Recombinant Silicateins As Model Biocatalysts in Organosiloxane Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Recombinant Silicateins As Model Biocatalysts in Organosiloxane Chemistry Recombinant silicateins as model biocatalysts in PNAS PLUS organosiloxane chemistry S. Yasin Tabatabaei Dakhilia,b, Stephanie A. Caslina,b, Abayomi S. Faponlea,c, Peter Quayleb, Sam P. de Vissera,c, and Lu Shin Wonga,b,1 aManchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom; bSchool of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom; and cSchool of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, United Kingdom Edited by Galen D. Stucky, University of California, Santa Barbara, CA, and approved May 24, 2017 (received for review August 10, 2016) The family of silicatein enzymes from marine sponges (phylum nosiloxanes. Several attempts have been made to use hydrolytic Porifera) is unique in nature for catalyzing the formation of enzymes such as lipases and proteases for the hydrolysis and inorganic silica structures, which the organisms incorporate into condensation of the Si–O bond (11–13). Although they clearly their skeleton. However, the synthesis of organosiloxanes cata- demonstrate the feasibility of the general concept, the range of lyzed by these enzymes has thus far remained largely unexplored. enzymes tested have so far met with only limited success in To investigate the reactivity of these enzymes in relation to this regard to synthetic yield and substrate scope. important class of compounds, their catalysis of Si–O bond hydro- In contrast, poriferans (marine sponges) that use silica as part lysis and condensation was investigated with a range of model of their inorganic skeleton use a family of enzymes termed the organosilanols and silyl ethers. The enzymes’ kinetic parameters silicateins to catalyze the polymerization of soluble silicates into were obtained by a high-throughput colorimetric assay based on silica (14–16). The primary sequences of these enzymes have the hydrolysis of 4-nitrophenyl silyl ethers. These assays showed been reported and they bear a remarkable homology with pro- k K unambiguous catalysis with cat/ m values on the order of teases of the cathepsin family, with ∼65% sequence similarities – −1 μ −1 2 50 min M . Condensation reactions were also demonstrated and ∼50% sequence identities relative to cathepsin L. Both en- by the generation of silyl ethers from their corresponding silanols zymes share a similar Xaa–His–Asn catalytic triad at their active CHEMISTRY and alcohols. Notably, when presented with a substrate bearing site, although in the silicateins a Ser residue occupies the Xaa both aliphatic and aromatic hydroxy groups the enzyme preferen- position rather than Cys in cathepsin L. Previous reports have tially silylates the latter group, in clear contrast to nonenzymatic shown that silicatein-α (Silα), the prototypical member of this silylations. Furthermore, the silicateins are able to catalyze trans- etherifications, where the silyl group from one silyl ether may be family, can catalyze the hydrolysis of ethoxysilanes such as tet- transferred to a recipient alcohol. Despite close sequence homol- raethoxysilane (TEOS) and triethoxyphenylsilane (17). Because the silicateins have evolved specifically to manipulate ogy to the protease cathepsin L, the silicateins seem to exhibit no – significant protease or esterase activity when tested against anal- the Si O bond, these enzymes may offer a better starting point ogous substrates. Overall, these results suggest the silicateins are for further elaboration into practical biocatalysts in organo- BIOCHEMISTRY promising candidates for future elaboration into efficient and se- siloxane chemistry. This paper outlines the performance of het- α lective biocatalysts for organosiloxane chemistry. erologously produced Sil for both the hydrolysis and condensation of a range of model organosiloxanes. In the process, the devel- silicatein | biocatalysis | organosilicon | organosiloxane | silyl ether opment of a colorimetric high-throughput screening method for silyl ether bond hydrolysis based on the 4-nitrophenoxylate he organosiloxanes, compounds containing C–Si–O moieties, Trepresent a class of compounds with a truly diverse range of Significance applications. They are commonly used in the form of poly- siloxane “silicone” polymers as components of industrial and Organosiloxanes are components in a huge variety of