The Principles of Naval Architecture Series-2008

Total Page:16

File Type:pdf, Size:1020Kb

The Principles of Naval Architecture Series-2008 The Principles of Naval Architecture Series Strength of Ships and Ocean Structures Alaa Mansour University of California, Berkeley Donald Liu American Bureau of Shipping J. Randolph Paulling, Editor 2008 Published by The Society of Naval Architects and Marine Engineers 601 Pavonia Avenue Jersey City, NJ Copyright C 2008 by The Society of Naval Architects and Marine Engineers. It is understood and agreed that nothing expressed herein is intended or shall be construed to give any person, firm, or corporation any right, remedy, or claim against SNAME or any of its officers or members. Library of Congress Cataloging-in-Publication Data A catalog record from the Library of Congress has been applied for ISBN No. 0-939773-66-X Printed in the United States of America First Printing, 2008 A Word from the President The Society of Naval Architects and Marine Engineers is experiencing remarkable changes in the Maritime Industry as we enter our 115th year of service. Our mission, however, has not changed over the years . “an internationally recognized . technical society . serving the maritime industry, dedicated to advancing the art, science and practice of naval architecture, shipbuilding, ocean engineering, and marine engineering . encouraging the exchange and recording of information, sponsoring applied research . supporting education and enhancing the professional status and integrity of its membership.” In the spirit of being faithful to our mission, we have written and published significant treatises on the subject of naval architecture, marine engineering and shipbuilding. Our most well known publication is the “Principles of Naval Architecture”. First published in 1939, it has been revised and updated three times – in 1967, 1988 and now in 2008. During this time, remarkable changes in the industry have taken place, especially in technology, and these changes have accelerated. The result has had a dramatic impact on size, speed, capacity, safety, quality and environmental protection. The professions of naval architecture and marine engineering have realized great technical advances. They include structural design, hydrodynamics, resistance and propulsion, vibrations, materials, strength analysis using finite el- ement analysis, dynamic loading and fatigue analysis, computer-aided ship design, controllability, stability and the use of simulation, risk analysis and virtual reality. However, with this in view, nothing remains more important than a comprehensive knowledge of “first principles”. Using this knowledge, the Naval Architect is able to intelligently utilize the exceptional technology available to its fullest extent in today’s global maritime industry. It is with this in mind that this entirely new 2008 treatise was developed – “The Principles of Naval Architecture : The Series”. Recognizing the challenge of remaining relevant and current as technology changes, each major topical area will be published as a separate volume. This will facilitate timely revisions as technology continues to change and provide for more practical use by those who teach, learn or utilize the tools of our profession. It is noteworthy that it took a decade to prepare this monumental work of nine volumes by sixteen authors and by a distinguished steering committee that was brought together from several countries, universities, companies and laboratories. We are all especially indebted to the editor, Professor J. Randolph (Randy) Paulling for providing the leadership, knowledge, and organizational ability to manage this seminal work. His dedication to this arduous task embodies the very essence of our mission . “to serve the maritime industry”. It is with this introduction that we recognize and honor all of our colleagues who contributed to this work. Authors: Dr. John S. Letcher Hull Geometry Dr. Colin S. Moore Intact Stability Robert D. Tagg Subdivision and Damaged Stability Professor Alaa Mansour and Dr. Donald Liu Strength of Ships and Ocean Structures Dr. Lars Larson and Dr. Hoyte Raven Resistance Professors Justin E. Kerwin and Jacques B. Hadler Propulsion Professor William S. Vorus Vibration and Noise Prof. Robert S. Beck, Dr. John Dalzell (Deceased), Prof. Odd Faltinsen and Motions in Waves Dr. Arthur M. Reed Professor W. C. Webster and Dr. Rod Barr Controllability Control Committee Members are: Professor Bruce Johnson, Robert G. Keane, Jr., Justin H. McCarthy, David M. Maurer, Dr. William B. Morgan, Profes- sor J. Nicholas Newman and Dr. Owen H. Oakley, Jr. I would