STUDIES TOWARD the TOTAL SYNTHESIS of MANZAMINE a DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degr

Total Page:16

File Type:pdf, Size:1020Kb

STUDIES TOWARD the TOTAL SYNTHESIS of MANZAMINE a DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degr STUDIES TOWARD THE TOTAL SYNTHESIS OF MANZAMINE A DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Brian B. Filippini The Ohio State University 1995 Dissertation Committee: Approved by Dr. David J. Hart Dr. Viresh H. Rawal Dr. Matthew Platz Adviser Department of Chemistry UMI Number: 9533971 UMI Microform 9533971 Copyright 1995, by UMI Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. UMI 300 North Zeeb Road Ann Arbor, Ml 48103 To My Family ii ACKNOWLEDGEMENTS i thank Professor David Hart, my adviser, for his guidance and encouragement throughout my stay at OSU. I can’t imagine working for anyone else. He lelt me alone when I needed my space, but was nearby to hear any cries for help. I also thank Professor Paul Sampson at Kent State University for sparking my interest in organic chemistry. Next, I am grateful to all the past and present Hart group members who made the graduate school experience a bit easier. Special thanks go to my longtime labmate Anne-laure, my buddy Alyx, Dave Y., Vicky, Tony, Ram, Dan, Vincent, Ying, David E., Stephane, and David C. These people are more than co-workers, they are my friends. Furthermore, I thank the technical support staff at Ohio St.: Carl Engelman, Drs. Dirk Friedrich and Charles Cottrell for NMR services, Dr. Judith Gallucci for X-ray crystallographic analyses, Mr. David Chang for mass spectral analyses, and Dr. Kurt Loening for assistance in nomenclature. Finally, I thank my family for their emotional and financial support throughout my undergraduate and graduate studies. Their love and presence has enabled me to endure the tough times, enjoy the good times, and put life into perspective. I could ask for no more. V ITA September 12, 1968 Bom, Salem, Ohio 1985-1989 B.S., Chemistry, Kent State University, Kent, Ohio 1989-1991 .Teaching Assistant, The Ohio State University, Columbus 1991-1992, 1994-1995 Research Assistant, The Ohio State University, Columbus 1991-1994 National Needs Graduate Fellow,The Ohio State University PRESENTATIONS Filippini, B. B.; Campbell, J. A.; Hart, D. J. "Studies Toward the Total Synthesis of Manzamine A", 25th Central Regional Meeting of the American Chemical Society, Pittsburgh, PA, October 1 9 9 3 . Filippini, B. B.; Campbell. J. A.; Hart, D. J. "Studies Directed Toward the Total Synthesis of Manzamine A" Joint Great Lakes and Midwest Regional ACS Meeting, Ann Arbor, Ml, June 1 9 9 4 . FIELD OF STUDY Major Field: Chemistry Studies in Organic Chemistry IV TABLE OF CONTENTS DEDICATION...........................................................................................................................................ii ACKNOWLEDGEMENTS..................................................................................................................... iii VITA..........................................................................................................................................................iv TABLE OF CONTENTS.........................................................................................................................v LIST OF TABLES.................................................................................................................................. vii LIST OF FIGURES.................................................................................................................................viii LIST OF SCHEMES............................................................................................................................... ix CHAPTER PAGE I. BACKGROUND AND SYNTHETIC STUDIES A. Introduction..............................................................................................1 B. Background............................................................................................. 2 C. Synthetic Studies Toward the Manzamine Alkaloids .......................12 v II. PREVIOUS STUDIES AND SYNTHESIS OF ABCD TETRACYCLIC ENONES A. Retrosynthetic Analysis .....................................................................31 B. Results and Discussion.......................................................................33 III. STUDIES FOR INCORPORATION OF p-CARBOLINE UNIT OF MANZAMINE A A. Background......................................................................................... 