I. Total Synthesis of (+)-Spongiolactone and Derivatives

Total Page:16

File Type:pdf, Size:1020Kb

I. Total Synthesis of (+)-Spongiolactone and Derivatives I. TOTAL SYNTHESIS OF (+)-SPONGIOLACTONE AND DERIVATIVES ENABLING INITIAL STRUCTURE-ACTIVITY RELATIONSHIP STUDIES: DISCOVERY OF A MORE POTENT DERIVATIVE II. STUDIES TOWARD RECYCLABLE ISOTHIOUREA CATALYSTS A Dissertation by NATALIE LAURA HARVEY Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Daniel Romo Committee Members, Daniel Singleton David Bergbreiter Thomas McKnight Head of Department, Francois Gabbai December 2015 Major Subject: Chemistry Copyright 2015 Natalie Laura Harvey ABSTRACT β-lactone containing natural products are attractive targets for total synthesis and subsequent biological studies. Given the remarkable ability of this moiety to covalently inhibit specific proteins, we were drawn to spongiolactone as a synthetic target. Through our studies, the first total synthesis of this compound was achieved along with the synthesis of several derivatives. This synthesis enabled cytotoxicity studies to be carried out against a variety of cancer cell lines, with good activity observed in the human chronic myelogenous leukemia (K562) cell line. Particularly intriguing was the discovery of a more potent derivative than the natural product itself which was then modified and taken on to activity based protein profiling (ABPP) studies. The first magnetite-supported benzotetramisole (BTM) catalyst was prepared and utilized in the kinetic resolution of secondary alcohols. Overall, the selectivity factor was lower than the parent (+)-BTM (s = 48 versus s = 148, respectively), however the resulting ester was achieved in excellent enantiomeric excess, albeit with low reaction conversion. Further studies suggest an unfavorable inactivation of the catalyst taking place in the presence of uncapped magnetite. The first soluble, polymer-supported BTM catalyst was also synthesized using polyisobutylene as the support. Behavior of this catalyst system was superior to the magnetite-BTM adduct in the kinetic resolution of secondary alcohols and the conversion was efficient, providing the resolved alcohol and ester both in 90% ee which ii corresponds to a selectivity factor of 79. Preliminary studies show problems of recyclability as indicated by the drop in selectivity factor (s = 51) and increase in reaction time to 16 hours. Further studies are necessary toward recoverability and recyclability of this system. iii DEDICATION To my parents, Steve and Debra Harvey iv ACKNOWLEDGMENTS I would like to thank my advisor, Prof. Daniel Romo, for his guidance during my graduate studies. The opportunity to complete a total synthesis allowed me to grow, not only in my abilities as a chemist and in problem-solving, but also as a person through the completion of a challenging project. I also am grateful for the liberty to pursue the project involving catalyst recyclability which was a personal interest and lastly, for the opportunity to complete an internship, which opened many doors and allowed me to begin my career. I would also like to thank my committee, Prof. Daniel Singleton, Prof. David Bergbreiter, and Prof. Thomas McKnight for their support throughout my studies. I would also like to thank Prof. Singleton for his exceptional instruction in physical organic chemistry. This class was invaluable as it allowed me to develop my abilities to apply what I learned, and his dedication and time invested in the class went above and beyond most other classes. I would like to thank Sandy Manning in the graduate office for her help whenever it was needed, finding answers or pointing me in the right direction. She is an asset to this department as is Julie Zercher. I am forever indebted to past and present members of the Romo group, for their support and suggestions that always pushed me to succeed. To Rae Lynn McFarlin for beginning this time with me, for all the arrow-pushing study sessions that got us through our classes, and mostly for her friendship. I would like to thank Dr. Supakarn Chamni v (Ta) for believing in me and my ability to complete my total synthesis and for her mentorship when I began in the lab, Dr. Gang Liu and Dr. J. C. Reyes for their support and inspirations, and Dr. Morgan Shirley for encouraging me to pursue an internship position. I would also like to thank Dr. Sreekumar Vellaleth and Khoi Van for their unselfish contributions to this group and for their kindness. It was a pleasure to have them as labmates. To Dr. Omar Robles, I am thankful for his encouragement and attention to detail that taught me so much early in my studies. Lastly, I could not have completed this journey without the unwavering support and sacrifices from my parents. They taught me so much in life about the value of hard work and never stopped believing in me over these past five years, even when I doubted myself. I am so fortunate to have them in my life. vi TABLE OF CONTENTS Page ABSTRACT ....................................................................................................................... ii DEDICATION .................................................................................................................. iv ACKNOWLEDGMENTS .................................................................................................. v LIST OF FIGURES ............................................................................................................ x LIST OF TABLES ........................................................................................................... xii CHAPTER I INTRODUCTION TO SPONGIANE DITERPENOID NATURAL PRODUCTS................................................................................................................ 