also like to recognize the support staff and members who helped bring this project to fruition, especially Susan Evans Grove, Publications Director, Phil Kimball, Executive Director and Dr. Roger Compton, Past President. In the new world’s global maritime industry, we must maintain leadership in our profession if we are to continue to be true to our mission. The “Principles of Naval Architecture: The Series”, is another example of the many ways our Society is meeting that challenge. ADMIRAL ROBERT E. KRAMEK, President Foreword Since it was first published 70 years ago, Principles of Naval Architecture (PNA) has served as a seminal text on naval architecture for both practicing professionals and students of naval architecture. This is a challenging task – to explain the fundamentals in terms understandable to the undergraduate student while providing sufficient rigor to satisfy the needs of the experienced engineer – but the initial publication and the ensuing revisions have stood the test of time. We believe that this third revision of PNA will carry on the tradition, and continue to serve as an invaluable reference to the marine community. In the Foreword to the second revision of PNA, the Chairman of its Control Committee, John Nachtsheim, lamented the state of the maritime industry, noting that there were “. too many ships chasing too little cargo,” and with the decline in shipping came a “. corresponding decrease in technological growth.” John ended on a somewhat optimistic note: “Let’s hope the current valley of worldwide maritime inactivity won’t last for too long. Let’s hope for better times, further technological growth, and the need once more, not too far away, for the next revision of Principles of Naval Architecture.” Fortunately, better times began soon after the second revision of PNA was released in 1988. Spurred by the expand- ing global economy and a trend toward specialization of production amongst nations around the world, seaborne trade has tripled in the last twenty years. Perhaps more than ever before, the economic and societal well being of nations worldwide is dependent upon efficient, safe, and environmentally friendly deep sea shipping. Continuous improvement in the efficiency of transportation has been achieved over the last several decades, facilitating this growth in the global economy by enabling lower cost movement of goods. These improvements extend over the en- tire supply train, with waterborne transportation providing the critical link between distant nations. The ship design and shipbuilding communities have played key roles, as some of the most important advancements have been in the design and construction of ships. With the explosive growth in trade has come an unprecedented demand for tonnage extending over the full spectrum of ship types, including containerships, tankers, bulk carriers, and passenger vessels. Seeking increased throughput and efficiency, ship sizes and capacities have increased dramatically. Ships currently on order include 16,000 TEU containerships, 260,000 m3 LNG carriers, and 5,400 passenger cruise liners, dwarfing the prior generation of designs. The drive toward more efficient ship designs has led to increased sophistication in both the designs themselves and in the techniques and tools required to develop the designs. Concepts introduced in Revision 2 of PNA such as finite element analysis, computational fluid dynamics, and probabilistic techniques for evaluating a ship’s stability and structural reliability are now integral to the overall design process. The classification societies have released the common structural rules for tankers and bulk carriers, which rely heavily on first principles engineering, use of finite element analysis for strength and fatigue assessments, and more sophisticated approaches to analysis such as are used for ultimate strength assessment for the hull girder. The International Maritime Organization now relies on probabilistic approaches for evaluating intact and damage stability and oil outflow. Regulations are increasingly performance-based, allowing application of creative solutions and state-of-the-art tools. Risk assessment techniques have become essential tools of the practicing naval architect. The cyclical nature of shipbuilding is well established and all of us who have weathered the ups and downs of the marine industry recognize the current boom will not last forever. However, there are reasons to believe that the need for technological advancement in the maritime industries will remain strong in the coming years. For example, naval architects and marine engineers will continue to focus on improving the efficiency of marine transportation systems, spurred by rising fuel oil prices and public expectations for reducing greenhouse gas emissions. As a consequence of climate change, the melting Arctic ice cap will create new opportunities for exploration and production of oil and other natural resources, and may lead to new global trading patterns. SNAME has been challenged to provide technical updates
