Dissertation Assessment of Run-Of-River Hydropower Potential

Total Page:16

File Type:pdf, Size:1020Kb

Dissertation Assessment of Run-Of-River Hydropower Potential Dissertation Assessment of Run-Of-River Hydropower Potential and Power Supply Planning in Nepal using Hydro Resources ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der technischen Wissenschaften unter der Leitung von Univ. Prof. Dr. - Ing. Christian Bauer E302 Institut für Energietechnik und Thermodynamik eingereicht an der Technischen Universität Wien Fakultät für Maschinenwesen und Betriebswissenschaften von Iswor Bajracharya, M.Sc. e1129962 1200 Wien, Brigittenauer Lände 6639 Wien, im April 2015 Abstract The basic premise for the development of water resources in the country is the availability of accurate and reliable information about the resources. Nepal is rich in water resources but, lacks the reliable information about the hydro potential. The first estimation of the theoretical hydro potential was done about 5 decades ago with limited data and analysis tools. Since then very few studies have been done in this field. Therefore, the first part of this study estimates the theoretical run-of-river hydropower potential of Nepal. A GIS- based spatial tool and SWAT (Soil and Water Assessment Tool) hydrological model have been used to estimate hydro potential. The estimated total theoretical run-of-river hydro potential of Nepal is 119,185 MW at 30% flow exceedance and 103,341 MW at annual mean flow. Although large numbers of hydropower plants are currently under-construction, it is unlikely that the growing electricity demand in the country can be met from these power plants at the current rate of development. Therefore, the second part of this study deals with the power generation and expansion planning of Nepal for the period 2015- 2030. The modeling tool, LEAP (Long-range Energy Alternative Planning), has been used for this purpose. The major problems associated with the development of transmission lines in Nepal are discussed. The critical issue to be addressed by the government and politicians to end the power crisis in the country is the development of transmission lines besides developing the new power plants. Therefore, the first priority has to be given towards the completion of under- construction transmission lines in the major power corridors where hydro projects are being developed and new hydro projects are being planned to build. This will not only connect the hydro projects currently under-construction in the national grid of the country, but also, attracts new investment in the hydro power sector which will help develop power capacity to meet the future electricity demand. The reduction of transmission and distribution losses plays a significant role in the supply side management. The required power plant capacity decreases significantly when the system loss is reduced. The study shows that electricity mix has to be used in the power supply planning to meet the future electricity demand. The current trend of run-of-river based hydropower development has to be changed and the priority has to be given in the development of storage type hydropower. Other renewable energy sources such as solar and wind, have to be used in the power generation. Furthermore, the result shows that the current rate of power capacity development will not be enough even to meet the base case electricity demand. The timely development of transmission lines, construction of new power plants with a suitable electricity mix and reduction of power losses in the system are the key points to meet the future electricity demand and end the power crisis in the country. ii Kurzfassung Die Grundvoraussetzung für die Erschließung von Wasserressourcen eines Landes ist die Verfügbarkeit von genauen und zuverlässigen Informationen über die Ressourcen. Nepal ist reich an Wasserressourcen, jedoch fehlt es an zuverlässigen Informationen über das Wasserkraftpotential. Die erste Schätzung des theoretischen Wasserkraftpotentials wurde vor ca. 5 Jahrzehnten mit begrenzten Daten und Analysehilfsmittel erstellt. Da seitdem nur sehr wenige Studien in diesem Bereich durchgeführt wurden, behandelt der erste Teil dieser Studie die Abschätzung des theoretischen Laufwasserkraftwerkpotentials in Nepal. Ein GIS-basiertes Raumgerät und ein hydrologisches Soil and Water Assessment Tool (SWAT) Modell wurden verwendet um das Wasserkraftpotential abzuschätzen. Einer