Informe Anual CCI 2017
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Qatar Exoplanet Survey: Qatar-6B--A Grazing Transiting Hot Jupiter
DRAFT VERSION JULY 2, 2018 Typeset using LATEX preprint2 style in AASTeX61 QATAR EXOPLANET SURVEY: QATAR-6B – A GRAZING TRANSITING HOT JUPITER KHALID ALSUBAI,1 ZLATAN I. TSVETANOV,1 DAVID W. LATHAM,2 ALLYSON BIERYLA,2 GILBERT A. ESQUERDO,2 DIMITRIS MISLIS,1 STYLIANOS PYRZAS,1 EMMA FOXELL,3, 4 JAMES MCCORMAC,3, 4 CHRISTOPH BARANEC,5 NICOLAS P. E. VILCHEZ,1 RICHARD WEST,3, 4 ALI ESAMDIN,6 ZHENWEI DANG,6 HANI M. DALEE,1 AMANI A. AL-RAJIHI,7 AND ABEER KH.AL-HARBI8 1Qatar Environment and Energy Research Institute (QEERI), HBKU, Qatar Foundation, PO Box 5825, Doha, Qatar 2Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 3Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK 4Centre for Exoplanets and Habitability, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK 5Institute for Astronomy, University of Hawai‘i at Manoa,¯ Hilo, HI 96720-2700, USA 6Xinjiang Astronomical Observatory, Chinese Academy of Sciences, 150 Science 1-Street, Urumqi, Xinjiang 830011, China 7Qatar Secondary Independent High School, Doha, Qatar 8Al-Kawthar Secondary Independent High School, Doha, Qatar (Received Oct 6, 2017; Revised Dec 4, 2017; Accepted Dec 5, 2017) Submitted to AJ ABSTRACT We report the discovery of Qatar-6b, a new transiting planet identified by the Qatar Exoplanet Survey (QES). The planet orbits a relatively bright (V=11.44), early-K main-sequence star at an orbital period of P ∼ 3:506 days. An SED fit to available multi-band photometry, ranging from the near-UV to the mid-IR, yields a distance of d = 101 ± 6 pc to the system. -
'Hot Jupiter' Detected by the Qatar Exoplanet Survey 18 December 2017, by Tomasz Nowakowski
New grazing transiting 'hot Jupiter' detected by the Qatar Exoplanet Survey 18 December 2017, by Tomasz Nowakowski Now, a team of astronomers, led by Khalid Alsubai of the Qatar Environment and Energy Research Institute (QEERI) in Doha, Qatar, reports the finding of a new addition to the short list of planets in a grazing transit configuration. They discovered Qatar-6b as part of the QES survey, which utilizes the New Mexico Skies Observatory located at Mayhill, New Mexico. "In this paper, we present the discovery of Qatar-6b, a newly found hot Jupiter on a grazing transit," the researchers wrote in the paper. According to the study, Qatar-6b has a radius about 6 percent larger than Jupiter and a mass of approximately 0.67 Jupiter masses, which indicates a density of 0.68 g/cm3. The exoplanet orbits its The discovery light curve for Qatar-6b phase folded with parent star every 3.5 days at a distance of about the BLS estimated period, as it appears in the QES 0.04 AU from the host. Due to the proximity of this archive. Credit: Alsubai et al., 2017. planet to the star, astronomers estimate that it has an equilibrium temperature of 1,006 K. The parameters suggest that Qatar-6b belongs to (Phys.org)—An international group of astronomers group of planets known as "hot Jupiters." These has found a new grazing transiting "hot Jupiter" exoworlds are similar in characteristics to the solar alien world as part of the Qatar Exoplanet Survey system's biggest planet, with orbital periods of less (QES). -
Pos(MULTIF2017)001