55 B. Results and Discussion.......................... 62 IV. STUDIES FOR INCORPORATION OF THIRTEEN-MEMBERED RING.............. MANZAMINE A A. Introduction...................................................... 8 6 B. Background......................................................................................... 87 C. Results and Discussion.......................................................................8 8 V. MOST ADVANCED SYNTHETIC INTERMEDIATES AND CONCLUSIONS A. Results and Discussion......................................................................107 B. Conclusions........................................................................................ 110 EXPERIMENTAL SECTION.......................................................................................................... 113 LIST OF REFERENCES................................................................................................................217 APPENDICES A. 1H and 13C NMR Spectra of Selected Compounds 223 B. X-Ray Crystallographic Data.................................... 412 LIST OF TABLES TABLE PAGE 1 . Product Ratio from Reduction of Ketone 2 1 0 .......................................................47 2 . Selected nOe Experiments with 396 ........................................................ 93 3. Bond Lengths for 151 ............................................................................................413 4. Bond Angles for 151 ..............................................................................................414 vii LIST OF FIGURES FIGURE PAGE 1 . Manzamine A and Manzamine A Hydrochloride ....................................................1 2. Other Members of the Manzamine Family of Alkaloids ...................................... 4 3. Ircinol Alkaloids......................................................................................................... 9 4. Alkaloids Supporting Baldwin's Proposed Cycloaddition.................................. 1 0 5. X-Ray Structure of Enone 151 .............................................................................52 6 . Selected p-Carboline Natural Products ................................................................ 56 7. Alcohol 393 .............................................................................................................93 8 . X-Ray Structure of Alcohol 415 ............................................................................99 viii LIST OF SCHEMES SCHEME PAGE I. Baldwin's Proposed Biosynthesis of Manzamine C............................................ 5 II. Baldwin’s Proposed Biosynthesis of Manzamine B Tetracycle .......................... 6 III. Baldwin's Proposed Biosynthesis of Manzamine A............................................ 7 IV. Interconversions from Ircinal A ................................................................................ 8 V. Interconversions from Ircinal B ................................................................................ 8 VI. Conversion of Manzamine B into Manzamine ..J................................................. 9 VII. Biosynthetic Precursors of Manzamine C ...........................................................10 VIII. Proposed Biosynthesis of Keramaphidin B ........................................................ 11 IX. Proposed Biosynthesis of Madangamine A .........................................................12 X. Nakagawa's Synthesis of Manzamine A ................................................................ 13 XI. Gerlach’s Synthesis of Manzamine C .................................................................... 14 XII. Simpkin's Approach to Manzamine A..................................................................15 XIII. Leonard's Approach to Manzamine A ................................................................... 15 XIV. Baldwin's Biomimetic Synthetic Studies ...............................................................16 XV. Yamamura's Approach to Manzamine A ................................................................17 XVI. Marko's Approach to Manzamine A.....................................................................18 XVII. Hart’s Free Radical Approach to Manzamine A .................................................. 