con- consumer products for a variety of purposes such as bulking sumer products and play a major role in the synthesis of fine agents, separation media, protective coatings, lubricants, emul- chemicals. However, their synthetic manipulation primarily sifiers, and adhesives (1–3). Their use as auxiliaries in the relies on the use of chlorosilanes, which are energy-intensive to chemical synthesis of complex molecules is also long-established produce and environmentally undesirable. Synthetic routes (4–6). However, the production and synthetic manipulation of that operate under ambient conditions and circumvent the these compounds are almost entirely dependent on chlorosilane need for chlorinated feedstocks would therefore offer a more feedstocks, which are environmentally undesirable and energy- sustainable route for producing this class of compounds. Here, intensive to produce (7, 8). Furthermore, organosiloxanes, which a systematic survey is reported for the silicatein enzyme, which are entirely anthropogenic in origin, are now known to be per- is able to catalyze the hydrolysis, condensation, and exchange sistent environmental contaminants because little attempt is of the silicon–oxygen bond in a variety of organosiloxanes made to recover and recycle them (3). Synthetic routes that use, under environmentally benign conditions. These results sug- and ultimately recycle, siloxanes and silanols as alternatives gest that silicatein is a promising candidate for development of would in principle be more environmentally sound. selective and efficient biocatalysts for organosiloxane chemistry. One possible strategy toward improved sustainability is to harness enzymes for chemical processing. Such biocatalysts are Author contributions: S.Y.T.D., S.P.d.V., and L.S.W. designed research; S.Y.T.D., S.A.C., and A.S.F. performed research; S.Y.T.D., S.A.C., A.S.F., P.Q., S.P.d.V., and L.S.W. analyzed data; attractive because they offer highly efficient synthesis in terms of and S.Y.T.D., S.A.C., P.Q., S.P.d.V., and L.S.W. wrote the paper. yields and regio- and stereospecificity, together with an ability to The authors declare no conflict of interest. promote reactions under mild conditions and a minimal reliance This article is a PNAS Direct Submission. on halogenated or metallic feedstocks (9, 10). The use of en- Freely available online through the PNAS open access option. – zymes to manipulate the Si O bond would therefore potentially 1To whom correspondence should be addressed. Email: [email protected]. offer more sustainable routes to the synthesis of many com- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. pounds, as well as for the eventual recycling and reuse of orga- 1073/pnas.1613320114/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1613320114 PNAS Early Edition | 1of7 Downloaded by guest on September 29, 2021 chromophore is also reported. Additionally, the protease and es- 16000 α terase activity of Sil against analogous substrates is described. 12000 ) Results and Discussion -1 8000 Production and Characterization of Silα. dmol To acquire this enzyme, a 2 4000 TF-Silα synthetic vector containing cDNA encoding for the mature wild- 0 type Silα from Suberites domencula, fused to an N-terminal (° cm TF-Silα (Mutant-Ser26Ala) hexahistidine tag and codon optimized for expression in Escherichia ME -4000 coli, was used. It is known that the mature form of the protein is -8000 highly hydrophobic and difficult to produce in soluble form (16, 18). -12000 Thus, in attempts to improve its solubility the gene was also subcl- 190 210 230 250 oned with the sequences for a number of proteins known to enhance Wavelength (nm) solubility and folding. Sequences encoding for GST, thioredoxin, small ubiquitin-like modifier, maltose binding protein, or trigger Fig. 2. CD spectra plots of molar ellipticity against wavelength for TF-Silα factor (TF) were inserted between the hexahistidine tag and Silα and TF-Silα(Ser26Ala). and the genes transformed into a variety of E. coli BL21(DE3) strains including Arctic-Express and Origami. Expression trials In contrast, Silα could be maintained in a homogeneous state were then carried out by varying the induction conditions, includ- only at dilute concentrations (micromolar range), which were ing the concentration of the induction agent (isopropyl β-D-1- insufficient for CD measurements. However, analysis by non- thiogalactopyranoside), incubation temperature, and incubation time. denaturing