Abschätzung zur Folge beträgt das totale theoretische Laufwasserkraftpotential in Nepal 119.185 MW bei 30% sicherem Zufluss und 103.341 MW bei Jahresmittelfluss. Obwohl derzeit einige Wasserkraftwerke gebaut werden, ist es unwahrscheinlich, dass der steigende Strombedarf im Land durch die Kraftwerksparkerweiterung abdeckt werden kann. Darum wird im zweiten Teil der Studie auf die Stromerzeugung und die Ausbauplanung in Nepal im Zeitraum von 2015 bis 2030 eingegangen. Hierfür wurde die Modellierungssoftware Long-range Energy Alternative Planning (LEAP) eingesetzt. In weiterer Folge wird das damit verbundene Problem des Ausbaus des Übertragungsnetzes erörtert. Der kritische Punkt der von der Regierung zeitnah angegangen werden muss um die Elektrizitätskrise im Land zu beenden, ist der Ausbau des Übertragungsnetzes neben der Entwicklung neuer Kraftwerke. Erste Priorität hat der rasche Ausbau des Übertragungsnetzes im Bereich der sich im Bau befindlichen Wasserkraftwerke und dort wo weitere Projekte geplant sind. Dadurch werden nicht nur die sich im Bau befindlichen Kraftwerke ans Netz angeschlossen, sondern ebenfalls neue Projekte attraktiver, was in weiterer Folge dazu beiträgt, die installierte Leistung zu erhöhen um den Strombedarf abdecken zu können. Im Versorgungsmanagement spielt die Reduktion der Übertragungs- und Verteilungsverluste eine bedeutende Rolle, da die erforderliche installierte Leistung signifikant reduziert werden kann, falls die Systemverluste abnehmen. Die Studie zeigt, dass ein Elektrizitätsmix im Versorgungssystem eingesetzt werden muss um den Bedarf abdecken zu können. Der aktuelle Trend hin zu Laufwasserkraftwerken muss zu Gunsten des Ausbaus von Speicherkraftwerken und anderen erneuerbaren Energieträger wie Wind und Photovoltaik geändert werden. Des Weiteren zeigen die Ergebnisse, dass die momentane Entwicklungsrate der installierten Leistung auch nicht ausreicht um den Basisfall-Strombedarf abzudecken. Der zeitgerechte Ausbau des Übertragungsnetzes, die Errichtung zusätzlicher Kraftwerke im Rahmen eines passenden Energiemix und die Reduktion der Systemverluste sind die Schlüsselstellen um den künftigen Elektrizitätsbedarf abdecken zu können und die Stromkrise zu beenden. iii Acknowledgement A journey is easier when travelling together. This dissertation is the result of three years of my work whereby I have been accompanied, supported, motivated and guided by many people. It gives me immense pleasure to express my gratitude and sincere thanks to all of them. First and foremost, I would like to express my sincere gratitude and regards to my advisors, Univ. Prof. Dr.-Ing. Christian Bauer and Ass. Prof. Dr. techn Eduard Doujak, for their continuous support, guidance and encouragement throughout my academic program without whose advice it would not have been possible to write this dissertation. Likewise, I would like to express my sincere gratitude to my second advisor, Ao. Univ. Prof. Dr. Bernhard Pelikan from BOKU University for his valuable suggestion and comments. Next, I would like to express my deep gratitude and thanks to Prof. Dr. Tri Ratna Bajracharya from Institute of Engineering, Nepal for his support throughout my study period. My special thanks go to my colleague Mr. Leopold Ruppert for his help for revising the German translated abstract of my thesis. I would like to thank all of my colleagues in Institute for Energy System and Thermodynamics, Vienna University of Technology for their kind co- operation and help during my stay in Vienna. Next, I would like to acknowledge Prof. Dr. Bhakta Bahadur Ale, Prof. Amrit Man Nakarmi, and Dr. Rajendra Shrestha from Institute of Engineering, Tribhuvan University for helping me in one way or another. Thanks go to Dr. Raghunath Jha from Department of Civil Engineering, Tribhuvan University for his valuable suggestion. I am indebted to my friend Mr. Nawraj Bhattarai for his love and care. I would like to thank Mr. Lekh Natha Bagale for his help of weather data from DHM, Nepal. Thanks go to Mr. Gyanendra Lal Pradhan, Executive Chairman of Hydro Solutions, Nepal for his valuable suggestions. I am also deeply grateful to Prof. Dr. Govinda Raj Pokharel, Mr. Ram Prasad Dhital and all other persons from various organizations in Nepal whom I met during my field visit and helped me directly or indirectly. I My special thanks go to OeAD, Appear Project for providing me financial support for my study in Vienna, Austria. I would