Genome Sequences of Copper Resistant and Sensitive

Total Page:16

File Type:pdf, Size:1020Kb

Genome Sequences of Copper Resistant and Sensitive Zhang et al. Standards in Genomic Sciences (2015) 10:35 DOI 10.1186/s40793-015-0021-1 SHORT GENOME REPORT Open Access Genome sequences of copper resistant and sensitive Enterococcus faecalis strains isolated from copper-fed pigs in Denmark Siyu Zhang1,2, Dan Wang3, Yihua Wang1, Henrik Hasman4, Frank M. Aarestrup4, Hend A. Alwathnani5, Yong-Guan Zhu2,6 and Christopher Rensing1,6* Abstract Six strains of Enterococcus faecalis (S1, S12, S17, S18, S19 and S32) were isolated from copper fed pigs in Denmark. These Gram-positive bacteria within the genus Enterococcus are able to survive a variety of physical and chemical challenges by the acquisition of diverse genetic elements. The genome of strains S1, S12, S17, S18, S19 and S32 contained 2,615, 2,769, 2,625, 2,804, 2,853 and 2,935 protein-coding genes, with 41, 42, 27, 42, 32 and 44 genes encoding antibiotic and metal resistance, respectively. Differences between Cu resistant and sensitive E. faecalis strains, and possible co-transfer of Cu and antibiotic resistance determinants were detected through comparative genome analysis. Keywords: Enterococcus faecalis, Copper resistance, Antibiotic resistance, Genome sequence, Comparative genomics Introduction Enterococci belong to the gastrointestinal flora of Copper is an essential trace element with an ubiquitous humans and animals, and have been known for more cellular distribution and performs several biological than a century for their pathogenicity to humans, caus- functions [1]. It serves as an important structural com- ing urinary tract and surgical wound infections, bacter- ponent or catalytic co-factor for a wide range of different aemia and endocarditis [8]. Currently, more than 30 enzymes in various important biochemical pathways in species within the genus Enterococcus have been de- bacteria, plants and animals [2]. Because Cu, among scribed, and the two most studied enterococcal species many other micronutrients, is beneficial for growth pro- are Enterococcus faecium and Enterococcus faecalis [9]. motion and feed efficiency of farm animals [3, 4], it is Over the last two decades, E. faecalis and E. faecium extensively used as an additive in swine feed. Normally, have become increasingly important nosocomial patho- the concentration of Cu used in animal feed is in excess gens worldwide and are difficult treat due to their of the nutritional requirements of animals as it is used increasing multidrug resistance [10]. The intrinsic resist- as an alternative to in-feed antibiotics for prevention of ance of Enterococcus to many antibiotics and its acquisi- diarrheal disease [5]. Therefore, enteric bacteria, both tion of resistance determinants to other antimicrobial commensal and pathogenic, in these animals have typic- agents led to the emergence of Enterococcus as a noso- ally acquired several additional Cu resistance determi- comial pathogen [11, 12]. Recently, the co-selection of nants to survive its toxicity [1, 6, 7]. MDR isolates by antibiotics, metals and biocides has been reported [13, 14], and the resistance of Entero- coccus to both Cu and antibiotics has been established [15, 16]. However, few studies have addressed gene * Correspondence: [email protected] transfer and the underlying molecular mechanisms of 1Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark the various Cu resistance determinants in E. faecalis 6Key Laboratory of Urban Environment and Health, Institute of Urban [17]. Herein, we present the genome sequences along Environment, Chinese Academy of Sciences, Xiamen, China with the main features of six E. faecalis strains showing Full list of author information is available at the end of the article © 2015 Zhang et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Zhang et al. Standards in Genomic Sciences (2015) 10:35 Page 2 of 10 the differences between Cu resistant and sensitive strains a natural inhabitant of the mammalian gastrointestinal of E. faecalis, and suggesting possible co-transfer of Cu tract and is commonly found in soil, sewage, water and and antibiotic resistance determinants in these bacteria. food [8]. E. faecalis is quite versatile and able to survive a variety of physical and chemical challenges by the acquisi- Organism information tion of diverse genetic elements, which may contribute to Classification and Features their adaption to different hosts and environments [20, 21]. Phylogenetic analysis was performed using the 16S They are able to grow in temperatures ranging from 0 °C rRNA gene sequences on the six strains S1, S12, S17, up to 50 °C, and can survive in the presence of 6.5 % NaCl S18, S19 and S32 and related species. Sequences were and in broth at pH 9.6 [22]. They can also be resistant to aligned using Clustal W, and a phylogenetic tree was heavy and transition metals [17], as well as many different constructed using neighbor-joining (NJ) method imple- antibiotics [23–25], especially vancomycin [20, 21]. mented in MEGA version 6.0. The resultant tree topolo- gies were evaluated by bootstrap analyses with 1,000 Genome sequencing information random samplings. Phylogenetic analysis based on 16S Genome project history rRNA gene sequences showed that the six strains clus- The E. faecalis strains(S1,S12,S17,S18,S19andS32) tered together with E. faecalis ATCC 29212 and E. faeca- were isolated from Cu-fed pigs as part of the Danish lis SFL with a high bootstrap value (100 %). All the E. Integrated Antimicrobial Resistance Monitoring (DAN- faecalis are in a distinct branch with the other enterococci, MAP) surveillance program [23]. The isolates were such as E. casseliflavus, E. faecium, E. hirae and the an- collected from healthy animals at or just prior to other pig gut Firmicute,thatisStreptococcus equinus slaughter. Those whole-genome shotgun projects NCDO 1037 (Fig. 1). The six strains could be classified as have been deposited in DDBJ/EMBL/GenBank under members of the genus Enterococcus based on their 16S the accession number JTKS00000000, JTKT00000000, rRNA gene phylogeny and phenotypic characteristics JTKU00000000, JTKV00000000, JTKW00000000 and (Table 1). JTKX00000000. Table 2 presents the project information E. faecalis is a Gram-positive, oval-shaped, and often and its association with MIGS version 2.0 compliance highly pathogenic bacterium classified as a member of [26]. Cu resistant strains are E. faecalis strains S1, S18, the genus Enterococcus (Table 1 and Fig. 2) [18, 19]. It is S32, while the other three strains are Cu sensitive. Fig. 1 Phylogenetic tree highlighting the position of the six E. faecalis strains relative to phylogenetically closely related type strains within the genus Enterococcus. The sequences were aligned using Clustal W, and the neighbor-joining tree was constructed based on kimura 2-parameter distance model using MEGA 6.0. Bootstrap values above 50 % are shown obtained from 1,000 bootstrap replications. Bar, 0.02 substitutions per nucleotide position. GenBank accession numbers are displayed in parentheses. Large triangles represent the six Enterococcus strains sequenced in this study Zhang et al. Standards in Genomic Sciences (2015) 10:35 Page 3 of 10 Table 1 Classification and general features of the six Enterococcus faecalis strains according to the MIGS recommendations [26] MIGS ID Property Term Evidence codea Current classification Domain: Bacteria TAS [38] Phylum: Firmicutes TAS [39] Class: Bacilli TAS [40] Order: Lactobacillales TAS [41] Family: Enterococcaceae TAS [42] Genus: Enterococcus TAS [18, 19] Species: Enterococcus faecalis TAS [43] Strain: S1, S12, S17, S18, S19, S32 NAS Gram stain Positive TAS [42] Cell shape Oval cocci TAS [42] Motility None TAS [44] Sporulation Non-sporulating TAS [43] Temperature range 10-45 °C TAS [22] Optimum temperature 37 °C TAS [22] pH range 4.6-9.9 (Optimum pH at 7.5) TAS [22] MIGS-6 Habitat Gastrointestinal tracts of humans and other mammals TAS [8] MIGS-6.3 Salinity 0-6.5 % TAS [22] MIGS-22 Oxygen Facultatively anaerobic TAS [44] MIGS-15 Biotic relationship Commensal bacterium TAS [8] MIGS-14 Pathogenicity Highly pathogenic TAS [43] MIGS-4 Geographic location Denmark NAS MIGS-5 Sample collection 2011 NAS MIGS-4.1 Latitude Unknown NAS MIGS-4.2 Longitude Unknown NAS MIGS-4.3 Altitude Unknown NAS aEvidence codes - TAS: Traceable Author Statement (i.e., a direct exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [45] Growth conditions and genomic DNA preparation Genome annotation E. faecalis were streaked on Slanetz agar (BD Difco) The resulting contigs were uploaded onto the Rapid plates and grown for 48 h at 42 °C. Each strain was inoc- Annotation using Subsystem Technology server databases ulated separately into 25 ml of brain heart infusion broth and the gene-caller GLIMMER 3.02 [27, 28] to predict at 37 °C for 24 h. Genomic DNA was purified from the open reading frames. The predicted ORFs were translated isolates using the Easy-DNA extraction kit (Invitrogen), and annotated by searching against clusters of orthologous and DNA concentrations were determined by the Qubit groups using the SEED databases [29], as well as NCBI da- dsDNA BR assay kit (Invitrogen). tabases. RNAmmer 1.2 [30] and tRNAscan SE 1.23 [31] were used to identify rRNA genes and tRNA genes, re- Genome sequencing and assembly spectively. CRISPR repeats were examined using CRISPR Whole genome sequencing of E. faecalis strains S1, S12, recognition tool (CRT) [32]. S17, S18, S19 and S32 was carried out on an Illumina Miseq platform (Illumina, Inc., San Diego, CA).