gel electrophoresis for Silα clearly showed a single Overall, these optimization experiments showed that all of the band, indicating nonaggregation (SI Appendix, Fig. S1B). The candidate proteins expressed well in E. coli but only the TF-Silα α protein advanced through the gel at a similar rate as the 25 kDa fusion gave the protein in soluble form. As expected, the Sil reference protein, suggesting that it was of approximately similar (without any fusion tag) was almost entirely insoluble. However, size, globular, and monomeric. it was found that addition of the nondenaturing detergents Tri- ton X-100 and CHAPS into the lysis buffer enabled the recovery Determination of Enzymatic
Recommended publications
  • Silylation and Characterization of of Piroxicam with Some Silylating Reagents
    Silylation and characterization of of piroxicam with some silylating reagents Mohammad Galehassadi ( [email protected] ) Azarbaijan Shahid Madani University Somayeh Jodeiri Azarbaijan Shahid Madani University Research Article Keywords: Piroxicam, Silyl ether, Organosilicon, Drug delivery, Lipophilic Posted Date: March 22nd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-345479/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Silylation and characterization of of piroxicam with some silylating reagents Mohammad. galehassadi, *, a Somayeh Jodeiri a Department of Chemistry, Azarbaijan Shahid Madani University, Tabriz, Iran; e-mail: Email:[email protected] Tel: +984134327541 Mobile: +989144055400 Abstract: In this work, we synthesized some organosilicon derivatives of piroxicam. Due to the some properties of organosilicon compounds, including increased lipophilicity and thermal stabilization and prodrug for drugs, some silyl ethers of this drug were synthesized and characterized..Increasing of the lipophilic properties of this drug can be very important in the rate of absorption and its effectiveness. Graphic abstract: Keywords: Piroxicam, Silyl ether, Organosilicon, Drug delivery, Lipophilic 1.Introduction: Piroxicam is a painkiller and its main use is to reduce or stop pain. In osteoarthritis, this drug has anti-inflammatory effects. This drug is used to treat many diseases such as headache and toothache, leg pain and piroxicam reduces the production of prostaglandins by controlling cyclooxygenase, thus showing its effectiveness in reducing and eliminating pain. It is also used to relieve joint, bone and muscle pain. It is even used to control gout and menstrual cramps. It binds to a large amount of protein and is metabolized in the liver and then excreted in the urine.
    [Show full text]
  • Silyl Ketone Chemistry. Preparation and Reactions of Silyl Allenol Ethers. Diels-Alder Reactions of Siloxy Vinylallenes Leading to Sesquiterpenes2
    J. Am. Chem. SOC.1986, 108, 7791-7800 7791 pyrany1oxy)dodecanoic acid, 1.38 1 g (3.15 mmol) of GPC-CdCIz, 0.854 product mixture was then filtered and concentrated under reduced g (7.0 mmol) of 4-(dimethylamino)pyridine, and 1.648 g (8.0 mmol) of pressure. The residue was dissolved in 5 mL of solvent B and passed dicyclohexylcarbodiimide was suspended in 15 mL of dry dichloro- through a 1.2 X 1.5 cm AG MP-50 cation-exchange column in order to methane and stirred under nitrogen in the dark for 40 h. After removal remove 4-(dimethylamino)pyridine. The filtrate was concentrated under of solvent in vacuo, the residue was dissolved in 50 mL of CH30H/H20 reduced pressure, dissolved in a minimum volume of absolute ethanol, (95/5, v/v) and stirred in the presence of 8.0 g of AG MP-50 (23 OC, and then concentrated again. Chromatographic purification of the res- 2 h) to allow for complete deprotection of the hydroxyl groups (monitored idue on a silica gel column (0.9 X 6 cm), eluting first with solvent A and by thin-layer chromatography)." The resin was then removed by fil- then with solvent C (compound 1 elutes on silica as a single yellow band), tration and the solution concentrated under reduced pressure. The crude afforded, after drying [IO h, 22 OC (0.05 mm)], 0.055 g (90%) of 1 as product (2.75 g). obtained after drying [12 h, 23 OC (0.05 mm)], was a yellow solid: R 0.45 (solvent C); IR (KBr) ucz0 1732, uN(cH3)3 970, then subjected to chromatographic purification by using a 30-g (4 X 4 1050, 1090cm-'; I' H NMR (CDCI,) 6 1.25 (s 28 H, CH2), 1.40-2.05 (m, cm) silica gel column, eluting with solvents A and C, to yield 0.990 g 20 H, lipoic-CH,, CH2CH20,CH2CH,C02), 2.3 (t.