Multifrequency Astrophysics (A pillar of an interdisciplinary approach for the knowledge of the physics of our Universe) ∗† Franco Giovannelli PoS(MULTIF2017)001 INAF - Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere, 100, 00133 Roma, Italy E-mail: [email protected] Lola Sabau-Graziati INTA- Dpt. Cargas Utiles y Ciencias del Espacio, C/ra de Ajalvir, Km 4 - E28850 Torrejón de Ardoz, Madrid, Spain E-mail: [email protected] We will discuss the importance of the "Multifrequency Astrophysics" as a pillar of an interdis- ciplinary approach for the knowledge of the physics of our Universe. Indeed, as largely demon- strated in the last decades, only with the multifrequency observations of cosmic sources it is possible to get near the whole behaviour of a source and then to approach the physics governing the phenomena that originate such a behaviour. In spite of this, a multidisciplinary approach in the study of each kind of phenomenon occurring in each kind of cosmic source is even more pow- erful than a simple "astrophysical approach". A clear example of a multidisciplinary approach is that of "The Bridge between the Big Bang and Biology". This bridge can be described by using the competences of astrophysicists, planetary physicists, atmospheric physicists, geophysicists, volcanologists, biophysicists, biochemists, and astrobiophysicists. The unification of such com- petences can provide the intellectual framework that will better enable an understanding of the physics governing the formation and structure of cosmic objects, apparently uncorrelated with one another, that on the contrary constitute the steps necessary for life (e.g. Giovannelli, 2001). -
AST413 Gezegen Sistemleri Ve Oluşumu Ders 4 : Geçiş Yöntemi – I Yöntemin Temelleri Geçiş Yöntemi HD 209458 B
AST413 Gezegen Sistemleri ve Oluşumu Ders 4 : Geçiş Yöntemi – I Yöntemin Temelleri Geçiş Yöntemi HD 209458 b Charbonneau vd. 2000 2000 yılında David Charbonneau dikine hız yöntemiyle keşfedilmiş HD 209458 b’nin bir geçişini gözledi. Bu ilk gezegen geçiş gözlemidir. Charbonneau, cismin yörünge parametrelerini dikine hızdan bildiği için teleskobunu yapıyorsa geçişini gözlemek üzere ne zaman cisme doğrultması gerektiğini biliyordu. Ancak, gezegenin gözlemicyle arasından geçiş yapmak gibi bir zorunluluğu da yoktur. Venüs Geçişi Venüs örneğinde gördüğümüz gibi gezegen yıldızın önünden geçerken, yıldızın ışığı gezegenin (varsa) atmosferinin içinden geçerek bize ulaşır. Bu da -ideal durumda- gezegenin atmosferini çalışmamıza olanak sağlayabilir. Sıcak Jüpiterler Gerçekten Var! 51 Peg b keşfinden sonra sıcak Jüpiterlerin (yıldızına 1/20 AB'den daha yakın dev gaz gezegenler) yıldızlarına bu kadar yakın oluşup oluşamayacakları, sistemin başka bir yerinden göç etmiş olabilme olasılıkları hatta var olup olmadıkları uzun süre tartışıldı. Ancak bu cisimlerin yarıçaplarının (R p) büyük olması ve yıldızlarına yakınlıkları (a), daha büyük geçiş ışık değişim genliği ve daha kısa geçiş dönemi nedeniyle onların geçiş yöntemiyle keşfedillme olasılıklarını da arttırdığından, bu yöntemle diğer gezegenlere göre daha kolay keşfedilmelerini de sağladı. Dikine hız tekniğiyle keşfedilen HD 209458b, geçiş de gösteriyordu ve dikine hız ölçümleriyle, geçiş gözlemleri birlikte değerlendirildiğinde bu sıcak Jüpiter türü gezegenin gerçekten var olduğu kanıtlanmış oldu! Charbonneau vd. 2000 Mazeh vd. 2000 Geçiş Olasılığı Öncelikle gezegenin yörüngesinin çembersel (e = 0) olduğunu varsayalım. Bu durumda gezegenin gözlemcinin bakış yönü doğrultusunda yıldızla arasından (sıyırarak da olsa) geçmesi için yörüngenin yarı-büyük eksen uzunluğu a’nın cos i çarpanı kadar kısaltılmış kesitinin (a cos i) yıldızın yarıçapı ile gezegen yarıçapı toplamından (R* + Rg) küçük olması gerekir (a cos i ≤ R* + Rg). -
