization, of 1,6-enyne 76 alkaline earth metals 398 acetylacetone 48 N-alkenyl-substituted N,S-HC ligands 349 A3 coupling reactions 231, 232 3-alkyl-3-aryloxindoles 58 acrylonitriles 69, 211, 212, 310, 348 alkyl bis(trimethylsilyloxy) methyl silanes 122 activation period 123–125 – Tamao-Kumada oxidation of 122 active species 123 2-alkylpyrrolidyl-derived formamidinium acyclic alkane 62 precursors 516 acyclic aminocarbenes 499 alkyl silyl-fluorides 209 – ligands 503 alkyl-substituted esters 210 – metalation routes 500 N-alkyl substituted NHC class 119 acyclic aminocarbene species 499 alkynes acyclic carbene chemistry 500, 516–520 – boration of 225 acyclic carbene complexes – borocarboxylation 233, 234 – in Suzuki–Miyaura crosscoupling 505 – hydrocarboxylation 234, 235 acyclic carbene–metal complexes 505 – metal-catalyzed hydrosilylation of 132 acyclic carbenes – semihydrogenation 232, 233 – characteristic feature of 503 allenes 77 – donor abilities 502 – synthesis, mechanisms 203 – ligands 502 3-allyl-3-aryl oxindoles 60 –– decomposition routes 504 allylbenzene 345 –– donor ability 502, 503 – cross-metathesis (CM) reactions of –– metalation routes of 500 510 –– structural properties 503 allylic alkylations 509 – stabilized, by lateral enamines 518 allylic benzimidate acyclic carbone ligand 519 – aza-Claisen rearrangement of 514 – in gold-catalyzed rearrangements 520 allylic substitution 220 acyclic diaminocarbenes (ADCs) 4, 5, 499
    [Show full text]
  • Development of Methods for Regioselective Introduction of Difluoromethylene Unit Using Difluorocarbene
    Development of Methods for Regioselective Introduction of Difluoromethylene Unit Using Difluorocarbene Ryo Takayama February 2018 1 Development of Methods for Regioselective Introduction of Difluoromethylene Unit Using Difluorocarbene Ryo Takayama Doctoral Program in Chemistry Submitted to the Graduate School of Pure and Applied Sciences in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy in Science at the University of Tsukuba 2 Contents Chapter 1. General Introduction Chapter 2. Introduction of Difluoromethylene Unit into Thiocarbonyl Compounds 2-1. S-Selective Difluoromethylation of Thiocarbonyl Compounds 2-1-1. Introduction 2-1-2. Synthesis of S-Difluoromethyl Thioimidates 2-1-3. Mechanistic Study 2-1-4. Comparison with the Reported Methods for the Generation of Difluorocarbene 2-1-5. Conclusion 2-2. Difluoromethylidenation of Dithioesters: Synthesis of Sulfur-Substituted Difluoroalkenes 2-2-1. Introduction 2-2-2. Synthesis of Sulfanylated Difluoroalkenes 2-2-3. Mechanistic Study 2-2-4. Comparison with the Reported Methods for the Generation of Difluorocarbene 2-2-5. Conclusion 2-3. Experimental Section 2-4. References 3 Chapter 3. Introduction of Difluoromethylene Unit into Dienol Silyl Ethers 3-1. Regioselective Difluorocyclopropanation of Dienol Silyl Ethers 3-1-1. Introduction 3-1-2. Regioselective Difluorocyclopropanation: Synthesis of Vinylated Difluorocyclopropanes 3-1-3. Conclusion 3-2. Metal-Free Synthesis of α,α-Difluorocyclopentanone Derivatives via Regioselective Difluorocyclopropanation/VCP Rearrangement of Dienol Silyl Ethers 3-2-1. Introduction 3-2-2. Metal-Free Synthesis of 5,5-Difluorocyclopent-1-en-1yl Silyl Ethers 3-2-3. Advantages of the Organocatalytic Synthesis 3-2-4. Conclusion 3-3. Synthesis of Fluorinated Cyclopentenones via Regioselective Difluorocyclopropanation of Dienol Silyl Ethers 3-3-1.