    [Show full text]
  • Activation of Silicon Bonds by Fluoride Ion in the Organic Synthesis in the New Millennium: a Review
    Activation of Silicon Bonds by Fluoride Ion in the Organic Synthesis in the New Millennium: A Review Edgars Abele Latvian Institute of Organic Synthesis, 21 Aizkraukles Street, Riga LV-1006, Latvia E-mail: [email protected] ABSTRACT Recent advances in the fluoride ion mediated reactions of Si-Η, Si-C, Si-O, Si-N, Si-P bonds containing silanes are described. Application of silicon bonds activation by fluoride ion in the syntheses of different types of organic compounds is discussed. A new mechanism, based on quantum chemical calculations, is presented. The literature data published from January 2001 to December 2004 are included in this review. CONTENTS Page 1. INTRODUCTION 45 2. HYDROSILANES 46 3. Si-C BOND 49 3.1. Vinyl and Allyl Silanes 49 3.2. Aryl Silanes 52 3.3. Subsituted Alkylsilanes 54 3.4. Fluoroalkyl Silanes 56 3.5. Other Silanes Containing Si-C Bond 58 4. Si-N BOND 58 5. Si-O BOND 60 6. Si-P BOND 66 7. CONCLUSIONS 66 8. REFERENCES 67 1. INTRODUCTION Reactions of organosilicon compounds catalyzed by nucleophiles have been under extensive study for more than twenty-five years. In this field two excellent reviews were published 11,21. Recently a monograph dedicated to hypervalent organosilicon compounds was also published /3/. There are also two reviews on 45 Vol. 28, No. 2, 2005 Activation of Silicon Bonds by Fluoride Ion in the Organic Synthesis in the New Millenium: A Review fluoride mediated reactions of fluorinated silanes /4/. Two recent reviews are dedicated to fluoride ion activation of silicon bonds in the presence of transition metal catalysts 151.
    [Show full text]
  • The Synthesis of N-Substituted Ferrocenes and C–H Activation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publikationsserver der RWTH Aachen University The Synthesis of N -Substituted Ferrocenes and C–H Activation Towards the Synthesis of Organosilanols Salih Oz¸cubuk¸cu¨ Dissertation The Synthesis of N -Substituted Ferrocenes and C–H Activation Towards the Synthesis of Organosilanols Von der Fakult¨at f¨ur Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westf¨alischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Master of Science Salih Oz¸cubuk¸cu¨ aus Gaziantep (T¨urkei) Berichter: Universit¨atsprofessor Dr. Carsten Bolm Universit¨atsprofessor Dr. Dieter Enders Tag der m¨undlichen Pr¨ufung: 22 Januar 2007 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verf¨ugbar. For everybody The work presented in this thesis was carried out at the Institute of Organic Chemistry of the RWTH-Aachen University, under the supervision of Prof. Dr. Carsten Bolm between January 2003 and July 2006. I would like to thank Prof. Dr. Carsten Bolm for giving me the opportunity to work on this exciting research topic, excellent conditions and support in his research group. I would like to thank Prof. Dr. Dieter Enders for his kind assumption of the co-reference. Parts of this work have already been published or submitted: ’Organosilanols as Catalysts in Asymmetric Aryl Transfer Reactions’ Oz¸cubuk¸cu,¨ S.; Schmidt, F.; Bolm, C. Org. Lett. 2005, 7, 1407. (This article has been highlighted in Synfact 2005, 0, 41.) ’A General and Efficient Synthesis of Nitrogen-Substituted Ferrocenes’ Oz¸cubuk¸cu,¨ S.; Scmitt, E.; Leifert, A.; Bolm, C.; Synthesis 2007, 389.