1 1.1 Introduction ...................................................................................................... 1 1.2 Isolation of Spongiane Diterpenoids ................................................................ 1 1.3 Selected Synthetic Studies of Spongiane Diterpenoids .................................... 4 1.4 Biological Studies of the Spongiane Diterpenoids ......................................... 14 II TOTAL SYNTHESIS OF (+)-SPONGIOLACTONE AND RELATED COMPOUNDS ......................................................................................................... 17 2.1 Introduction .................................................................................................... 17 2.1.1 Previous Studies Toward Spongiolactone .......................................... 18 2.1.2 Synthesis of β-lactones via the Intramolecular, Nucleophile Catalyzed Aldol-Lactonization (NCAL) Process ........................................ 19 2.1.3 Proposed Mechanism for the Intramolecular, Nucleophile- Catalyzed Aldol-Lactonization (NCAL) Process ........................................ 24 2.1.4 Allylzinc Reagents as a Means to Install All-Carbon Quaternary Centers ......................................................................................................... 25 2.2 Results and Discussion ................................................................................... 29 2.2.1 Synthesis of Tricyclic β-lactone Core Toward Spongiolactone and Attempted SE’ Addition ........................................................................ 29 2.2.2 Modified Retrosynthetic Analysis of (±)-Spongiolactone ................. 32 2.2.3 Development of Consistent Cyclohexenylzinc Reagent Preparation .................................................................................................. 33 vii CHAPTER Page 2.2.4 NCAL-Based Kinetic Resolution: Accessing (+)-Spongiolactone and Derivatives ............................................................ 39 2.3 Conclusion ...................................................................................................... 41 III CYTOTOXICITY STUDIES OF (+)-SPONGIOLACTONE AND DERIVATIVES: DISCOVERY OF A MORE POTENT, UNNATURAL DERIVATIVE, REGIO, BIS-EPI SPONGIOLACTONE ......................................... 42 3.1 Introduction .................................................................................................... 42 3.1.1 Targeted β-lactone Derivatives Based on Synthetic Route to Spongiolactone ............................................................................................ 44 3.1.2 Measuring Cell Viability by the MTT Assay ..................................... 45 3.2 Results and Discussion .................................................................................... 46 3.2.1 Synthesis of Derivatives ..................................................................... 46 3.2.2 Initial Screening Against Various Cancer Cell Lines ........................ 48 3.2.3 Preliminary Cytotoxicity of Spongiolactone and Derivatives ............ 50 3.3 Conclusion ....................................................................................................... 52 IV CELLULAR TARGET IDENTIFICATION OF (+)-SPONGIOLACTONE AND REGIO, BIS-EPI SPONGIOLACTONE .......................................................... 53 4.1 Introduction .................................................................................................... 53 4.1.1 Activity-based Protein Profiling (ABPP) and Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) for Cellular Protein Target Identification ....................................................................... 53 4.1.2 Synthetic Design of an Alkyne-Containing Probe ............................. 56 4.1.3 β-lactones and
Recommended publications
  • Application of Organic Azides for the Synthesis of Nitrogen-Containing Molecules
    ACCOUNT 21 Application of Organic Azides for the Synthesis of Nitrogen-Containing Molecules Shunsuke Chiba* Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore Fax +6567911961; E-mail: [email protected] Received 31 May 2012 Organic azides possess diverse chemical reactivities.4 Abstract: In this account, recent advances made on the reactions of several types of organic azides, such as vinyl azides, cyclic 2-azido Owing to their 1,3-dipole character, they undergo [3+2] alcohols, a-azido carbonyl compounds, towards the synthesis of cycloaddition with unsaturated bonds, such as those in nitrogen-containing molecules are described. alkynes and alkenes as well as carbonitriles (Scheme 1, part a).5 Organic azides can also be regarded as nitrene 1 Introduction equivalents (Scheme 1, part b).6 Accordingly, their reac- 2 Chemistry of Vinyl Azides tions with nucleophilic anions, electrophilic cations, and 2.1 Thermal [3+2]-Annulation of Vinyl Azides with 1,3-Dicar- radicals can formally provide the corresponding nitrogen bonyl Compounds 2.2 Manganese(III)-Catalyzed Formal [3+2]-Annulation with anions, cations, and radicals, respectively, forming a new 1,3-Dicarbonyl Compounds bond with the internal azido nitrogen and releasing molec- 2.3 Manganese(III)-Mediated/Catalyzed Formal [3+3]-Annu- ular nitrogen. Moreover, the generation of anions, cations, lation with Cyclopropanols and radicals at the a-position to the azido moiety can re- 2.4 Synthesis of Isoquinolines from a-Aryl-Substituted Vinyl sult in rapid denitrogenation to deliver the corresponding Azides and Internal Alkynes by Rhodium–Copper Bimetal- iminyl species, which can be used in further synthetic lic Cooperation transformations (i.e., carbon–nitrogen bond formation).