like to thank Mrs. Elke Stinnig from OeAD for her kind co- operation and support throughout my study in Vienna. Last but not the least, I feel a deep sense of gratitude to my mother who taught me about life and always motivated me to progress in life. I am very much indebted to my sister Santa Kumari, my brother Rajkumar, my brother-in-law Niroj Joshi, my wife Sarita whose endless and unconditional love, care, patience and support allowed me to complete this study. Finally, I am grateful to all those who helped me directly or indirectly in my research. Iswor Bajracharya, Vienna April, 2015 iv Abbreviations ADB Asian Development Bank ASTER GDEM Advanced Space borne Thermal Emission and Reflection Radiometer Global Digital Elevation Model DEM Digital Elevation Model DHM Department of Hydrology
Recommended publications
  • Lakes: the Mirrors of the Earth BALANCING ECOSYSTEM INTEGRITY and HUMAN WELLBEING
    Lakes: the mirrors of the earth BALANCING ECOSYSTEM INTEGRITY AND HUMAN WELLBEING Proceedings of 15th world lake conference Lakes: The Mirrors of the Earth BALANCING ECOSYSTEM INTEGRITY AND HUMAN WELLBEING Proceedings of 15TH WORLD LAKE CONFERENCE Copyright © 2014 by Umbria Scientific Meeting Association (USMA2007) All rights reserved. ISBN: 978-88-96504-04-8 (print) ISBN: 978-88-96504-07-9 (online) Lakes: The Mirrors of the Earth BALANCING ECOSYSTEM INTEGRITY AND HUMAN WELLBEING Volume 2: Proceedings of the 15th World Lake Conference Edited by Chiara BISCARINI, Arnaldo PIERLEONI, Luigi NASELLI-FLORES Editorial office: Valentina ABETE (coordinator), Dordaneh AMIN, Yasue HAGIHARA ,Antonello LAMANNA , Adriano ROSSI Published by Science4Press Consorzio S.C.I.R.E. E (Scientific Consortium for the Industrial Research and Engineering) www.consorzioscire.it Printed in Italy Science4Press International Scientific Committee Chair Masahisa NAKAMURA (Shiga University) Vice Chair Walter RAST (Texas State University) Members Nikolai ALADIN (Russian Academy of Science) Sandra AZEVEDO (Brazil Federal University of Rio de Janeiro) Riccardo DE BERNARDI (EvK2-CNR) Salif DIOP (Cheikh Anta Diop University) Fausto GUZZETTI (IRPI-CNR Perugia) Zhengyu HU (Chinese Academy of Sciences) Piero GUILIZZONI (ISE-CNR) Luigi NASELLI-FLORES (University of Palermo) Daniel OLAGO (University of Nairobi) Ajit PATTNAIK (Chilika Development Authority) Richard ROBARTS (World Water and Climate Foundation) Adelina SANTOS-BORJA (Laguna Lake Development Authority) Juan SKINNER (Lake
    [Show full text]
  • Antiquity of Nepali Mathematics E
    American Research Journal of History and Culture(ARJHC) ISSN(online)- 2378-9026 Volume 2016 10 Pages Research Article Open Access Antiquity of Nepali Mathematics E. R. Acharya (PhD) Central Department of Education([email protected] University),University Campus, Kirtipur, Kathmandu, Nepal Abstract The mathematics developed before the written recorded history is called antiquity of mathematics. It is the the people, culture and mathematics in totality. The mathematics is practices very early as old as the human fundamental basis for the historical developments of mathematics. It has greater significance in understanding very early mathematics either as rock art or formation of chambers as administrative room. The utensils, fossils civilization and it is also true for in context of Nepal. In High Himalayan Region there are so many symbols of antiquity of Nepali mathematics. and physical contractions of Zhong Kiore Cave of Mustang as evidences. The aim of this paper is to exploration Keywords: Antiquity, Prehistory, Archeology, Himalayas, Mathematics Introduction understanding the people, culture, rituals and mathematics in totality. Here it is concern to Nepal. Nepal lies onAntiquity the laps is of the the basic large foundationranges Himalaya of history before and millions civilization years agoof eachit laid society. under theIt has Tethys greater Sea. Duesignificance to millions in years’ geological and tectonic movement and geographical disasters the level of Tethys Sea became higher and higher and form folded rocks and mountains. In course of time it was changed as high Himalayas, Lower Mountain, Peasant Valleys and large plains in southern regions continuously. Consequently, various water-lakes, snowflakes,The Himalayas rivers are were among formed, the youngest like Mahendra mountain Lake, ranges Gosaikunda, on the planet.Fewa Lake Their and origin Kathmandu dates back Valley, to theetc.