Recommended publications
  • Diarrhea Caused by Enterococcus Villorum in Piglets
    JARQ 51 (3), 287 – 292 (2017) http://www.jircas.affrc.go.jp Diarrhea Caused by Enterococcus villorum in Piglets Diarrhea Caused by Enterococcus villorum in Piglets Yukiko TANIGUCHI1, Yukino TAMAMURA2, Yoshihiro WADA3, Ayumi KOBAYASHI4, Tomoyuki SHIBAHARA2, Yoshiharu ISHIKAWA5 and Koichi KADOTA5* 1 Tokachi Livestock Hygiene Service Center (Obihiro, Hokkaido 089-1182, Japan) 2 National Institute of Animal Health, National Agriculture and Food Research Organization (Tsukuba, Ibaraki 305-0856, Japan) 3 Ishikari Livestock Hygiene Service Center (Sapporo, Hokkaido 062-0045, Japan) 4 Shiribeshi Livestock Hygiene Service Center (Kutchan, Hokkaido 044-0083, Japan) 5 Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization (Sapporo, Hokkaido 062-0045, Japan) Abstract Three of 10 piglets with watery diarrhea, aged 24, 21 and 22 days (cases 1, 2 and 3, respectively), were investigated in detail after euthanasia (as the remaining seven recovered without specific treatment). Enterococcal bacteria were isolated and multilocus sequence analysis showed 100% and 99% identity with the phenylalanyl tRNA synthase and RNA polymerase α subunit genes of strains of Enterococcus villorum, respectively. Histologically, severe epithelial desquamation, atrophy, and regeneration of ileal villi were observed in cases 1, 2 and 3, respectively. The number of bacteria was large in case 1, smaller in case 2, and sparse in case 3. These findings suggest that case 1 was at an earlier stage of enteropathy than case 2, and that case 3 was recovering. In case 1, the exfoliation of epithelial cells with many bacteria into the intestinal lumen was interpreted as a host reaction for eradicating marginally pathogenic enteroadherent bacteria.
    [Show full text]
  • Modulation of the Gut Microbiota Alters the Tumour-Suppressive Efficacy of Tim-3 Pathway Blockade in a Bacterial Species- and Host Factor-Dependent Manner
    microorganisms Article Modulation of the Gut Microbiota Alters the Tumour-Suppressive Efficacy of Tim-3 Pathway Blockade in a Bacterial Species- and Host Factor-Dependent Manner Bokyoung Lee 1,2, Jieun Lee 1,2, Min-Yeong Woo 1,2, Mi Jin Lee 1, Ho-Joon Shin 1,2, Kyongmin Kim 1,2 and Sun Park 1,2,* 1 Department of Microbiology, Ajou University School of Medicine, Youngtongku Wonchondong San 5, Suwon 442-749, Korea; [email protected] (B.L.); [email protected] (J.L.); [email protected] (M.-Y.W.); [email protected] (M.J.L.); [email protected] (H.-J.S.); [email protected] (K.K.) 2 Department of Biomedical Sciences, The Graduate School, Ajou University, Youngtongku Wonchondong San 5, Suwon 442-749, Korea * Correspondence: [email protected]; Tel.: +82-31-219-5070 Received: 22 August 2020; Accepted: 9 September 2020; Published: 11 September 2020 Abstract: T cell immunoglobulin and mucin domain-containing protein-3 (Tim-3) is an immune checkpoint molecule and a target for anti-cancer therapy. In this study, we examined whether gut microbiota manipulation altered the anti-tumour efficacy of Tim-3 blockade. The gut microbiota of mice was manipulated through the administration of antibiotics and oral gavage of bacteria. Alterations in the gut microbiome were analysed by 16S rRNA gene sequencing. Gut dysbiosis triggered by antibiotics attenuated the anti-tumour efficacy of Tim-3 blockade in both C57BL/6 and BALB/c mice. Anti-tumour efficacy was restored following oral gavage of faecal bacteria even as antibiotic administration continued. In the case of oral gavage of Enterococcus hirae or Lactobacillus johnsonii, transferred bacterial species and host mouse strain were critical determinants of the anti-tumour efficacy of Tim-3 blockade.