    [Show full text]
  • Organic Synthesis: Handout 1
    Prof Tim Donohoe: Strategies and Taccs in Organic Synthesis: Handout 1 Organic Synthesis III 8 x 1hr Lectures: Michaelmas Term Weeks 5-8 2016 Mon at 10am; Wed at 9am Dyson Perrins lecture theatre Copies of this handout will be available at hEp://donohoe.chem.ox.ac.uk/page16/index.html 1/33 Prof Tim Donohoe: Strategies and Taccs in Organic Synthesis: Handout 1 Organic Synthesis III Synopsis 1) Introduc5on to synthesis: (i) Why do we want to synthesise molecules- what sort of molecules do we need to make? (ii) What aspects of selecvity do we need to accomplish a good synthesis (chemo-, regio- and stereoselecvity)? (iii) Protecng group chemistry is central to any syntheAc effort (examples and principles) (iv) What is the perfect synthesis (performed in industry versus academia)? 2) The chiral pool: where does absolute stereochemistry come from? 3) Retrosynthesis- learning to think backwards (revision from first and second year). Importance of making C-C bonds and controlling oxidaAon state. Umpolung 4) Some problems to think about 5) Examples of retrosynthesis/synthesis in ac5on. 6) Ten handy hints for retrosynthesis 7) Soluons to the problems Recommended books: General: Organic Chemistry (Warren et al) Organic Synthesis: The DisconnecRon Approach (S. Warren) Classics in Total Synthesis Volumes I and II (K. C. Nicolaou) The Logic of Chemical Synthesis (E. J. Corey) 2/33 View Article Online / Journal Homepage / Table of Contents for this issue 619461 Strychniqae and BYucine. Pavt XLII. 903 Prof Tim Donohoe: Strategies and Taccs in Organic Synthesis: Handout 1 (i) Why do we want to synthesise complex molecules? Isolated from the Pacific Yew in 1962 Prescribed for prostate, breast and ovarian cancer Unique mode of acRon 1x 100 year old tree = 300 mg Taxol Isolated in 1818- poisonous Stuctural elucidaon took R.