    [Show full text]
  • LIST of INDIAN CITIES on RIVERS (India)
    List of important cities on river (India) The following is a list of the cities in India through which major rivers flow. S.No. City River State 1 Gangakhed Godavari Maharashtra 2 Agra Yamuna Uttar Pradesh 3 Ahmedabad Sabarmati Gujarat 4 At the confluence of Ganga, Yamuna and Allahabad Uttar Pradesh Saraswati 5 Ayodhya Sarayu Uttar Pradesh 6 Badrinath Alaknanda Uttarakhand 7 Banki Mahanadi Odisha 8 Cuttack Mahanadi Odisha 9 Baranagar Ganges West Bengal 10 Brahmapur Rushikulya Odisha 11 Chhatrapur Rushikulya Odisha 12 Bhagalpur Ganges Bihar 13 Kolkata Hooghly West Bengal 14 Cuttack Mahanadi Odisha 15 New Delhi Yamuna Delhi 16 Dibrugarh Brahmaputra Assam 17 Deesa Banas Gujarat 18 Ferozpur Sutlej Punjab 19 Guwahati Brahmaputra Assam 20 Haridwar Ganges Uttarakhand 21 Hyderabad Musi Telangana 22 Jabalpur Narmada Madhya Pradesh 23 Kanpur Ganges Uttar Pradesh 24 Kota Chambal Rajasthan 25 Jammu Tawi Jammu & Kashmir 26 Jaunpur Gomti Uttar Pradesh 27 Patna Ganges Bihar 28 Rajahmundry Godavari Andhra Pradesh 29 Srinagar Jhelum Jammu & Kashmir 30 Surat Tapi Gujarat 31 Varanasi Ganges Uttar Pradesh 32 Vijayawada Krishna Andhra Pradesh 33 Vadodara Vishwamitri Gujarat 1 Source – Wikipedia S.No. City River State 34 Mathura Yamuna Uttar Pradesh 35 Modasa Mazum Gujarat 36 Mirzapur Ganga Uttar Pradesh 37 Morbi Machchu Gujarat 38 Auraiya Yamuna Uttar Pradesh 39 Etawah Yamuna Uttar Pradesh 40 Bangalore Vrishabhavathi Karnataka 41 Farrukhabad Ganges Uttar Pradesh 42 Rangpo Teesta Sikkim 43 Rajkot Aji Gujarat 44 Gaya Falgu (Neeranjana) Bihar 45 Fatehgarh Ganges
    [Show full text]
  • National Profile 2020/2021 R O GRAM
    NVCYE PROGRAM 1 2 0 /2 20 20 Profile l na Natio NVCYE PROGRAM Contact Person: Santoshi Chalise Kalanki -14, Kathmandu, Nepal Tel: +977-15234504 E-mail: [email protected] Website: www.icyenepal.org PO Box: 1865 Nepal: An Introduction Official Name: Nepal Population: 35,142,064 (2019 est.,) Official Language: Nepali Currency: Rupees (NPR) Standard Time Zone: UTC+05:45 Capital: Kathmandu Founded in 1768 Government: Federal Democratic Republic of Nepal Current President: Biddhyadevi Bhandari Nepal has 77 department’s (districts), six metropolitan cities (Kathmandu, Janakpur, Biratnagar, Bharatpur, Pokhara and Lalitpur) and 753 new municipalities and rural municipalities. Geography: Nepal is a landlocked country, surrounded by India on three sides and by China's Tibet Autonomous Region to the north. The shape of the country is rectangular with a width of about 650 kilometres and a length of about 200 kilometers. The total landmass is 147,181 square kilometres. Nepal is dependent on India for transit facilities and access to the sea. All the goods and raw materials arrive into Nepal from the Bay of Bengal and through Kolkata. Though small in size, Nepal contains great diversity in landscape. The south of Nepal, which borders India, is flat and known locally as Terai. The Terai is situated about 300 meters above sea level. The landscape then dramatically changes to mid-hills of over 1000 meters and reaches as high as 8000 meters with the Himalayas in the north bordering China. This rise in elevation is punctuated by valleys situated between mountain ranges. Within this maze of mountains, hills, ridges, and low valleys, changes in altitude have resulted in great ecological variations and have given rise to many different cultures, traditions, and languages.