19 XVIII. Overman's Approach to Ircinal A and Manzamine A ......................................... 20 XIX. Winkler’s Preparation of Photocyclization Precursor ...........................................21 ix XX. Winkler's Preparation of Manzamine A Tetracycle .............................................. 22 XXI. Condensation Substrates for Martin's Cyclization Precursor........................... 23 XXII. Martin's Preparation of Manzamine A Tetracycle .................................................24 XXIII. Nakagawa’s Preparation of Manzamine A Tetracycle ..........................................25 XXIV. Pandit’s Preparation of a Racemic Manzamine A Tricycle ................................ 26 XXV. Pandit's Preparation of a Homochiral Manzamine A Tricycle ............................27 XXVI. Pandit's
Recommended publications
  • Aldrich FT-IR Collection Edition I Library
    Aldrich FT-IR Collection Edition I Library Library Listing – 10,505 spectra This library is the original FT-IR spectral collection from Aldrich. It includes a wide variety of pure chemical compounds found in the Aldrich Handbook of Fine Chemicals. The Aldrich Collection of FT-IR Spectra Edition I library contains spectra of 10,505 pure compounds and is a subset of the Aldrich Collection of FT-IR Spectra Edition II library. All spectra were acquired by Sigma-Aldrich Co. and were processed by Thermo Fisher Scientific. Eight smaller Aldrich Material Specific Sub-Libraries are also available. Aldrich FT-IR Collection Edition I Index Compound Name Index Compound Name 3515 ((1R)-(ENDO,ANTI))-(+)-3- 928 (+)-LIMONENE OXIDE, 97%, BROMOCAMPHOR-8- SULFONIC MIXTURE OF CIS AND TRANS ACID, AMMONIUM SALT 209 (+)-LONGIFOLENE, 98+% 1708 ((1R)-ENDO)-(+)-3- 2283 (+)-MURAMIC ACID HYDRATE, BROMOCAMPHOR, 98% 98% 3516 ((1S)-(ENDO,ANTI))-(-)-3- 2966 (+)-N,N'- BROMOCAMPHOR-8- SULFONIC DIALLYLTARTARDIAMIDE, 99+% ACID, AMMONIUM SALT 2976 (+)-N-ACETYLMURAMIC ACID, 644 ((1S)-ENDO)-(-)-BORNEOL, 99% 97% 9587 (+)-11ALPHA-HYDROXY-17ALPHA- 965 (+)-NOE-LACTOL DIMER, 99+% METHYLTESTOSTERONE 5127 (+)-P-BROMOTETRAMISOLE 9590 (+)-11ALPHA- OXALATE, 99% HYDROXYPROGESTERONE, 95% 661 (+)-P-MENTH-1-EN-9-OL, 97%, 9588 (+)-17-METHYLTESTOSTERONE, MIXTURE OF ISOMERS 99% 730 (+)-PERSEITOL 8681 (+)-2'-DEOXYURIDINE, 99+% 7913 (+)-PILOCARPINE 7591 (+)-2,3-O-ISOPROPYLIDENE-2,3- HYDROCHLORIDE, 99% DIHYDROXY- 1,4- 5844 (+)-RUTIN HYDRATE, 95% BIS(DIPHENYLPHOSPHINO)BUT 9571 (+)-STIGMASTANOL
    [Show full text]
  • Organic Synthesis: Handout 1
    Prof Tim Donohoe: Strategies and Taccs in Organic Synthesis: Handout 1 Organic Synthesis III 8 x 1hr Lectures: Michaelmas Term Weeks 5-8 2016 Mon at 10am; Wed at 9am Dyson Perrins lecture theatre Copies of this handout will be available at hEp://donohoe.chem.ox.ac.uk/page16/index.html 1/33 Prof Tim Donohoe: Strategies and Taccs in Organic Synthesis: Handout 1 Organic Synthesis III Synopsis 1) Introduc5on to synthesis: (i) Why do we want to synthesise molecules- what sort of molecules do we need to make? (ii) What aspects of selecvity do we need to accomplish a good synthesis (chemo-, regio- and stereoselecvity)? (iii) Protecng group chemistry is central to any syntheAc effort (examples and principles) (iv) What is the perfect synthesis (performed in industry versus academia)? 2) The chiral pool: where does absolute stereochemistry come from? 3) Retrosynthesis- learning to think backwards (revision from first and second year). Importance of making C-C bonds and controlling oxidaAon state. Umpolung 4) Some problems to think about 5) Examples of retrosynthesis/synthesis in ac5on. 6) Ten handy hints for retrosynthesis 7) Soluons to the problems Recommended books: General: Organic Chemistry (Warren et al) Organic Synthesis: The DisconnecRon Approach (S. Warren) Classics in Total Synthesis Volumes I and II (K. C. Nicolaou) The Logic of Chemical Synthesis (E. J. Corey) 2/33 View Article Online / Journal Homepage / Table of Contents for this issue 619461 Strychniqae and BYucine. Pavt XLII. 903 Prof Tim Donohoe: Strategies and Taccs in Organic Synthesis: Handout 1 (i) Why do we want to synthesise complex molecules? Isolated from the Pacific Yew in 1962 Prescribed for prostate, breast and ovarian cancer Unique mode of acRon 1x 100 year old tree = 300 mg Taxol Isolated in 1818- poisonous Stuctural elucidaon took R.