    [Show full text]
  • Acetal (POM) Chemical Compatibility Chart From
    ver 31-Mar-2020 Acetal (POM) Chemical Compatibility Chart Chemical Chemical Acetaldehyde A Ammonium Acetate C Acetamide A Ammonium Bifluoride D Acetate Solvents A Ammonium Carbonate D Acetic Acid D Ammonium Caseinate D Acetic Acid, 20% C Ammonium Chloride, 10% B Acetic Acid, 80% D Ammonium Hydroxide D Acetic Acid, Glacial D Ammonium Nitrate, 10% A Acetic Anhydride D Ammonium Oxalate B Acetone A Ammonium Persulfate D Acetyl Chloride, dry D Ammonium Phosphate, Dibasic B Acetylene A Ammonium Phosphate, Monobasic B Alcohols: Amyl A Ammonium Phosphate, Tribasic B Alcohols: Benzyl A Ammonium Sulfate B Alcohols: Butyl A Ammonium Sulfite D Alcohols: Diacetone A Ammonium Thiosulfate B Alcohols: Ethyl A Amyl Acetate B Alcohols: Hexyl A Amyl Alcohol A Alcohols: Isobutyl A Amyl Chloride A Alcohols: Isopropyl A Aniline A Alcohols: Methyl A Aniline Oil D Alcohols: Octyl A Anise Oil D Alcohols: Propyl (1-Propanol) A Antifreeze D Aluminum chloride, 20% C Aqua Regia (80% HCl, 20% HNO3) D Aluminum Fluoride C Aromatic Hydrocarbons A Aluminum Hydroxide A Arsenic Acid D Aluminum Nitrate B Asphalt B Aluminum Potassium Sulfate, 10% C Barium Carbonate A Aluminum Potassium Sulfate, 100% C Barium Chloride A Aluminum Sulfate, 10% B Barium Cyanide B Alums C Barium Hydroxide D Amines D Barium Nitrate B Ammonia, 10% (Ammonium Hydroxide) C Barium Sulfate B Ammonia, 10% D Barium Sulfide A Ammonia, anhydrous D Bay Oil D Ammonia, liquid D Beer A Ammonia Nitrate C Beet Sugar Liquids B Key to General Chemical Resistance – All data is based on ambient or room temperature conditions, about 64°F (18°C) to 73°F (23°C) A = Excellent C = Fair - Moderate Effect, not recommended B= Good - Minor Effect, slight corrosion or discoloration D = Severe Effect, not recommended for ANY use It is the sole responsibility of the system designer and user to select products suitable for their specific application requirements and to ensure proper installation, operation, and maintenance of these products.
    [Show full text]
  • INDOLES from 2-METHYLNITROBENZENES by CONDENSATION with FORMAMIDE ACETALS FOLLOWED by REDUCTION: 4-BENZYLOXYINDOLE [1H-Indole, 4-(Phenylmethoxy)-]
    DOI:10.15227/orgsyn.063.0214 Organic Syntheses, Coll. Vol. 7, p.34 (1990); Vol. 63, p.214 (1985). INDOLES FROM 2-METHYLNITROBENZENES BY CONDENSATION WITH FORMAMIDE ACETALS FOLLOWED BY REDUCTION: 4-BENZYLOXYINDOLE [1H-Indole, 4-(phenylmethoxy)-] Submitted by Andrew D. Batcho1 and Willy Leimgruber2. Checked by David J. Wustrow and Andrew S. Kende. 1. Procedure A. 6-Benzyloxy-2-nitrotoluene. A stirred mixture of 124.7 g (0.81 mol) of 2-methyl-3-nitrophenol (Note 1), 113.2 g (0.90 mol) of benzyl chloride, 112.2 g (0.81 mol) of anhydrous potassium carbonate, and 800 mL of dimethylformamide (DMF) is heated at 90°C for 3 hr. Most of the DMF is removed on a rotary evaporator (20 mm) and the oily residue is poured into 400 mL of 1 N sodium hydroxide and extracted with ether (3 × 800 mL). The combined extracts are dried (Na2SO4), filtered, and evaporated to give 203.5 g of yellowish solid. Recrystallization from 1 L of methanol cooled to 0°C affords 177.6 (90%) of 6-benzyloxy-2-nitrotoluene as pale-yellow crystals, mp 61–63°C3 (Note 2). B. (E)-6-Benzyloxy-2-nitro-β-pyrrolidinostyrene. To a solution of 175.4 g (0.72 mol) of 6- benzyloxy-2-nitrotoluene in 400 mL of DMF are added 102.5 g (0.84 mol) of N,N-dimethylformamide dimethyl acetal (Note 3) and 59.8 g (0.84 mol) of pyrrolidine. The solution is heated at reflux (110°C) for 3 hr (Note 4) under nitrogen and allowed to cool to room temperature.