    [Show full text]
  • The Ecology, Epidemiology and Virulence of Enterococcus
    Microbiology (2009), 155, 1749–1757 DOI 10.1099/mic.0.026385-0 Review The ecology, epidemiology and virulence of Enterococcus Katie Fisher and Carol Phillips Correspondence University of Northampton, School of Health, Park Campus, Boughton Green Road, Northampton Katie Fisher NN2 7AL, UK [email protected] Enterococci are Gram-positive, catalase-negative, non-spore-forming, facultative anaerobic bacteria, which usually inhabit the alimentary tract of humans in addition to being isolated from environmental and animal sources. They are able to survive a range of stresses and hostile environments, including those of extreme temperature (5–65 6C), pH (4.5”10.0) and high NaCl concentration, enabling them to colonize a wide range of niches. Virulence factors of enterococci include the extracellular protein Esp and aggregation substances (Agg), both of which aid in colonization of the host. The nosocomial pathogenicity of enterococci has emerged in recent years, as well as increasing resistance to glycopeptide antibiotics. Understanding the ecology, epidemiology and virulence of Enterococcus speciesisimportant for limiting urinary tract infections, hepatobiliary sepsis, endocarditis, surgical wound infection, bacteraemia and neonatal sepsis, and also stemming the further development of antibiotic resistance. Introduction Taxonomy For many years Enterococcus species were believed to be The genus Enterococcus consists of Gram-positive, catalase- harmless to humans and considered unimportant med- negative, non-spore-forming, facultative anaerobic bacteria ically. Because they produce bacteriocins, Enterococcus that can occur both as single cocci and in chains. species have been used widely over the last decade in the Enterococci belong to a group of organisms known as food industry as probiotics or as starter cultures (Foulquie lactic acid bacteria (LAB) that produce bacteriocins Moreno et al., 2006).
    [Show full text]
  • Comparative Genomics of Enterococcus Spp. Isolated from Bovine Feces Alicia G
    Beukers et al. BMC Microbiology (2017) 17:52 DOI 10.1186/s12866-017-0962-1 RESEARCHARTICLE Open Access Comparative genomics of Enterococcus spp. isolated from bovine feces Alicia G. Beukers1,2†, Rahat Zaheer2†, Noriko Goji3, Kingsley K. Amoako3, Alexandre V. Chaves1, Michael P. Ward1 and Tim A. McAllister2* Abstract Background: Enterococcus is ubiquitous in nature and is a commensal of both the bovine and human gastrointestinal (GI) tract. It is also associated with clinical infections in humans. Subtherapeutic administration of antibiotics to cattle selects for antibiotic resistant enterococci in the bovine GI tract. Antibiotic resistance genes (ARGs) may be present in enterococci following antibiotic use in cattle. If located on mobile genetic elements (MGEs) their dissemination between Enterococcus species and to pathogenic bacteria may be promoted, reducing the efficacy of antibiotics. Results: We present a comparative genomic analysis of twenty-one Enterococcus spp. isolated from bovine feces including Enterococcus hirae (n =10),Enterococcus faecium (n =3),Enterococcus villorum (n =2),Enterococcus casseliflavus (n =2),Enterococcus faecalis (n =1),Enterococcus durans (n =1),Enterococcus gallinarum (n =1)and Enterococcus thailandicus (n = 1). The analysis revealed E. faecium and E. faecalis from bovine feces share features with human clinical isolates, including virulence factors. The Tn917 transposon conferring macrolide-lincosamide- streptogramin B resistance was identified in both E. faecium and E. hirae, suggesting dissemination of ARGs on MGEsmayoccurinthebovineGItract.AnE. faecium isolate was also identified with two integrative conjugative elements (ICEs) belonging to the Tn916 family of ICE, Tn916 and Tn5801, both conferring tetracycline resistance. Conclusions: This study confirms the presence of enterococci in the bovine GI tract possessing ARGs on MGEs, but the predominant species in cattle, E.