    [Show full text]
  • River Culture in Nepal
    Nepalese Culture Vol. XIV : 1-12, 2021 Central Department of NeHCA, Tribhuvan University, Kathmandu, Nepal DOI: https://doi.org/10.3126/nc.v14i0.35187 River Culture in Nepal Kamala Dahal- Ph.D Associate Professor, Patan Multipal Campus, T.U. E-mail: [email protected] Abstract Most of the world civilizations are developed in the river basins. However, we do not have too big rivers in Nepal, though Nepalese culture is closely related with water and rivers. All the sacraments from birth to the death event in Nepalese society are related with river. Rivers and ponds are the living places of Nepali gods and goddesses. Jalkanya and Jaladevi are known as the goddesses of rivers. In the same way, most of the sacred places are located at the river banks in Nepal. Varahakshetra, Bishnupaduka, Devaghat, Triveni, Muktinath and other big Tirthas lay at the riverside. Most of the people of Nepal despose their death bodies in river banks. Death sacrement is also done in the tirthas of such localities. In this way, rivers of Nepal bear the great cultural value. Most of the sacramental, religious and cultural activities are done in such centers. Religious fairs and festivals are also organized in such a places. Therefore, river is the main centre of Nepalese culture. Key words: sacred, sacraments, purity, specialities, bath. Introduction The geography of any localities play an influencing role for the development of culture of a society. It affects a society directly and indirectly. In the beginning the nomads passed their lives for thousands of year in the jungle.
    [Show full text]
  • Whitewater Packrafting in Western Nepal a Senior Expedition Proposal for the SUNY Plattsburgh Expeditionary Studies Program ______
    Whitewater Packrafting in Western Nepal A Senior Expedition Proposal for the SUNY Plattsburgh Expeditionary Studies Program ______________________________________________________________________ Ted Tetrault Professor Gerald Isaak EXP435: Expedition Planning December 1, 2016 Table of Contents ____________________________________________________________________________ 1. Introduction…………………………………………………………………………………….. 2 2. Literature Review…………………………………………………………………………….... 7 3. Design and Methodology…………………………………………………………………… 16 4. Risk Management……………………………………………………………………………. 29 5. References……………………………………………………………………………………. 38 6. Appendix A: Expedition Field Manual…………………………………………………… 39 7. Appendix B: Related Maps and Documents……………………………………………. 42 8. Appendix C: Budget………………………………………………………………………… 44 9. Appendix D: Gearlist………………………………………………………………………... 47 1. Introduction ____________________________________________________________________________ This expedition plan outlines a whitewater packrafting trip on the Bheri and Seti Karnali rivers in western Nepal that will serve as my capstone project for the Bachelor’s of Science in the Expeditionary Studies program at SUNY Plattsburgh. While these rivers will count as my own personal senior expedition, the trip in its entirety will also include the running of the Sun Kosi river in eastern Nepal, and that plan can be found in a separate document authored by Alex LaLonde as that segment will be serving as his capstone project for the same program. Adventure travel expeditions give us the
    [Show full text]
  • Abbreviation and Acronyms
    Assessment of Hydropower Potential of Nepal Final Report Abbreviation and Acronyms AHEP : Available Gross Hydroelectricity Potential ASTER : Advance Spaceborne Thermal Emission and Reflection Radiometer AMF : Average Monthly Flow APHRODITE : Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation B : Breadth BCDP : Building Code Development Project B/C : Benefit-Cost Ratio BoQ : Bill of Quantities CAR : Catchment Area Ratio CCT : Central Churia Thrust CFRD : Concrete Faced Rock Fill Dam COD : Commercial Operation Date DCF : Discounted Cash Flow DEM : Digital Elevation Model DHM : Department of Hydrology & Meteorology DMG : Department of Mines & Geology