    [Show full text]
  • Recombinant Silicateins As Model Biocatalysts in PNAS PLUS Organosiloxane Chemistry
    Recombinant silicateins as model biocatalysts in PNAS PLUS organosiloxane chemistry S. Yasin Tabatabaei Dakhilia,b, Stephanie A. Caslina,b, Abayomi S. Faponlea,c, Peter Quayleb, Sam P. de Vissera,c, and Lu Shin Wonga,b,1 aManchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom; bSchool of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom; and cSchool of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, United Kingdom Edited by Galen D. Stucky, University of California, Santa Barbara, CA, and approved May 24, 2017 (received for review August 10, 2016) The family of silicatein enzymes from marine sponges (phylum nosiloxanes. Several attempts have been made to use hydrolytic Porifera) is unique in nature for catalyzing the formation of enzymes such as lipases and proteases for the hydrolysis and inorganic silica structures, which the organisms incorporate into condensation of the Si–O bond (11–13). Although they clearly their skeleton. However, the synthesis of organosiloxanes cata- demonstrate the feasibility of the general concept, the range of lyzed by these enzymes has thus far remained largely unexplored. enzymes tested have so far met with only limited success in To investigate the reactivity of these enzymes in relation to this regard to synthetic yield and substrate scope. important class of compounds, their catalysis of Si–O bond hydro- In contrast, poriferans (marine sponges) that use silica as part lysis and condensation was investigated with a range of model of their inorganic skeleton use a family of enzymes termed the organosilanols and silyl ethers. The enzymes’ kinetic parameters silicateins to catalyze the polymerization of soluble silicates into were obtained by a high-throughput colorimetric assay based on silica (14–16).
    [Show full text]
  • Copyrighted Material
    525 Index a alcohol racemization 356, 357 acetophenone 50–53, 293, 344, 348, 443 alkali metals 398 acetoxycyclization, of 1,6-enyne 76 alkaline earth metals 398 acetylacetone 48 N-alkenyl-substituted N,S-HC ligands 349 A3 coupling reactions 231, 232 3-alkyl-3-aryloxindoles 58 acrylonitriles 69, 211, 212, 310, 348 alkyl bis(trimethylsilyloxy) methyl silanes 122 activation period 123–125 – Tamao-Kumada oxidation of 122 active species 123 2-alkylpyrrolidyl-derived formamidinium acyclic alkane 62 precursors 516 acyclic aminocarbenes 499 alkyl silyl-fluorides 209 – ligands 503 alkyl-substituted esters 210 – metalation routes 500 N-alkyl substituted NHC class 119 acyclic aminocarbene species 499 alkynes acyclic carbene chemistry 500, 516–520 – boration of 225 acyclic carbene complexes – borocarboxylation 233, 234 – in Suzuki–Miyaura crosscoupling 505 – hydrocarboxylation 234, 235 acyclic carbene–metal complexes 505 – metal-catalyzed hydrosilylation of 132 acyclic carbenes – semihydrogenation 232, 233 – characteristic feature of 503 allenes 77 – donor abilities 502 – synthesis, mechanisms 203 – ligands 502 3-allyl-3-aryl oxindoles 60 –– decomposition routes 504 allylbenzene 345 –– donor ability 502, 503 – cross-metathesis (CM) reactions of –– metalation routes of 500 510 –– structural properties 503 allylic alkylations 509 – stabilized, by lateral enamines 518 allylic benzimidate acyclic carbone ligand 519 – aza-Claisen rearrangement of 514 – in gold-catalyzed rearrangements 520 allylic substitution 220 acyclic diaminocarbenes (ADCs) 4, 5, 499
    [Show full text]
  • Development of Methods for Regioselective Introduction of Difluoromethylene Unit Using Difluorocarbene
    Development of Methods for Regioselective Introduction of Difluoromethylene Unit Using Difluorocarbene Ryo Takayama February 2018 1 Development of Methods for Regioselective Introduction of Difluoromethylene Unit Using Difluorocarbene Ryo Takayama Doctoral Program in Chemistry Submitted to the Graduate School of Pure and Applied Sciences in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy in Science at the University of Tsukuba 2 Contents Chapter 1. General Introduction Chapter 2. Introduction of Difluoromethylene Unit into Thiocarbonyl Compounds 2-1. S-Selective Difluoromethylation of Thiocarbonyl Compounds 2-1-1. Introduction 2-1-2. Synthesis of S-Difluoromethyl Thioimidates 2-1-3. Mechanistic Study 2-1-4. Comparison with the Reported Methods for the Generation of Difluorocarbene 2-1-5. Conclusion 2-2. Difluoromethylidenation of Dithioesters: Synthesis of Sulfur-Substituted Difluoroalkenes 2-2-1. Introduction 2-2-2. Synthesis of Sulfanylated Difluoroalkenes 2-2-3. Mechanistic Study 2-2-4. Comparison with the Reported Methods for the Generation of Difluorocarbene 2-2-5. Conclusion 2-3. Experimental Section 2-4. References 3 Chapter 3. Introduction of Difluoromethylene Unit into Dienol Silyl Ethers 3-1. Regioselective Difluorocyclopropanation of Dienol Silyl Ethers 3-1-1. Introduction 3-1-2. Regioselective Difluorocyclopropanation: Synthesis of Vinylated Difluorocyclopropanes 3-1-3. Conclusion 3-2. Metal-Free Synthesis of α,α-Difluorocyclopentanone Derivatives via Regioselective Difluorocyclopropanation/VCP Rearrangement of Dienol Silyl Ethers 3-2-1. Introduction 3-2-2. Metal-Free Synthesis of 5,5-Difluorocyclopent-1-en-1yl Silyl Ethers 3-2-3. Advantages of the Organocatalytic Synthesis 3-2-4. Conclusion 3-3. Synthesis of Fluorinated Cyclopentenones via Regioselective Difluorocyclopropanation of Dienol Silyl Ethers 3-3-1.