    [Show full text]
  • Resistance Mechanisms and Inflammatory Bowel Disease 10.1515/Med-2020-0032 Present Multi-Resistant E
    Open Med. 2020; 15: 211-224 Research Article Michaela Růžičková, Monika Vítězová, Ivan Kushkevych* The characterization of Enterococcus genus: resistance mechanisms and inflammatory bowel disease https://doi.org/ 10.1515/med-2020-0032 present multi-resistant E. faecium belongs to a different received September 18, 2019; accepted February 5, 2020 taxon than the original strains isolated from animals. This separation must have happened around 75 years ago and Abstract: The constantly growing bacterial resistance is being connected to antibiotic usage in clinical practice. against antibiotics is recently causing serious problems This clade can be distinguished by its increased number in the field of human and veterinary medicine as well as of mobile genetic elements, metabolic alternations and in agriculture. The mechanisms of resistance formation hypermutability [1]. All of these attributes led to the devel- and its preventions are not well explored in most bacterial opment of a flexible genome, which is now able to easily genera. The aim of this review is to analyse recent litera- adapt to the changes of the surroundings [2,3]. ture data on the principles of antibiotic resistance forma- It is also necessary to mention some basic informa- tion in bacteria of the Enterococcus genus. Furthermore, tion about morphological diversity, physiological and bio- the habitat of the Enterococcus genus, its pathogenicity chemical characteristics and taxonomy in order to under- and pathogenicity factors, its epidemiology, genetic and stand the resistance mechanisms completely. Biochemical molecular aspects of antibiotic resistance, and the rela- features must especially be mentioned since they play a tionship between these bacteria and bowel diseases are huge role in the high increase of resistance in these bac- discussed.
    [Show full text]
  • Characterization of Genomic Diversity in Cpn60 Defined Enterococcus Hirae Ecotypes and Relationship to Competitive Fitness
    Characterization of genomic diversity in cpn60 defined Enterococcus ecotypes Submitted to the College of Graduate Studies and Research of the University of Saskatchewan in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Veterinary Microbiology at the University of Saskatchewan. By ISHA KATYAL © Copyright Isha Katyal, September 2015 All rights reserved PERMISSION TO USE In agreement with the outlines set out by the College of Graduate Studies and Research at the University of Saskatchewan, I allow the University of Saskatchewan Libraries to make this thesis available to all interested parties. Also in accordance with the College of Graduate Studies and Research, I allow this thesis to be copied “in any manner, in whole or in part, for scholarly purposes”. This thesis may not, however, be reproduced or used in any manner for financial gain without my written consent. Any scholarly use of this thesis, in part or in whole, must acknowledge both myself and the University of Saskatchewan. Any requests for copying or using this thesis, in any form or capacity, should be made to: Head of Department of Veterinary Microbiology University of Saskatchewan Saskatoon, Saskatchewan S7N 5B4 i ABSTRACT The astounding complexity of microbial communities limits the ability to study the role of genomic diversity in shaping the community composition at the species level. With the advancement and increased affordability of high-throughput sequencing methods, it is increasingly recognized that genomic diversity at the sub-species level plays an important role in selection during microbial community succession. Recent studies using the cpn60 universal target (UT) have shown that it is a high- resolution tool that provides superior resolution in comparison to 16S rRNA based tools and can predict genome relatedness.