SHAPING the WIND of DYING STARS Noam Soker
Pleasantness Review* Department of Physics, Technion, Israel The role of jets in the common envelope evolution (CEE) and in the grazing envelope evolution (GEE) Cambridge 2016 Noam Soker •Dictionary translation of my name from Hebrew to English (real!): Noam = Pleasantness Soker = Review A short summary JETS See review accepted for publication by astro-ph in May 2016: Soker, N., 2016, arXiv: 160502672 A very short summary JFM See review accepted for publication by astro-ph in May 2016: Soker, N., 2016, arXiv: 160502672 A full summary • Jets are unavoidable when the companion enters the common envelope. They are most likely to continue as the secondary star enters the envelop, and operate under a negative feedback mechanism (the Jet Feedback Mechanism - JFM). • Jets: Can be launched outside and Secondary inside the envelope star RGB, AGB, Red Giant Massive giant primary star Jets Jets Jets: And on its surface Secondary star RGB, AGB, Red Giant Massive giant primary star Jets A full summary • Jets are unavoidable when the companion enters the common envelope. They are most likely to continue as the secondary star enters the envelop, and operate under a negative feedback mechanism (the Jet Feedback Mechanism - JFM). • When the jets mange to eject the envelope outside the orbit of the secondary star, the system avoids a common envelope evolution (CEE). This is the Grazing Envelope Evolution (GEE). Points to consider (P1) The JFM (jet feedback mechanism) is a negative feedback cycle. But there is a positive ingredient ! In the common envelope evolution (CEE) more mass is removed from zones outside the orbit. -
Features in Cosmic-Ray Lepton Data Unveil the Properties of Nearby Cosmic Accelerators
Prepared for submission to JCAP Features in cosmic-ray lepton data unveil the properties of nearby cosmic accelerators O. Fornieri,a;b;d;1 D. Gaggerod and D. Grassob;c aDipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Universit`adi Siena, Via Roma 56, 53100 Siena, Italy bINFN Sezione di Pisa, Polo Fibonacci, Largo B. Pontecorvo 3, 56127 Pisa, Italy cDipartimento di Fisica, Universit`adi Pisa, Polo Fibonacci, Largo B. Pontecorvo 3 dInstituto de F´ısicaTe´oricaUAM-CSIC, Campus de Cantoblanco, E-28049 Madrid, Spain E-mail: [email protected], [email protected], [email protected] Abstract. We present a comprehensive discussion about the origin of the features in the leptonic component of the cosmic-ray spectrum. Working in the framework of a up-to-date CR transport scenario tuned on the most recent AMS-02 and Voyager data, we show that the prominent features recently found in the positron and in the all-electron spectra by several experiments are compatible with a scenario in which pulsar wind nebulae (PWNe) are the dominant sources of the positron flux, and nearby supernova remnants (SNRs) shape the high-energy peak of the electron spectrum. In particular we argue that the drop-off in positron spectrum found by AMS-02 at 300 GeV can be explained | under different ∼ assumptions | in terms of a prominent PWN that provides the bulk of the observed positrons in the 100 GeV domain, on top of the contribution from a large number of older objects. ∼ Finally, we turn our attention to the spectral softening at 1 TeV in the all-lepton spectrum, ∼ recently reported by several experiments, showing that it requires the presence of a nearby arXiv:1907.03696v2 [astro-ph.HE] 6 Mar 2020 supernova remnant at its final stage. -