    [Show full text]
  • CPY Document
    3. eHEMieAL eOMPOSITION OF ALeOHOLie BEVERAGES, ADDITIVES AND eONTAMINANTS 3.1 General aspects Ethanol and water are the main components of most alcoholIc beverages, although in some very sweet liqueurs the sugar content can be higher than the ethanol content. Ethanol (CAS Reg. No. 64-17-5) is present in alcoholic beverages as a consequence of the fermentation of carbohydrates with yeast. It can also be manufactured from ethylene obtained from cracked petroleum hydrocarbons. The a1coholic beverage industry has generally agreed not to use synthetic ethanol manufactured from ethylene for the production of alcoholic beverages, due to the presence of impurities. ln order to determine whether synthetic ethanol has been used to fortify products, the low 14C content of synthetic ethanol, as compared to fermentation ethanol produced from carbohydrates, can be used as a marker in control analyses (McWeeny & Bates, 1980). Some physical and chemical characteristics of anhydrous ethanol are as follows (Windholz, 1983): Description: Clear, colourless liquid Boilng-point: 78.5°C M elting-point: -114.1 °C Density: d¡O 0.789 It is widely used in the laboratory and in industry as a solvent for resins, fats and oils. It also finds use in the manufacture of denatured a1cohol, in pharmaceuticals and cosmetics (lotions, perfumes), as a chemica1 intermediate and as a fuel, either alone or in mixtures with gasolIne. Beer, wine and spirits also contain volatile and nonvolatile flavour compounds. Although the term 'volatile compound' is rather diffuse, most of the compounds that occur in alcoholIc beverages can be grouped according to whether they are distiled with a1cohol and steam, or not.
    [Show full text]
  • Enantioselective Total Synthesis of (-)-Deoxoapodine
    Enantioselective total synthesis of (-)-deoxoapodine The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Kang, Taek, et al., "Enantioselective total synthesis of (-)- deoxoapodine." Angewandte Chemie International Edition 56, 44 (Sept. 2017): p. 13857-60 doi 10.1002/anie.201708088 ©2017 Author(s) As Published 10.1002/anie.201708088 Publisher Wiley Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/125957 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Angew Manuscript Author Chem Int Ed Engl Manuscript Author . Author manuscript; available in PMC 2018 October 23. Published in final edited form as: Angew Chem Int Ed Engl. 2017 October 23; 56(44): 13857–13860. doi:10.1002/anie.201708088. Enantioselective Total Synthesis of (−)-Deoxoapodine Dr. Taek Kang§,a, Dr. Kolby L. White§,a, Tyler J. Mannb, Prof. Dr. Amir H. Hoveydab, and Prof. Dr. Mohammad Movassaghia aDepartment of Chemistry, Massachusetts Institute of Technology Cambridge, MA 02139 (USA) bDepartment of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA) Abstract The first enantioselective total synthesis of (−)-deoxoapodine is described. Our synthesis of this hexacyclic aspidosperma alkaloid includes an efficient molybdenum-catalyzed enantioselective ring-closing metathesis reaction for desymmetrization of an advanced intermediate that introduces the C5-quaternary stereocenter. After C21-oxygenation, the pentacyclic core was accessed via an electrophilic C19-amide activation and transannular spirocyclization. A biogenetically inspired dehydrative C6-etherification reaction proved highly effective to secure the F-ring and the fourth contiguous stereocenter of (−)-deoxoapodine with complete stereochemical control.