    [Show full text]
  • Transcription 12.02.10A
    Lecture 10A • 02/10/12 Protecting groups I want to show you another common protecting group used for alcohols. It’s the formation of what are known as silyl ethers. The version that your text has is the TMS ether. Don’t get that confused with tetramethylsilane, which is our standard that we use in NMR; this is trimethylsilyl; this is very close in form. What it is – trimethylsilyl chloride is the reagent that’s generally used. When you react it with an alcohol, the silicon-chlorine bond is active enough that you’re able to do an Sn2-style reaction, even is you just have the neutral alcohol. You might notice that there’s a whole bunch of alkyl groups on the silicon; how can you do an Sn2 with something that’s got that much steric hinderance? Silicon’s larger enough that you don’t have the same form of steric crowding, so this reaction is able to take place. We have the regular form of deprotonation step afterwards. If it weren’t for the fact that we have a silicon there instead of a carbon, this would just be a regular old ether, but that’s why this is called a silyl ether. That somes from the fact that SiH4 is called silane. The -ane is actually used for other atoms besides carbon. You can have phosphane, silane – usually means add hydrogens to that particular element. Silicon can take four just like carbon because it’s in the same column of the periodic table as carbon. This particular protecting group is very widely used, but it has certain drawbacks, in that it very easily reacts in both acidic and basic media.
    [Show full text]
  • Biocatalytic Silylation: the Condensation of Phenols and Alco- Hols with Triethylsilanol
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 June 2021 Article Biocatalytic Silylation: The Condensation of Phenols and Alco- hols with Triethylsilanol Emily I. Sparkes,1,2 Chisom S. Egedeuzu,1,2 Billie Lias,1,2 Rehana Sung,1 Stephanie A. Caslin,1,2 S. Yasin Tabatabei Dakhili,1,2 Peter G. Taylor,3 Peter Quayle,2 Lu Shin Wong1,2* 1 Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK 2 Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK 3 Faculty of Science, Technology, Engineering and Mathematics, Open University, Walton Hall, Milton Keynes MK7 6AA, UK * Correspondence: [email protected] Abstract: Silicatein-α (Silα), a hydrolytic enzyme derived from siliceous marine sponges, is one of the few enzymes in nature capable of catalysing the metathesis of silicon-oxygen bonds. It is there- fore of interest as a possible biocatalyst for the synthesis of organosiloxanes. To further investigate the substrate scope of this enzyme, a series of condensation reactions with a variety of phenols and aliphatic alcohols were carried out. In general, it was observed that Silα demonstrated a preference for phenols, though the conversions were relatively modest in most cases. In the two pairs of chiral alcohols that were investigated, it was found that the enzyme displayed a preference for the silyla- tion of the S-enantiomers. Additionally, the enzyme’s tolerance to a range of solvents was tested. Silα had the highest level of substrate conversion in the non-polar solvents n-octane and toluene, although the inclusion of up to 20% of 1,4-dioxane was tolerated.