Supernova Environmental Impacts
Proceedings of the International Astronomical Union IAU Symposium No. 296 IAU Symposium IAU Symposium 7–11 January 2013 New telescopes spanning the full electromagnetic spectrum have enabled the study of supernovae (SNe) and supernova remnants 296 Raichak on Ganges, (SNRs) to advance at a breath-taking pace. Automated synoptic Calcutta, India surveys have increased the detection rate of supernovae by more than an order of magnitude and have led to the discovery of highly unusual supernovae. Observations of gamma-ray emission from 7–11 January 296 7–11 January 2013 Supernova SNRs with ground-based Cherenkov telescopes and the Fermi 2013 Supernova telescope have spawned new insights into particle acceleration in Raichak on Ganges, supernova shocks. Far-infrared observations from the Spitzer and Raichak Environmental Herschel observatories have told us much about the properties on Ganges, Calcutta, India Environmental and fate of dust grains in SNe and SNRs. Work with satellite-borne Calcutta, India Chandra and XMM-Newton telescopes and ground-based radio Impacts and optical telescopes reveal signatures of supernova interaction with their surrounding medium, their progenitor life history and of Impacts the ecosystems of their host galaxies. IAU Symposium 296 covers all these advances, focusing on the interactions of supernovae with their environments. Proceedings of the International Astronomical Union Editor in Chief: Prof. Thierry Montmerle This series contains the proceedings of major scientifi c meetings held by the International Astronomical Union. Each volume contains a series of articles on a topic of current interest in Supernova astronomy, giving a timely overview of research in the fi eld. With contributions by leading scientists, these books are at a level Environmental Edited by suitable for research astronomers and graduate students. -
LIST of PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute
LIST OF PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute of Department of Science and Technology, Govt. of India) Manora Peak, Naini Tal - 263 129, India (1955−2020) ABBREVIATIONS AA: Astronomy and Astrophysics AASS: Astronomy and Astrophysics Supplement Series ACTA: Acta Astronomica AJ: Astronomical Journal ANG: Annals de Geophysique Ap. J.: Astrophysical Journal ASP: Astronomical Society of Pacific ASR: Advances in Space Research ASS: Astrophysics and Space Science AE: Atmospheric Environment ASL: Atmospheric Science Letters BA: Baltic Astronomy BAC: Bulletin Astronomical Institute of Czechoslovakia BASI: Bulletin of the Astronomical Society of India BIVS: Bulletin of the Indian Vacuum Society BNIS: Bulletin of National Institute of Sciences CJAA: Chinese Journal of Astronomy and Astrophysics CS: Current Science EPS: Earth Planets Space GRL : Geophysical Research Letters IAU: International Astronomical Union IBVS: Information Bulletin on Variable Stars IJHS: Indian Journal of History of Science IJPAP: Indian Journal of Pure and Applied Physics IJRSP: Indian Journal of Radio and Space Physics INSA: Indian National Science Academy JAA: Journal of Astrophysics and Astronomy JAMC: Journal of Applied Meterology and Climatology JATP: Journal of Atmospheric and Terrestrial Physics JBAA: Journal of British Astronomical Association JCAP: Journal of Cosmology and Astroparticle Physics JESS : Jr. of Earth System Science JGR : Journal of Geophysical Research JIGR: Journal of Indian -