    [Show full text]
  • Enantioselective Total Synthesis of (-)-Deoxoapodine
    Enantioselective total synthesis of (-)-deoxoapodine The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Kang, Taek, et al., "Enantioselective total synthesis of (-)- deoxoapodine." Angewandte Chemie International Edition 56, 44 (Sept. 2017): p. 13857-60 doi 10.1002/anie.201708088 ©2017 Author(s) As Published 10.1002/anie.201708088 Publisher Wiley Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/125957 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Angew Manuscript Author Chem Int Ed Engl Manuscript Author . Author manuscript; available in PMC 2018 October 23. Published in final edited form as: Angew Chem Int Ed Engl. 2017 October 23; 56(44): 13857–13860. doi:10.1002/anie.201708088. Enantioselective Total Synthesis of (−)-Deoxoapodine Dr. Taek Kang§,a, Dr. Kolby L. White§,a, Tyler J. Mannb, Prof. Dr. Amir H. Hoveydab, and Prof. Dr. Mohammad Movassaghia aDepartment of Chemistry, Massachusetts Institute of Technology Cambridge, MA 02139 (USA) bDepartment of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA) Abstract The first enantioselective total synthesis of (−)-deoxoapodine is described. Our synthesis of this hexacyclic aspidosperma alkaloid includes an efficient molybdenum-catalyzed enantioselective ring-closing metathesis reaction for desymmetrization of an advanced intermediate that introduces the C5-quaternary stereocenter. After C21-oxygenation, the pentacyclic core was accessed via an electrophilic C19-amide activation and transannular spirocyclization. A biogenetically inspired dehydrative C6-etherification reaction proved highly effective to secure the F-ring and the fourth contiguous stereocenter of (−)-deoxoapodine with complete stereochemical control.
    [Show full text]
  • Studies Toward Synthesis of Polycyclic Polyprenylated Acylphloroglucinols
    University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2006 STUDIES TOWARD SYNTHESIS OF POLYCYCLIC POLYPRENYLATED ACYLPHLOROGLUCINOLS Roxana Ciochina University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Ciochina, Roxana, "STUDIES TOWARD SYNTHESIS OF POLYCYCLIC POLYPRENYLATED ACYLPHLOROGLUCINOLS" (2006). University of Kentucky Doctoral Dissertations. 291. https://uknowledge.uky.edu/gradschool_diss/291 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Roxana Ciochina The Graduate School University of Kentucky 2006 STUDIES TOWARD SYNTHESIS OF POLYCYCLIC POLYPRENYLATED ACYLPHLOROGLUCINOLS ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Arts and Sciences at the University of Kentucky By Roxana Ciochina Lexington, KY Director: Dr. R. B. Grossman, Professor of Chemistry Lexington, KY 2006 ABSTRACT OF DISSERTATION STUDIES TOWARD SYNTHESIS OF POLYCYCLIC POLYPRENYLATED ACYLPHLOROGLUCINOLS Polycyclic polyprenylated acylphloroglucinols (PPAPs) are a class of compounds that reveal intriguing biological activities and interesting and challenging chemical structures. These products are claimed to possess antioxidant, antiviral, and antimitotic properties. Increasing interest is related to their function in the CNS as modulators of neurotransmitters associated to neuronal damaging and depression. All these features make PPAPs targets for synthesis. We decided to focus our own initial efforts in this area on the type A PPAP, nemorosone because we thought that its fairly simple structure relative to other PPAPs would present fewer hurdles as we developed our methodology.
    [Show full text]
  • Handout: Organic Chemistry Reactions
    Handout: Organic Chemistry Reactions Reactions Organized by Compound Families Alkanes 1. Combustion 2. Halogenation Alkenes and Alkynes 1. Additions: hydrogenation, halogenation, hydrohalogenation, hydration 2. Polymerization Aromatic Compounds Substitutions: nitration, halogenation, sulfonation Alcohols 1. Elimination: dehydration 2. Oxidations Thiols Oxidation Amines Acid-Base reactions Aldehydes and Ketones 1. Addition: Acetal/hemiacetal formation by alcohol addition (Reverse rxn: Acetal hydrolysis with acid) 2. Oxidation and Reduction for aldehydes (*Ketones go through reduction only) Carboxylic Acids 1. Substitutions: esterification, amidation (Reverse rxns: ester hydrolysis with acid or base, amide hydrolysis with acid or base) 2. Acid-base reactions Phosphoric acid and Phosphates Phosphoric acid: Esterification with alcohol Phosphates: Phosphorylation H. Kim for Chem 30B 1 Reactions Organized by Reaction Type Family Reaction Example 1. ADDITION Alkenes and Hydrogenation H H Pd catalyst H H C C + H2 H C C H alkynes H H H H H H Pd catalyst H C C H + 2 H2 H C C H H H Halogenation H H Cl Cl C C + Cl2 (or Br2) H C C H H H H H H Cl Hydro- H H Markonikov’s Rule halogenation C C + HCl (or HBr) H C C H applies: H adds to C H CH3 H CH3 with more Hs already. H OH Hydration H H H+ catalyst C C + H2O H C C H Markonikov’s Rule H CH3 H CH3 applies. Aldehydes Addition of O OH H+ catalyst H3C C H(R) + CH3CH2OH and ketones alcohol to get H3C C H(R) + CH3CH2OH hemiacetals or O CH2CH3 acetals hemiacetal O CH2CH3 H+ catalyst H3C C H(R) + H2O O CH2CH3 acetal 2.