    [Show full text]
  • Transcription 12.02.10A
    Lecture 10A • 02/10/12 Protecting groups I want to show you another common protecting group used for alcohols. It’s the formation of what are known as silyl ethers. The version that your text has is the TMS ether. Don’t get that confused with tetramethylsilane, which is our standard that we use in NMR; this is trimethylsilyl; this is very close in form. What it is – trimethylsilyl chloride is the reagent that’s generally used. When you react it with an alcohol, the silicon-chlorine bond is active enough that you’re able to do an Sn2-style reaction, even is you just have the neutral alcohol. You might notice that there’s a whole bunch of alkyl groups on the silicon; how can you do an Sn2 with something that’s got that much steric hinderance? Silicon’s larger enough that you don’t have the same form of steric crowding, so this reaction is able to take place. We have the regular form of deprotonation step afterwards. If it weren’t for the fact that we have a silicon there instead of a carbon, this would just be a regular old ether, but that’s why this is called a silyl ether. That somes from the fact that SiH4 is called silane. The -ane is actually used for other atoms besides carbon. You can have phosphane, silane – usually means add hydrogens to that particular element. Silicon can take four just like carbon because it’s in the same column of the periodic table as carbon. This particular protecting group is very widely used, but it has certain drawbacks, in that it very easily reacts in both acidic and basic media.
    [Show full text]
  • Biocatalytic Silylation: the Condensation of Phenols and Alco- Hols with Triethylsilanol
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 June 2021 Article Biocatalytic Silylation: The Condensation of Phenols and Alco- hols with Triethylsilanol Emily I. Sparkes,1,2 Chisom S. Egedeuzu,1,2 Billie Lias,1,2 Rehana Sung,1 Stephanie A. Caslin,1,2 S. Yasin Tabatabei Dakhili,1,2 Peter G. Taylor,3 Peter Quayle,2 Lu Shin Wong1,2* 1 Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK 2 Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK 3 Faculty of Science, Technology, Engineering and Mathematics, Open University, Walton Hall, Milton Keynes MK7 6AA, UK * Correspondence: [email protected] Abstract: Silicatein-α (Silα), a hydrolytic enzyme derived from siliceous marine sponges, is one of the few enzymes in nature capable of catalysing the metathesis of silicon-oxygen bonds. It is there- fore of interest as a possible biocatalyst for the synthesis of organosiloxanes. To further investigate the substrate scope of this enzyme, a series of condensation reactions with a variety of phenols and aliphatic alcohols were carried out. In general, it was observed that Silα demonstrated a preference for phenols, though the conversions were relatively modest in most cases. In the two pairs of chiral alcohols that were investigated, it was found that the enzyme displayed a preference for the silyla- tion of the S-enantiomers. Additionally, the enzyme’s tolerance to a range of solvents was tested. Silα had the highest level of substrate conversion in the non-polar solvents n-octane and toluene, although the inclusion of up to 20% of 1,4-dioxane was tolerated.
    [Show full text]
  • Silicon‐Derived Singlet Nucleophilic Carbene Reagents in Organic
    Author Manuscript Title: Silicon-Derived Singlet Nucleophilic Carbene Reagents in Organic Synthesis Authors: Daniel Priebbenow This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofrea- ding process, which may lead to differences between this version and the Version of Record. To be cited as: 10.1002/adsc.202000279 Link to VoR: https://doi.org/10.1002/adsc.202000279 REVIEW DOI: 10.1002/adsc.202000279 Silicon-Derived Singlet Nucleophilic Carbene Reagents in Organic Synthesis Daniel L. Priebbenowa* a School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia, 3010 [email protected] Dedicated to Prof. Dr. Carsten Bolm on the occasion of his 60th birthday. Received: Abstract. Over fifty years ago, the 1,2-rearrangement of This review aims to cover the historical literature and acyl silanes was first described by Adrian Brook and co- recent advances with regards to these valuable silicon- workers. This rearrangement (now termed the Brook based reagents and highlight additional aspects related to rearrangement) yields reactive silicon-based singlet the intriguing reactivity of both the carbene and nucleophilic carbene (SNC) intermediates that participate in oxocarbenium intermediates. a variety of chemical transformations including 1,2-carbonyl addition, 1,4-addition to electron-deficient unsaturated bonds Keywords: Organosilicon; Siloxy Carbene; Acyl and insertion into C-H and O-H bonds. Silane; Singlet Nucleophilic Carbene; Photochemistry mediated synthetic transformations. 1.0 Introduction In addition to its important physical properties, silicon also plays a valuable role in organic Silicon containing molecules have unique and [3] important physical properties that have been synthesis.