    [Show full text]
  • Silicon‐Derived Singlet Nucleophilic Carbene Reagents in Organic
    Author Manuscript Title: Silicon-Derived Singlet Nucleophilic Carbene Reagents in Organic Synthesis Authors: Daniel Priebbenow This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofrea- ding process, which may lead to differences between this version and the Version of Record. To be cited as: 10.1002/adsc.202000279 Link to VoR: https://doi.org/10.1002/adsc.202000279 REVIEW DOI: 10.1002/adsc.202000279 Silicon-Derived Singlet Nucleophilic Carbene Reagents in Organic Synthesis Daniel L. Priebbenowa* a School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia, 3010 [email protected] Dedicated to Prof. Dr. Carsten Bolm on the occasion of his 60th birthday. Received: Abstract. Over fifty years ago, the 1,2-rearrangement of This review aims to cover the historical literature and acyl silanes was first described by Adrian Brook and co- recent advances with regards to these valuable silicon- workers. This rearrangement (now termed the Brook based reagents and highlight additional aspects related to rearrangement) yields reactive silicon-based singlet the intriguing reactivity of both the carbene and nucleophilic carbene (SNC) intermediates that participate in oxocarbenium intermediates. a variety of chemical transformations including 1,2-carbonyl addition, 1,4-addition to electron-deficient unsaturated bonds Keywords: Organosilicon; Siloxy Carbene; Acyl and insertion into C-H and O-H bonds. Silane; Singlet Nucleophilic Carbene; Photochemistry mediated synthetic transformations. 1.0 Introduction In addition to its important physical properties, silicon also plays a valuable role in organic Silicon containing molecules have unique and [3] important physical properties that have been synthesis.
    [Show full text]
  • The Condensation of Phenols and Alcohols with Triethylsilanol
    catalysts Article Biocatalytic Silylation: The Condensation of Phenols and Alcohols with Triethylsilanol Emily I. Sparkes 1,2, Chisom S. Egedeuzu 1,2 , Billie Lias 1,2, Rehana Sung 1, Stephanie A. Caslin 1,2, S. Yasin Tabatabaei Dakhili 1,2, Peter G. Taylor 3, Peter Quayle 2 and Lu Shin Wong 1,2,* 1 Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; [email protected] (E.I.S.); [email protected] (C.S.E.); [email protected] (B.L.); [email protected] (R.S.); [email protected] (S.A.C.); [email protected] (S.Y.T.D.) 2 Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK; [email protected] 3 Faculty of Science, Technology, Engineering and Mathematics, Open University, Walton Hall, Milton Keynes MK7 6AA, UK; [email protected] * Correspondence: [email protected] Abstract: Silicatein-α (Silα), a hydrolytic enzyme derived from siliceous marine sponges, is one of the few enzymes in nature capable of catalysing the metathesis of silicon–oxygen bonds. It is therefore of interest as a possible biocatalyst for the synthesis of organosiloxanes. To further investigate the Citation: Sparkes, E.I.; substrate scope of this enzyme, a series of condensation reactions with a variety of phenols and Egedeuzu, C.S.; Lias, B.; Sung, R.; aliphatic alcohols were carried out. In general, it was observed that Silα demonstrated a preference Caslin, S.A.; Tabatabaei Dakhili, S.Y.; for phenols, though the conversions were relatively modest in most cases.
    [Show full text]
  • Assessing Steric Bulk of Protecting Groups Via a Computational Determination of Exact Cone Angle and Exact Solid Cone Angle
    ASSESSING STERIC BULK OF PROTECTING GROUPS VIA A COMPUTATIONAL DETERMINATION OF EXACT CONE ANGLE (θo) AND EXACT SOLID CONE ANGLE (Θo) A thesis submitted to the Kent State University Honors College in partial fulfillment of the requirements for General Honors by Julian Witold Sobieski May, 2018 Thesis written by Julian Witold Sobieski Approved by _______________________________________________________________________, Advisor _______________________________________________________________________, Chair, Department of Chemistry and Biochemistry Accepted by ___________________________________________________, Dean, Honors College ii TABLE OF CONTENTS LIST OF FIGURES ............................................................................................................iv LIST OF TABLES ..............................................................................................................v LIST OF COMMON ABBREVIATIONS .........................................................................vi ACKNOWLEDGEMENTS .............................................................................................viii CHAPTER I. INTRODUCTION ......................................................................................1 1.1: The need for organic protecting group steric descriptors .....................1 1.2: The Tolman angle ................................................................................4 1.3: Exact cone angle (θo) and exact solid cone angle (Θo) ........................6 1.4: Other literature methods for calculating
    [Show full text]