DoED : Department of Electricity Development d/s : Downstream E : East EIA : Environmental Impact Assessment EMI : Equal Monthly Installment ESA : European Space Agency ESRI : Environmental System Research Institute EU-DEM : European Union Digital Elevation Model FDC : Flow Duration Curve WECS i Assessment of Hydropower Potential of Nepal Final Report GHEP : Gross Hydroelectricity Potential GIS : Geographic Information System GLOF : Glacial Lake Outburst Flood GoN : Government of Nepal GPS : Global Positioning System GWh : Giga Watt-Hour H : Height ha : Hectares HEC-HMS : Hydrologic Engineering Center-Hydrologic Modeling System HFL : High Flood Level HFT : Himalayan Frontal Thrust HPP : Hydropower Project HRU : Hydrological Response Unit ICOLD : International Commission on Large Dams ICIMOD : International Center for Integrated Mountain Development IDC : Interest
    [Show full text]
  • Journal of Integrated Disaster Risk Manangement
    IDRiM(2013)3(1) ISSN: 2185-8322 DOI10.5595/idrim.2013.0061 Journal of Integrated Disaster Risk Management Original paper Determination of Threshold Runoff for Flood Warning in Nepalese Rivers 1 2 Dilip Kumar Gautam and Khadananda Dulal Received: 05/02/2013 / Accepted: 08/04/2013 / Published online: 01/06/2013 Abstract The Southern Terai plain area of Nepal is exposed to recurring floods. The floods, landslides and avalanches in Nepal cause the loss of lives of about 300 people and damage to properties worth about 626 million NPR annually. Consequently, the overall development of the country has been adversely affected. The flood risk could be significantly reduced by developing effective operational flood early warning systems. Hence, a study has been conducted to assess flood danger levels and determine the threshold runoff at forecasting stations of six major rivers of Nepal for the purpose of developing threshold-stage based operational flood early warning system. Digital elevation model data from SRTM and ASTER supplemented with measured cross-section data and HEC-RAS model was used for multiple profile analysis and inundation mapping. Different inundation scenarios were generated for a range of flood discharge at upstream boundary and flood threshold levels or runoffs have been identified for each river, thus providing the basis for developing threshold-stage based flood early warning system in these rivers. Key Words Flood, danger level, threshold runoff, hydrodynamic model, geographic information system 1. INTRODUCTION Nepal's Terai region is the part of the Ganges River basin, which is one of the most disaster-prone regions in the world.
    [Show full text]
  • Ganges Strategic Basin Assessment
    Public Disclosure Authorized Report No. 67668-SAS Report No. 67668-SAS Ganges Strategic Basin Assessment A Discussion of Regional Opportunities and Risks Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized GANGES STRATEGIC BASIN ASSESSMENT: A Discussion of Regional Opportunities and Risks b Report No. 67668-SAS Ganges Strategic Basin Assessment A Discussion of Regional Opportunities and Risks Ganges Strategic Basin Assessment A Discussion of Regional Opportunities and Risks World Bank South Asia Regional Report The World Bank Washington, DC iii GANGES STRATEGIC BASIN ASSESSMENT: A Discussion of Regional Opportunities and Risks Disclaimer: © 2014 The International Bank for Reconstruction and Development / The World Bank 1818 H Street NW Washington, DC 20433 Telephone: 202-473-1000 Internet: www.worldbank.org All rights reserved 1 2 3 4 14 13 12 11 This volume is a product of the staff of the International Bank for Reconstruction and Development / The World Bank. The findings, interpretations, and conclusions expressed in this volume do not necessarily reflect the views of the Executive Directors of The World Bank or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Rights and Permissions The material in this publication is copyrighted. Copying and/or transmitting portions or all of this work without permission may be a violation of applicable law.