    [Show full text]
  • Enterococcus Hirae Lcpa
    Maréchal et al. BMC Microbiology (2016) 16:239 DOI 10.1186/s12866-016-0844-y RESEARCH ARTICLE Open Access Enterococcus hirae LcpA (Psr), a new peptidoglycan-binding protein localized at the division site Maxime Maréchal1, Ana Amoroso1, Cécile Morlot2,3,4, Thierry Vernet2,3,4, Jacques Coyette1 and Bernard Joris1* Abstract Background: Proteins from the LytR-CpsA-Psr family are found in almost all Gram-positive bacteria. Although LCP proteins have been studied in other pathogens, their functions in enterococci remain uncharacterized. The Psr protein from Enterococcus hirae, here renamed LcpA, previously associated with the regulation of the expression of the low-affinity PBP5 and β-lactam resistance, has been characterized. Results: LcpA protein of E. hirae ATCC 9790 has been produced and purified with and without its transmembrane helix. LcpA appears, through different methods, to be localized in the membrane, in agreement with in silico predictions. The interaction of LcpA with E. hirae cell wall indicates that LcpA binds enterococcal peptidoglycan, regardless of the presence of secondary cell wall polymers. Immunolocalization experiments showed that LcpA and PBP5 are localized at the division site of E. hirae. Conclusions: LcpA belongs to the LytR-CpsA-Psr family. Its topology, localization and binding to peptidoglycan support, together with previous observations on defective mutants, that LcpA plays a role related to the cell wall metabolism, probably acting as a phosphotransferase catalyzing the attachment of cell wall polymers to the peptidoglycan. Keywords: Enterococcus, Cell wall, Peptidoglycan, Bacterial division, LytR-CpsA-Psr Background glycan chains consisting of the repeating disaccharide N- Enterococci are Gram-positive, facultative anaerobic cocci acetylmuramic acid-(β1-4)-N-acetylglucosamine cross- commensal bacteria [1].
    [Show full text]
  • The Mouse Intestinal Bacterial Collection (Mibc) Provides Host-Specific Insight Into Cultured Diversity and Functional Potential of the Gut Microbiota
    Downloaded from orbit.dtu.dk on: Oct 02, 2021 The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota Lagkouvardos, Ilias; Pukall, Rüdiger; Abt, Birte; Foesel, Bärbel U.; Meier-Kolthoff, Jan P.; Kumar, Neeraj; Bresciani, Anne Gøther; Martínez, Inés; Just, Sarah; Ziegler, Caroline Total number of authors: 28 Published in: Nature Microbiology Link to article, DOI: 10.1038/nmicrobiol.2016.131 Publication date: 2016 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Lagkouvardos, I., Pukall, R., Abt, B., Foesel, B. U., Meier-Kolthoff, J. P., Kumar, N., Bresciani, A. G., Martínez, I., Just, S., Ziegler, C., Brugiroux, S., Garzetti, D., Wenning, M., Bui, T. P. N., Wang, J., Hugenholtz, F., Plugge, C. M., Peterson, D. A., Hornef, M. W., ... Clavel, T. (2016). The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nature Microbiology, 1(10), [16131]. https://doi.org/10.1038/nmicrobiol.2016.131 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Domestic Fowl of Ducks, a Source of Faecal Bioactive Enterococcus Hirae Strains
    Polish Journal of Veterinary Sciences Vol. 22, No. 3 (2019), 505–512 DOI 10.24425/pjvs.2019.129958 Original article Domestic fowl of ducks, a source of faecal bioactive Enterococcus hirae strains A. Lauková, E. Bino, J. Ščerbová Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 040 01 Košice, Slovakia Abstract Faecal Enterococcus hirae from domestic ducks were studied for their bioactivity to select bioactive strain for more detailed study with its probable use in poultry and also to bring novelty in basic research. After defecation, faeces (n=23, faecal mixture of 40 ducks) were sampled from domestic ducks in eastern Slovakia; birds were aged from eight to 14 weeks. E. hirae strains were identified using Matrix-assisted laser desorption/ionization time-of flight mass spectrometry with a highly probable species identification score (2.300-3.000) or a secure genus identification/ /probable species identification score (2.000-2.299), confirmed by polymerase chain reaction and phenotypization in accordance with the properties for the type strain E. hirae ATCC 9790. Strains were hemolysis negative (γ-hemolysis), and did not have active enzyme stimulating disorders. Enterocin genes were detected in three strains out of seven. Three out of four Enterocin genes were detected in Kč1/b (Ent A, P, L50A); the most frequently detected was the Ent P gene. The strains inhibited indicator strains E. faecalis, listeriae, but also Escherichia coli and Butti- auxiella strains. Lactic-acid producing E. hirae were mostly susceptible to antibiotics. Based on parameter evaluation, E. hirae Kč1/b, Kč6 can be additionally studied to select the type of bioactive substance.