    [Show full text]
  • The Condensation of Phenols and Alcohols with Triethylsilanol
    catalysts Article Biocatalytic Silylation: The Condensation of Phenols and Alcohols with Triethylsilanol Emily I. Sparkes 1,2, Chisom S. Egedeuzu 1,2 , Billie Lias 1,2, Rehana Sung 1, Stephanie A. Caslin 1,2, S. Yasin Tabatabaei Dakhili 1,2, Peter G. Taylor 3, Peter Quayle 2 and Lu Shin Wong 1,2,* 1 Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; [email protected] (E.I.S.); [email protected] (C.S.E.); [email protected] (B.L.); [email protected] (R.S.); [email protected] (S.A.C.); [email protected] (S.Y.T.D.) 2 Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK; [email protected] 3 Faculty of Science, Technology, Engineering and Mathematics, Open University, Walton Hall, Milton Keynes MK7 6AA, UK; [email protected] * Correspondence: [email protected] Abstract: Silicatein-α (Silα), a hydrolytic enzyme derived from siliceous marine sponges, is one of the few enzymes in nature capable of catalysing the metathesis of silicon–oxygen bonds. It is therefore of interest as a possible biocatalyst for the synthesis of organosiloxanes. To further investigate the Citation: Sparkes, E.I.; substrate scope of this enzyme, a series of condensation reactions with a variety of phenols and Egedeuzu, C.S.; Lias, B.; Sung, R.; aliphatic alcohols were carried out. In general, it was observed that Silα demonstrated a preference Caslin, S.A.; Tabatabaei Dakhili, S.Y.; for phenols, though the conversions were relatively modest in most cases.
    [Show full text]
  • Assessing Steric Bulk of Protecting Groups Via a Computational Determination of Exact Cone Angle and Exact Solid Cone Angle
    ASSESSING STERIC BULK OF PROTECTING GROUPS VIA A COMPUTATIONAL DETERMINATION OF EXACT CONE ANGLE (θo) AND EXACT SOLID CONE ANGLE (Θo) A thesis submitted to the Kent State University Honors College in partial fulfillment of the requirements for General Honors by Julian Witold Sobieski May, 2018 Thesis written by Julian Witold Sobieski Approved by _______________________________________________________________________, Advisor _______________________________________________________________________, Chair, Department of Chemistry and Biochemistry Accepted by ___________________________________________________, Dean, Honors College ii TABLE OF CONTENTS LIST OF FIGURES ............................................................................................................iv LIST OF TABLES ..............................................................................................................v LIST OF COMMON ABBREVIATIONS .........................................................................vi ACKNOWLEDGEMENTS .............................................................................................viii CHAPTER I. INTRODUCTION ......................................................................................1 1.1: The need for organic protecting group steric descriptors .....................1 1.2: The Tolman angle ................................................................................4 1.3: Exact cone angle (θo) and exact solid cone angle (Θo) ........................6 1.4: Other literature methods for calculating
    [Show full text]
  • And Bis(Germylene) Pincer Type Ligands in Catalysis
    Introducing Bis(silylene) and Bis(germylene) Pincer Type Ligands in Catalysis vorgelegt von M. Sc. Chemie Daniel Gallego Mahecha aus Bogotá D. C., Kolumbien Von der Fakultät II – Mathematik und Naturwissenschaften der Technischen Universität Berlin Institut für Chemie zur Erlangung des akademischen Grades Doktor der Naturwissenschaften - Dr. rer. nat. - genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. Martin Kaupp (TU Berlin) 1. Gutachter: Prof. Dr. Matthias Driess (TU Berlin) 2. Gutachter: Prof. Dr. Thomas Braun (HU Berlin) Tag der wissenschaftlichen Aussprache: 21-04-2015 Berlin 2015 D83 ii DISSERTATION Introducing Bis(silylene) and Bis(germylene) Pincer Type Ligands in Catalysis by M. Sc. Chemistry Daniel Gallego Mahecha from Bogotá D. C., Colombia iii iv Erklärung Die vorliegende Arbeit entstand in der Zeit von Sep. 2011 bis Mar. 2015 unter der Betreuung von Prof. Dr. Matthias Driess am Institut für Chemie der Technischen Universität Berlin. Von Herzen kommend gilt mein Dank meinem verehrten Lehrer Herrn Professor Dr. Matthias Drieß für die Aufnahme in seinen Arbeitskreis, für seine engagierte Unterstützung, und für die Forschungsfreiheit. v vi To my family, Maria del Mar, Diego, Ariel y Nima, Che, Má y Pá, for being always there despite the distance. “Erfahren, was ist es, ernst genommen zu werden und über das andere zu lachen” “Learn what is to be taken seriously and laugh at the rest” Hermann Hesse “Grau, teurer Freund, ist alle Theorie Und grün des Lebens goldner Baum” “Grey, dear friend, is all theory And green the golden tree of life” Faust I – Mephistopheles Goethe “The beauty of a living thing is not the atoms that go into it, but the way those atoms are put together” Cosmos Carl Sagan vii viii Acknowledgements At the beginning of this PhD, the way looked very long and with plenty of unknown and some scary difficulties.
    [Show full text]