    [Show full text]
  • Enhancing the Yields of Phenolic Compounds During Fermentation Using Saccharomyces Cerevisiae Strain 96581
    Food and Nutrition Sciences, 2014, 5, 2063-2070 Published Online November 2014 in SciRes. http://www.scirp.org/journal/fns http://dx.doi.org/10.4236/fns.2014.521218 Enhancing the Yields of Phenolic Compounds during Fermentation Using Saccharomyces cerevisiae Strain 96581 Adam A. Banach, Beng Guat Ooi* Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, USA Email: *[email protected] Received 2 September 2014; revised 28 September 2014; accepted 15 October 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Phenylethanol, tyrosol, and tryptophol are phenolic compounds or fusel alcohols formed via the Ehrlich pathway by yeast metabolism. These compounds can yield health benefits as well as con- tribute to the flavors and aromas of fermented food and beverages. This research shows that Sac- charomyces cerevisiae Strain 96581 is capable of producing significantly higher levels of these three compounds when the precursor amino acids were supplemented into either the Chardonnay concentrate for wine-making or the malt concentrate for brewing English Ale. Strain 96581 can produce phenylethanol, tyrosol, and tryptophol as high as 434 mg/kg, 365 mg/kg, and 129 mg/kg, respectively, in the beer fermentation. The performance of Ale yeast WLP002 from White Labs Inc. was also analyzed for comparison. Strain 96581 outperformed WLP002 in the control beer, the amino acids supplemented beer, and the kiwi-beer background. This shows that Strain 96581 is more effective than WLP002 in converting the malt and the kiwi fruit supplements via its endo- genous enzymes.
    [Show full text]
  • The Total Synthesis of Securinine and Other Methodology Studies
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2010 The total synthesis of securinine and other methodology studies Bhartesh Dhudshia University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Dhudshia, Bhartesh, "The total synthesis of securinine and other methodology studies" (2010). Electronic Theses and Dissertations. 8275. https://scholar.uwindsor.ca/etd/8275 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. The Total Synthesis of Securinine and Other Methodology Studies by Bhartesh Dhudshia A Dissertation Submitted to the Faculty of Graduate Studies through the Department of Chemistry and Biochemistry in Partial Fulfillment of the Requirements
    [Show full text]
  • Recent Advances in Total Synthesis Via Metathesis Reactions
    SYNTHESIS0039-78811437-210X © Georg Thieme Verlag Stuttgart · New York 2018, 50, 3749–3786 review 3749 en Syn thesis I. Cheng-Sánchez, F. Sarabia Review Recent Advances in Total Synthesis via Metathesis Reactions Iván Cheng-Sánchez Francisco Sarabia* Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos s/n. 29071- Málaga, Spain [email protected] Received: 16.04.2018 ly explained by the emergence, design, and development of Accepted after revision: 30.05.2018 powerful catalysts that are capable of promoting striking Published online: 18.07.2018 DOI: 10.1055/s-0037-1610206; Art ID: ss-2018-z0262-r transformations in highly efficient and selective fashions. In fact, the ability of many of them to forge C–C bonds be- Abstract The metathesis reactions, in their various versions, have be- tween or within highly functionalized and sensitive com- come a powerful and extremely valuable tool for the formation of car- pounds has allowed for the preparation of complex frame- bon–carbon bonds in organic synthesis. The plethora of available cata- lysts to perform these reactions, combined with the various works, whose access were previously hampered by the lim- transformations that can be accomplished, have positioned the me- itations of conventional synthetic methods. Among the tathesis processes as one of the most important reactions of this centu- myriad of recent catalysts, those developed and designed to ry. In this review, we highlight the most relevant synthetic contributions promote metathesis reactions have had a profound impact published between 2012 and early 2018 in the field of total synthesis, reflecting the state of the art of this chemistry and demonstrating the and created a real revolution in the field of total synthesis, significant synthetic potential of these methodologies.