    [Show full text]
  • The Total Synthesis of Securinine and Other Methodology Studies
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2010 The total synthesis of securinine and other methodology studies Bhartesh Dhudshia University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Dhudshia, Bhartesh, "The total synthesis of securinine and other methodology studies" (2010). Electronic Theses and Dissertations. 8275. https://scholar.uwindsor.ca/etd/8275 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. The Total Synthesis of Securinine and Other Methodology Studies by Bhartesh Dhudshia A Dissertation Submitted to the Faculty of Graduate Studies through the Department of Chemistry and Biochemistry in Partial Fulfillment of the Requirements
    [Show full text]
  • Safe Handling of Sodium Azide (SAZ)
    Safe Handling of Sodium Azide (SAZ) 1,2 Sodium azide (SAZ, CAS# 26628-22-8) is a white crystalline solid [molecular formula of (NaN3)] used in organic synthesis and also as a well-known preservative at low concentrations in molecular biology reagents. Azide chemistry3,4 offers an effective means to synthesize a range of nitrogen-containing compounds with a wide variety of functional groups. But SAZ poses some significant risks. It is highly toxic and can react to form potentially explosive compounds. Azide reagents and intermediates react with some metals5, strong acids, and certain chlorinated solvents6 and this needs to be considered when using SAZ or when developing routes that involve azide-containing intermediates. Health Hazards & Physical Hazards of SAZ Hazard Statements Fatal if swallowed or in contact with skin. Very toxic to aquatic life with long lasting effects. Health Hazards: SAZ is highly toxic when ingested orally or absorbed through the skin. Azides form strong complexes with hemoglobin, and consequently block oxygen transport in the blood. They are more harmful to the heart and the brain than to other organs, because the heart and the brain use a lot of oxygen. Symptoms of exposure include headache, dizziness, nausea and vomiting, rapid breathing and heart rate, and skin burns and blisters (direct skin contact) and in the case of serious overexposure, convulsions and death. It will also react with acids to form hydrazoic acid (HN3). Unlike sodium azide, which is a crystalline solid, hydrazoic acid is a low-boiling, volatile, liquid. Hydrazoic acid is also highly toxic and its volatility makes it more readily inhaled causing lung irritation and potentially bronchitis and lung edema.
    [Show full text]
  • Aziridination of Alkenes Promoted by Iron Or Ruthenium Complexes
    Aziridination of Alkenes Promoted by Iron or Ruthenium Complexes Caterina Damiano, Daniela Intrieri and Emma Gallo* Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan (Italy). E-mail address: [email protected]. Keywords: Aziridines, Nitrene reagents, Alkenes, Homogenous catalysis, Iron, Ruthenium. Abstract Molecules containing an aziridine functional group are a versatile class of organic synthons due to the presence of a strained three member, which can be easily involved in ring-opening reactions and the aziridine functionality often show interesting pharmaceutical and/or biological behaviours. For these reasons, the scientific community is constantly interested in developing efficient procedures to introduce an aziridine moiety into organic skeletons and the one-pot reaction of an alkene double bond with a nitrene [NR] source is a powerful synthetic strategy. Herein we describe the catalytic activity of iron or ruthenium complexes in promoting the reaction stated above by stressing the potential and limits of each synthetic protocol. 1. Introduction Aziridines, the smallest N-heterocycle compounds, have attracted considerable attention in the last few decades due to their many applications in biological and synthetic chemistry [1]. The aziridine functionality is often responsible for the activity of biologically active species (such as antitumor compounds, antibiotics and enzyme inhibitors) and aziridine containing molecules [2] are also useful building blocks in the synthesis of fine chemicals and pharmaceuticals [3-6]. The striking chemical properties of aziridines are due to the energy associated to the strained three- membered ring [7], which renders them very active and versatile starting materials for the synthesis of several useful molecules such as amines, amino acids, β-lactams, polymers and α-amido ketones [8, 9].