KELT-23Ab: a Hot Jupiter Transiting a Near-Solar Twin Close to the TESS and JWST Continuous Viewing Zones
The Astronomical Journal, 158:78 (14pp), 2019 August https://doi.org/10.3847/1538-3881/ab24c7 © 2019. The American Astronomical Society. All rights reserved. KELT-23Ab: A Hot Jupiter Transiting a Near-solar Twin Close to the TESS and JWST Continuous Viewing Zones Daniel Johns1 , Phillip A. Reed1 , Joseph E. Rodriguez2 , Joshua Pepper3 , Keivan G. Stassun4,5 , Kaloyan Penev6 , B. Scott Gaudi7 , Jonathan Labadie-Bartz8,9 , Benjamin J. Fulton10 , Samuel N. Quinn2 , Jason D. Eastman2 , David R. Ciardi10, Lea Hirsch11 , Daniel J. Stevens12,13 , Catherine P. Stevens14, Thomas E. Oberst14, David H. Cohen15, Eric L. N. Jensen15 , Paul Benni16, Steven Villanueva, Jr.7 , Gabriel Murawski17, Allyson Bieryla2 , David W. Latham2 , Siegfried Vanaverbeke18, Franky Dubois18, Steve Rau18, Ludwig Logie18, Ryan F. Rauenzahn1, Robert A. Wittenmyer19 , Roberto Zambelli20, Daniel Bayliss21,22 , Thomas G. Beatty13,23 , Karen A. Collins2 , Knicole D. Colón24 , Ivan A. Curtis25, Phil Evans26, Joao Gregorio27, David James28 , D. L. Depoy29,30, Marshall C. Johnson7 , Michael D. Joner31, David H. Kasper32, Somayeh Khakpash3 , John F. Kielkopf33, Rudolf B. Kuhn34,35, Michael B. Lund4,10 , Mark Manner36 , Jennifer L. Marshall29,30 , Kim K. McLeod37 , Matthew T. Penny7 , Howard Relles2, Robert J. Siverd4 , Denise C. Stephens31, Chris Stockdale38 , Thiam-Guan Tan39 , Mark Trueblood40, Pat Trueblood40, and Xinyu Yao3 1 Department of Physical Sciences, Kutztown University, Kutztown, PA 19530, USA 2 Center for Astrophysics | Harvard & Smithsonian, 60 Garden Steet, Cambridge, -
The Study of Astronomical Transients in the Infrared
The Study of Astronomical Transients in the Infrared by Robert Strausbaugh A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved May 2019 by the Graduate Supervisory Committee: Nathaniel Butler, Chair Rolf Jansen Phillip Mauskopf Rogier Windhorst ARIZONA STATE UNIVERSITY August 2019 ©2019 Robert Strausbaugh All Rights Reserved ABSTRACT Several key, open questions in astrophysics can be tackled by searching for and mining large datasets for transient phenomena. The evolution of massive stars and compact objects can be studied over cosmic time by identifying supernovae (SNe) and gamma-ray bursts (GRBs) in other galaxies and determining their redshifts. Modeling GRBs and their afterglows to probe the jets of GRBs can shed light on the emission mechanism, rate, and energetics of these events. In Chapter 1, I discuss the current state of astronomical transient study, including sources of interest, instrumentation, and data reduction techniques, with a focus on work in the infrared. In Chapter 2, I present original work published in the Proceedings of the Astronomical Society of the Pacific, testing InGaAs infrared detectors for astronomical use (Strausbaugh, Jackson, and Butler 2018); highlights of this work include observing the exoplanet transit of HD189773B, and detecting the nearby supernova SN2016adj with an InGaAs detector mounted on a small telescope at ASU. In Chapter 3, I discuss my work on GRB jets published in the Astrophysical Journal Letters, highlighting the interesting case of GRB 160625B (Strausbaugh et al. 2019), where I interpret a late-time bump in the GRB afterglow lightcurve as evidence for a bright-edged jet. -