    [Show full text]
  • Total Synthesis of ( )-Hennoxazole a Vol
    ORGANIC LETTERS − 2007 Total Synthesis of ( )-Hennoxazole A Vol. 9, No. 6 1153-1155 Thomas E. Smith,* Wen-Hsin Kuo, Victoria D. Bock, Jennifer L. Roizen, Emily P. Balskus, and Ashleigh B. Theberge Department of Chemistry, Williams College, Williamstown, Massachusetts 01267 [email protected] Received January 31, 2007 ABSTRACT An enantioselective, convergent, total synthesis of the antiviral marine natural product (−)-hennoxazole A has been completed in 17 steps, longest linear sequence, from serine methyl ester and in 9 steps from an achiral bisoxazole intermediate. Elaboration of a thiazolidinethione allowed for rapid assembly of the pyran-based ring system. Key late-stage coupling was effected by deprotonation of the bisoxazole methyl group, followed by alkylation with an allylic bromide side chain segment. Marine natural products have become increasingly important Williams,5 and Shioiri6 laboratories.7 In this communication, as lead compounds for the development of new drugs as a we report the shortest asymmetric total synthesis of hen- consequence of their intriguing structural diversity and noxazole A to date. biological activity.1 Hennoxazole A (1), first isolated by The development of relatively mild conditions for the Scheuer from the marine sponge Polyfibrospongia, displays preparation of oxazoles has made the late-stage assembly of antiviral activity against herpes simplex type 1, as well as these ring systems a common, albeit not always efficient, peripheral analgesic behavior.2 The two contiguous 2,4- strategy in the synthesis
    [Show full text]
  • Price-List 2012-13
    Sanjay International Price-List 2012-13 Sanjay International Mr. Sanjay Mital +(91)-9810163421 No. 3439/5, Gali Bajrang Bali Chawri Bazar - Delhi, Delhi - 110 006, India http://www.indiamart.com/sanjayinternational/ Sanjay International Terms of Sale PRICES : Prices mentioned in the Price List are ruling at the time of printing of the Price List and subject to change without prior notice. Goods shall be invoice at prices ruling on the date of dispatch. TAXES & DUTIES : Sales Tax, MVAT, Octrio Duty, other Duties & Levies will be charged extra as applicable at the time of supply. For exemption of Sales Tax & Octrio Exemption Certificate should be sent along with order. PAYMENTS : Payments are to be made by Demand draft / cheques drawn on 'Sanjay international.' payable at Delhi. In the event of payment through bank the customer has to retire the documents immediately on presentation of the documents by the bank. The interest @21% will be charged on all the payments received after due dates. BULK REQUIREMENTS : Requirements/Enquiries for bulk packing and large quantities for any items will be considered. INSURANCE : Goods are packed with utmost care and forwarded at Customer's risk. No responsibility is taken for breakages or loss in transit. Goods can be insured at the customer's request at 1% of the invoice value. Charges for insurance will be made in the invoice itself. MINIMUM ORDER : All orders invoiced over Rs.25,000/- net shall be dispatched F.O.R. Delhi by transport, freight extra. Goods can be dispatched by Post, courier/angadia or by Passenger Train on customer's request freight will be born by customer.
    [Show full text]
  • Sonogashira Coupling in Natural Product Synthesis
    Organic Chemistry Frontiers Sonogashira Coupling in Natural Product Synthesis Journal: Organic Chemistry Frontiers Manuscript ID: QO-REV-12-2013-000086.R1 Article Type: Review Article Date Submitted by the Author: 09-Feb-2014 Complete List of Authors: Wang, Dan; East China Normal University, Chemistry Gao, Shuanhu; East China Normal University, Chemistry CREATED USING THE RSC REPORT TEMPLATE (VER. 3.1) - SEE WWW.RSC.ORG/ELECTRONICFILES FOR DETAILS Page 1 of 19 Organic Chemistry Frontiers REVIEW www.rsc.org/xxxxxx | XXXXXXXX 1 Sonogashira Coupling in Natural Product 2 3 Synthesis 4 5 Dan Wang and Shuanhu Gao* 6 DOI: 10.1039/b000000x 7 8 5 Abstract: This review will focus on selected applications of Sonogashira 9 coupling and subsequent transformations as key steps in the total synthesis 10 of natural products. A brief introduction of the history and development of 11 Sonogashira coupling will be presented. The organization of the synthetic 12 applications is based on the structure of target molecules and the 13 10 transformations followed by the Sonogashira coupling, which includes (1) 14 preparation of natural products containing conjugated enynes or enediynes; 15 (2) Sonogashira coupling followed by stereoselective reduction and (3) 16 Sonogashira coupling followed by regioselective annulations. 17 18 19 1 Introduction 20 15 Significant advances have been made over the past four decades in palladium (Pd)- 21 catalyzed cross-coupling reactions to form carbon-carbon (C-C) bonds.1 As a result, 22 Pd-catalyzed inter- and intramolecular reactions and cyclizations are widely used to 23 synthesize natural products, therapeutic agents and organic materials.2 These 24 reactions dramatically improve the efficiency of organic syntheses, such as those 2 25 20 involving the formation of sp-sp bonds.