    [Show full text]
  • Silylation and Characterization of of Piroxicam with Some Silylating Reagents
    Silylation and characterization of of piroxicam with some silylating reagents Mohammad Galehassadi ( [email protected] ) Azarbaijan Shahid Madani University Somayeh Jodeiri Azarbaijan Shahid Madani University Research Article Keywords: Piroxicam, Silyl ether, Organosilicon, Drug delivery, Lipophilic Posted Date: March 22nd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-345479/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Silylation and characterization of of piroxicam with some silylating reagents Mohammad. galehassadi, *, a Somayeh Jodeiri a Department of Chemistry, Azarbaijan Shahid Madani University, Tabriz, Iran; e-mail: Email:[email protected] Tel: +984134327541 Mobile: +989144055400 Abstract: In this work, we synthesized some organosilicon derivatives of piroxicam. Due to the some properties of organosilicon compounds, including increased lipophilicity and thermal stabilization and prodrug for drugs, some silyl ethers of this drug were synthesized and characterized..Increasing of the lipophilic properties of this drug can be very important in the rate of absorption and its effectiveness. Graphic abstract: Keywords: Piroxicam, Silyl ether, Organosilicon, Drug delivery, Lipophilic 1.Introduction: Piroxicam is a painkiller and its main use is to reduce or stop pain. In osteoarthritis, this drug has anti-inflammatory effects. This drug is used to treat many diseases such as headache and toothache, leg pain and piroxicam reduces the production of prostaglandins by controlling cyclooxygenase, thus showing its effectiveness in reducing and eliminating pain. It is also used to relieve joint, bone and muscle pain. It is even used to control gout and menstrual cramps. It binds to a large amount of protein and is metabolized in the liver and then excreted in the urine.
    [Show full text]
  • Silyl Ketone Chemistry. Preparation and Reactions of Silyl Allenol Ethers. Diels-Alder Reactions of Siloxy Vinylallenes Leading to Sesquiterpenes2
    J. Am. Chem. SOC.1986, 108, 7791-7800 7791 pyrany1oxy)dodecanoic acid, 1.38 1 g (3.15 mmol) of GPC-CdCIz, 0.854 product mixture was then filtered and concentrated under reduced g (7.0 mmol) of 4-(dimethylamino)pyridine, and 1.648 g (8.0 mmol) of pressure. The residue was dissolved in 5 mL of solvent B and passed dicyclohexylcarbodiimide was suspended in 15 mL of dry dichloro- through a 1.2 X 1.5 cm AG MP-50 cation-exchange column in order to methane and stirred under nitrogen in the dark for 40 h. After removal remove 4-(dimethylamino)pyridine. The filtrate was concentrated under of solvent in vacuo, the residue was dissolved in 50 mL of CH30H/H20 reduced pressure, dissolved in a minimum volume of absolute ethanol, (95/5, v/v) and stirred in the presence of 8.0 g of AG MP-50 (23 OC, and then concentrated again. Chromatographic purification of the res- 2 h) to allow for complete deprotection of the hydroxyl groups (monitored idue on a silica gel column (0.9 X 6 cm), eluting first with solvent A and by thin-layer chromatography)." The resin was then removed by fil- then with solvent C (compound 1 elutes on silica as a single yellow band), tration and the solution concentrated under reduced pressure. The crude afforded, after drying [IO h, 22 OC (0.05 mm)], 0.055 g (90%) of 1 as product (2.75 g). obtained after drying [12 h, 23 OC (0.05 mm)], was a yellow solid: R 0.45 (solvent C); IR (KBr) ucz0 1732, uN(cH3)3 970, then subjected to chromatographic purification by using a 30-g (4 X 4 1050, 1090cm-'; I' H NMR (CDCI,) 6 1.25 (s 28 H, CH2), 1.40-2.05 (m, cm) silica gel column, eluting with solvents A and C, to yield 0.990 g 20 H, lipoic-CH,, CH2CH20,CH2CH,C02), 2.3 (t.
    [Show full text]