Arxiv:1802.07727V1 [Astro-Ph.HE] 21 Feb 2018 Tion Systems to Standard Candles in Cosmology (E.G., Wijers Et Al
Astronomy & Astrophysics manuscript no. XSGRB_sample_arxiv c ESO 2018 2018-02-23 The X-shooter GRB afterglow legacy sample (XS-GRB)? J. Selsing1;??, D. Malesani1; 2; 3,y, P. Goldoni4,y, J. P. U. Fynbo1; 2,y, T. Krühler5,y, L. A. Antonelli6,y, M. Arabsalmani7; 8, J. Bolmer5; 9,y, Z. Cano10,y, L. Christensen1, S. Covino11,y, P. D’Avanzo11,y, V. D’Elia12,y, A. De Cia13, A. de Ugarte Postigo1; 10,y, H. Flores14,y, M. Friis15; 16, A. Gomboc17, J. Greiner5, P. Groot18, F. Hammer14, O.E. Hartoog19,y, K. E. Heintz1; 2; 20,y, J. Hjorth1,y, P. Jakobsson20,y, J. Japelj19,y, D. A. Kann10,y, L. Kaper19, C. Ledoux9, G. Leloudas1, A.J. Levan21,y, E. Maiorano22, A. Melandri11,y, B. Milvang-Jensen1; 2, E. Palazzi22, J. T. Palmerio23,y, D. A. Perley24,y, E. Pian22, S. Piranomonte6,y, G. Pugliese19,y, R. Sánchez-Ramírez25,y, S. Savaglio26, P. Schady5, S. Schulze27,y, J. Sollerman28, M. Sparre29,y, G. Tagliaferri11, N. R. Tanvir30,y, C. C. Thöne10, S.D. Vergani14,y, P. Vreeswijk18; 26,y, D. Watson1; 2,y, K. Wiersema21; 30,y, R. Wijers19, D. Xu31,y, and T. Zafar32 (Affiliations can be found after the references) Received/ accepted ABSTRACT In this work we present spectra of all γ-ray burst (GRB) afterglows that have been promptly observed with the X-shooter spectrograph until 31=03=2017. In total, we obtained spectroscopic observations of 103 individual GRBs observed within 48 hours of the GRB trigger. Redshifts have been measured for 97 per cent of these, covering a redshift range from 0.059 to 7.84. -
List of Bright Nebulae Primary I.D. Alternate I.D. Nickname
List of Bright Nebulae Alternate Primary I.D. Nickname I.D. NGC 281 IC 1590 Pac Man Neb LBN 619 Sh 2-183 IC 59, IC 63 Sh2-285 Gamma Cas Nebula Sh 2-185 NGC 896 LBN 645 IC 1795, IC 1805 Melotte 15 Heart Nebula IC 848 Soul Nebula/Baby Nebula vdB14 BD+59 660 NGC 1333 Embryo Neb vdB15 BD+58 607 GK-N1901 MCG+7-8-22 Nova Persei 1901 DG 19 IC 348 LBN 758 vdB 20 Electra Neb. vdB21 BD+23 516 Maia Nebula vdB22 BD+23 522 Merope Neb. vdB23 BD+23 541 Alcyone Neb. IC 353 NGC 1499 California Nebula NGC 1491 Fossil Footprint Neb IC 360 LBN 786 NGC 1554-55 Hind’s Nebula -Struve’s Lost Nebula LBN 896 Sh 2-210 NGC 1579 Northern Trifid Nebula NGC 1624 G156.2+05.7 G160.9+02.6 IC 2118 Witch Head Nebula LBN 991 LBN 945 IC 405 Caldwell 31 Flaming Star Nebula NGC 1931 LBN 1001 NGC 1952 M 1 Crab Nebula Sh 2-264 Lambda Orionis N NGC 1973, 1975, Running Man Nebula 1977 NGC 1976, 1982 M 42, M 43 Orion Nebula NGC 1990 Epsilon Orionis Neb NGC 1999 Rubber Stamp Neb NGC 2070 Caldwell 103 Tarantula Nebula Sh2-240 Simeis 147 IC 425 IC 434 Horsehead Nebula (surrounds dark nebula) Sh 2-218 LBN 962 NGC 2023-24 Flame Nebula LBN 1010 NGC 2068, 2071 M 78 SH 2 276 Barnard’s Loop NGC 2149 NGC 2174 Monkey Head Nebula IC 2162 Ced 72 IC 443 LBN 844 Jellyfish Nebula Sh2-249 IC 2169 Ced 78 NGC Caldwell 49 Rosette Nebula 2237,38,39,2246 LBN 943 Sh 2-280 SNR205.6- G205.5+00.5 Monoceros Nebula 00.1 NGC 2261 Caldwell 46 Hubble’s Var.