    [Show full text]
  • Ttamak Koshi 3 Hyd Droel Ectric C Pro Oject
    TAMAKOSHI 3 HYDROELECTRIC PROJECT EXECUTIVE SUMMARY - VOLUME XI Document for Disclosure Final Report – November 30, 2009 SWECO Norge AS Lysaker, P O Box 400 Oslo, NORWAY Telephone +47 67 12 80 00 www.sweco.no Abbreviations and Acronyms ACBP Awareness and Capacity Building Plan ADB Asian Development Bank CF Community Forest CFUG Community Forest User Group CITES Convention of International Trade in Endangered Species CSR Corporate Social Responsibility DFO District Forest Office DOED Department of Electricity Development EHSP Environment, Health and Safety Plan EIA Environmental Impact Assessment EMP Environmental Management Plan EMU Environmental Management Unit EPA Environmental Protection Agency EPR Environmental Protection Rules GLOF Glacial Lake Outburst Floods GON Government of Nepal GRU Grievance Redressal Unit GW Giga-watt GWh Giga-watt per hour HEP Hydroelectric Project HH/hh Household ICAMDP Immediate Catchment Area Management and Development Plan IFC International Financial Corporation IUCN International Union for the Conservation of Nature LSEP Livelihood Support and Enhancement Program m asl meters above sea level MOE Ministry of Energy MoEn Ministry of Environment MoWR Ministry of Water Resources MT Million Tons MW Mega Watt NEA National Electricity Authority PAF Project Affected Families PAP Project Affected Persons PCDP Public Consultation and Disclosure Plan PS Performance Standards RAP Resettlement Action Plan RRP Resettlement and Rehabilitation Plan SBA Safeguard Buffer Area SchEMS School of Environmental Management and Sustainable Development SEMD Social and Environmental Management Division SNP SN Power SPAF Severely Project Affected Families SPS Safeguard Policy Statement TA3HEP Tamakoshi 3 Hydroelectric Project TOR Terms of Reference VDC Village Development Committee WBG World Bank Group WHO World Health Organization Table of Content Page nos 1 Project Proponent and Organization Responsible for Preparing the EIA Report .........................................................
    [Show full text]
  • "MAGIC BOOK" GK PDF in English
    www.gradeup.co www.gradeup.co Content 1. Bihar Specific General Knowledge: • History of Bihar • Geography of Bihar • Tourism in Bihar • Mineral & Energy Resources in Bihar • Industries in Bihar • Vegetation in Bihar • National Park & Wildlife Sanctuaries in Bihar • First in Bihar • Important Tribal Revolt in Bihar • Bihar Budget 2020-21 2. Indian History: • Ancient India • Medieval India • Modern India 3. Geography: 4. Environment: 5. Indian Polity & Constitution: 6. Indian Economy: 7. Physics: 8. Chemistry: 9. Biology: www.gradeup.co HISTORY OF BIHAR • The capital of Vajji was located at Vaishali. • It was considered the world’s first republic. Ancient History of Bihar Licchavi Clan STONE AGE SITES • It was the most powerful clan among the • Palaeolithic sites have been discovered in Vajji confederacy. Munger and Nalanda. • It was situated on the Northern Banks of • Mesolithic sites have been discovered from Ganga and Nepal Hazaribagh, Ranchi, Singhbhum and Santhal • Its capital was located at Vaishali. Pargana (all in Jharkhand) • Lord Mahavira was born at Kundagram in • Neolithic(2500 - 1500 B.C.) artefacts have Vaishali. His mother was a Licchavi princess been discovered from Chirand(Saran) and (sister of King Chetaka). Chechar(Vaishali) • They were later absorbed into the Magadh • Chalcolithic Age items have been discovered Empire by Ajatshatru of Haryanka dynasty. from Chirand(Saran), Chechar(Vaishali), • Later Gupta emperor Chandragupta married Champa(Bhagalpur) and Taradih(Gaya) Licchavi princess Kumaradevi. MAHAJANAPADAS Jnatrika Clan • In the Later Vedic Age, a number of small • Lord Mahavira belonged to this clan. His kingdoms emerged. 16 monarchies and father was the head of this clan. republics known as Mahajanapadas stretched Videha Clan across Indo-Gangetic plains.
    [Show full text]
  • South Asia River Flow Projections and Their Implications for Water Resources
    This is a repository copy of South Asia river flow projections and their implications for water resources. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/87426/ Version: Accepted Version Article: Mathison, C, Wiltshire, AJ, Falloon, P et al. (1 more author) (2015) South Asia river flow projections and their implications for water resources. Hydrology and Earth System Sciences, 12. 5789 - 5840. ISSN 1027-5606 https://doi.org/10.5194/hessd-12-5789-2015 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Manuscript prepared for Hydrol. Earth Syst. Sci. with version 2014/07/29 7.12 Copernicus papers of the LATEX class copernicus.cls. Date: 16 June 2015 South Asia river flow projections and their implications for water resources Camilla Mathison1, Andrew J.
    [Show full text]