    [Show full text]
  • Microflora Identification of Fresh and Fermented Camel Milk from Kazakhstan
    Emir. J. Food Agric. 2014. 26 (4): 327-332 doi: 10.9755/ejfa.v26i4.17641 http://www.ejfa.info/ REGULAR ARTICLE Microflora identification of fresh and fermented camel milk from Kazakhstan Shynar Akhmetsadykova 1,2 , Almagul Baubekova 2, Gaukhar Konuspayeva 3,4*, Nurlan Akhmetsadykov 1,2 and Gérard Loiseau 5 1Kazakh National Agrarian University, 8 av. Abai 050013 Almaty, Kazakhstan 2Scientific and Production Enterprise Antigen Co. Ltd., 4 Azerbayev str., 040509, Almaty region, Kazakhstan 3Camel Range and Research Center, P.O.Box 761, Al-Kharj, Kingdom of Saudi Arabia 4Kazakh National al-Farabi University, Av. Al-Farabi, 050040, Almaty, Kazakhstan 5UMR Qualisud, CIRAD, TA B-95/16, 73, rue J.-F. Breton, 34398 Montpellier Cedex 5, France Abstract In Kazakhstan where Bactrian camel, dromedary camel and their hybrids are cohabiting within same farms, the consumption of camel milk is very popular because its medicinal and dietary properties. This milk is consumed under fermented form, called shubat . Shubat is still very often made on a small scale in the steppe with a fermentation step driven by wild bacteria. Camel milk and shubat were sampled from 4 regions with high number of camel population. As the whole, 26 samples were obtained from 13 selected farms representing the variability of the farming system. Isolated LAB strains were identified by method of a polymorphism determination of 16S ribosome DNA. PCR with using two different pairs of amorces (338f/518r; W001/23S1) was done. Majority of microflora were cocci in a both milk products. The following microorganisms were identified: Enterococcus durans ; Enterococcus faecalis; Enterococcus faecium; Lactobacillus casei; Lactobacillus casei subsp.
    [Show full text]
  • The Mouse Intestinal Bacterial Collection (Mibc)
    ARTICLES PUBLISHED: 8 AUGUST 2016 | ARTICLE NUMBER: 16131 | DOI: 10.1038/NMICROBIOL.2016.131 OPEN The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota Ilias Lagkouvardos1, Rüdiger Pukall2, Birte Abt2,3,BärbelU.Foesel2,3, Jan P. Meier-Kolthoff2, Neeraj Kumar1, Anne Bresciani4, Inés Martínez5, Sarah Just1, Caroline Ziegler1, Sandrine Brugiroux6, Debora Garzetti6, Mareike Wenning7,ThiP.N.Bui8,JunWang9, Floor Hugenholtz8, Caroline M. Plugge8,DanielA.Peterson10,MathiasW.Hornef11,JohnF.Baines9,12,HaukeSmidt8, Jens Walter5, Karsten Kristiansen13,HenrikB.Nielsen4,DirkHaller1,14,JörgOvermann2,3, Bärbel Stecher3,6 and Thomas Clavel1* Intestinal bacteria influence mammalian physiology, but many types of bacteria are still uncharacterized. Moreover, reference strains of mouse gut bacteria are not easily available, although mouse models are extensively used in medical research. These are major limitations for the investigation of intestinal microbiomes and their interactions with diet and host. It is thus important to study in detail the diversity and functions of gut microbiota members, including those colonizing the mouse intestine. To address these issues, we aimed at establishing the Mouse Intestinal Bacterial Collection (miBC), a public repository of bacterial strains and associated genomes from the mouse gut, and studied host-specificity of colonization and sequence-based relevance of the resource. The collection includes several strains representing novel species, genera and even one family. Genomic analyses showed that certain species are specific to the mouse intestine and that a minimal consortium of 18 strains covered 50–75% of the known functional potential of metagenomes. The present work will sustain future research on microbiota–host interactions in health and disease, as it will facilitate targeted colonization and molecular studies.
    [Show full text]
  • Classification of Enterococci and Their Roles in Spoilage of Pork Products and As Sanitary Indicators in Pork Processing Linda Marie Knudtson Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1992 Classification of enterococci and their roles in spoilage of pork products and as sanitary indicators in pork processing Linda Marie Knudtson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, Food Microbiology Commons, and the Microbiology Commons Recommended Citation Knudtson, Linda Marie, "Classification of enterococci and their roles in spoilage of pork products and as sanitary indicators in pork processing " (1992). Retrospective Theses and Dissertations. 10124. https://lib.dr.iastate.edu/rtd/10124 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]