    [Show full text]
  • UC Merced Final Handout
    5/5/15 Overview Overview Creative Strategies: § Recruiting strategies and planning Graduate Outreach and § Identifying recruitment needs § Grant writing Diversity Recruiting § Noteworthy Department Information § Fellowships § Promotional Materials § Admitted Student Visitations § Attending graduate and professional school fairs Thomas Cahoon § HBCU Pilot Program § Campus Collaborations – hosting visitors § Future steps Recruiting strategies Recruitment Planning Recruitment Planning § Determine the target population § What type of diversity is missing? § Set a budget for the year § Determine activities outside dept as well as § How do you increase applications from § Create a Recruitment plan inside department underrepresented groups? § Get approval from supervisors and faculty § Promotional Materials - giveaways § Form a departmental diversity committee – § How can you save money for the § Engaging current students get faculty support department? § Engaging Faculty § How can your department benefit from diversity recruiting? Noteworthy Department Uniqueness of Program Graduate Programs Information Chemistry and Biochemistry § What is special about your program? • Analytical • Structural and § Is it faculty? • Biophysics Computational Biology § Is it research? • Inorganic • Systems Biology • Organic • Metabolism, Aging and § Is it the fact that you offer full funding? • Materials and Nanoscience Development • Physical • Bioenergy and the § Is it rankings? • Theory/Computation Environment 1 5/5/15 NOBEL LAUREATES ! THE NOBEL PRIZE IS WIDELY REGARDED AS THE MOST PRESTIGIOUS AWARD AVAILABLE IN ! THE FIELDS OF CHEMISTRY, ECONOMICS, LITERATURE, MEDICINE, PEACE, AND PHYSICS. U.S. News and World Report rankings: UCLA CHEMISTRY & BIOCHEMISTRY HAS THE DISTINCTION OF HAVING THE MOST ! NOBEL LAUREATES (3 FACULTY + 3 ALUMNI, 6 TOTAL NOBEL LAUREATES) ! 60 professors pursuing research in all Chemistry (overall): 15th OF ALL OF THE UCLA DEPARTMENTS. fields of Chemistry and Biochemistry Organic Chemistry: 16th Dr.
    [Show full text]
  • Total Synthesis and Semi-Synthesis of Secondary Metabolites Isolated from the Fermentation of Amycolatopsis DEM30355
    Total Synthesis and Semi-Synthesis of Secondary Metabolites Isolated from the Fermentation of Amycolatopsis DEM30355 by Stephanie Morton A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy July 2016 Acknowledgements Acknowledgements First and foremost, I thank my supervisor, Dr Michael Hall, for his direction, support and patience throughout the past four years. Thanks to all the members of Team MJH, past and present, who have made the research lab and office such a wonderful place to work. A special thanks to Dr Joseph Cowell for his help (in everything but grammar) and entertainment. In addition, I thank Dr Nick Allenby and Dr Bernhard Kepplinger, without whom this research would not have been realised, as well as other members of Demuris Ltd. Thanks also to Professor William McFarlane, Dr Paul Waddell and Dr Joe Gray for their assistance and advice in NMR spectroscopy, X-ray crystallography and mass spectrometry respectively. I especially thank Dr Corinne Wills for all of her help and support throughout my PhD. Finally, thanks to my family and friends for their unending encouragement. A special thanks to Chris (and his endless supply of tea and biscuits), for putting up with me and for giving me the motivation to complete this work. I Abstract Abstract Part 1 The novel antibacterial DEM30355/A 1 was isolated from the fermentation broth of Amycolatopsis DEM30355. We aimed to synthesise DEM30355/A 1 to determine the absolute stereochemistry and access DEM30355/A analogues. Using a Baylis-Hillman reaction between tricarbonyl 2 and ketone 3, we constructed the oxygenated quaternary centre at C4a of DEM30355/A 1 in adducts 4 and 5 (Figure 1).
    [Show full text]