Recommended publications
  • Evaluation of Ultimate Ship Hull Strength R
    ,sc., nC,$ THE SOCIETYOF NAVALARCHITECTSAND MARINE ENGINEERS . OneWorldTrade Center,Suit. 1369, NewYork, N.Y. 10048 # “+ ~ PaPer,tobe PresentedatExtremeLoad,Res$mseSymDosium 8 : Arl,mton,VA,October1>20,1981 ;$ 01! # “o, & o*H,.S,** Evaluation of Ultimate Ship Hull Strength R. S. Dow, R. C. Hugill, J, D. Clark and C. S. Smith, Admiralty Marine Technology Establishment, Glasgow, Scotland ABSTRACT plastic strength of ships’ hulls (1 to 6)* and a method of estimating hull strength has been The problem of evaluating the U1timate proposed (4) which takes account of local buck- longitudinal strength of a ship’s hull is dis- ling failure and [email protected]~f10@ cussed. In addition to behaviour under quasi- carrying capacity in elements of the hull cross- static loads, the whipping response of a section. The purpose of the present paper is ship’s hull to impulsive loads, eg bow- to examine the accuracy of this approach by slamming and underwater explosions, is con- correlation of analysis with collapse tests on sidered. A method of analysis is described, various longitudinally stiffened steel box- based on approximate characterization of the girders and to consider extension of the strength of elements of hul1 cross-sections analysis method to deal with the case of under tensile and compressive loads associated dynamic loading, in particular whipping of the with hull-girder bending togetherwith local hull girder caused by bow-slamming or under- lateral-pressureeffects. The influence of water explosions which, as shown by recent imperfections (initial deformations and theoretical studies and seakeeping trials, may residual stresses) is accounted for. The cause severe midship bending moments.
    [Show full text]
  • Ultimate Strength
    16 th INTERNATIONAL SHIP AND OFFSHORE STRUCTURES CONGRESS 20-25 AUGUST 2006 SOUTHAMPTON, UK VOLUME 1 COMMITTEE III.1 ULTIMATE STRENGTH COMMITTEE MANDATE Concern for ductile behaviour of ships and offshore structures and their structural components under ultimate conditions. Attention shall be given to the influence of fabrication imperfections and in-service damage and degradation on reserve strength. Uncertainties in strength models for design shall be highlightened COMMITTEE MEMBERS Chairman: T Yao E Brunner S R Cho Y S Choo J Czujko S F Estefen J M Gordo P E Hess H Naar Y Pu P Rigo Z Q Wan KEYWORDS Ultimate strength, buckling strength, yielding strength, nonlinear analysis, steel structures, aluminium structures, composite structures, ship structures, offshore structures, initial imperfections, in-service degradation, uncertainties, reliability, static/quasi-static loads 369 ISSC Committee III.1: Ultimate Strength 371 CONTENTS 1. INTRODUCTION ....................................................................................................373 2. FUNDAMENTALS..................................................................................................375 3. EMPIRICAL AND ANALYTICAL METHODS....................................................378 3.1 Unstiffened and Stiffened Plates..................................................................378 3.2 Tubular Members and Joints........................................................................381 3.3 Shells ............................................................................................................382
    [Show full text]
  • Ultimate and Residual Strength Assessment of Ship Structures
    CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden www.chalmers.se LICENTIATE THESIS ARTJOMS KUZNECOVS U ltimate and Residual Strength Assessment of Ship Structures Ultimate and Residual Strength Assessment of Ship Structures ARTJOMS KUZNECOVS DEPARTMENT OF MECHANICS AND MARITIME SCIENCES CHALMERS UNIVERSITY OF TECHNOLOGY 2 020 Gothenburg, Sweden 2020 www.chalmers.se THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING Ultimate and Residual Strength Assessment of Ship Structures ARTJOMS KUZNECOVS Department of Mechanics and Maritime Sciences CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2020 Ultimate and Residual Strength Assessment of Ship Structures ARTJOMS KUZNECOVS © ARTJOMS KUZNECOVS, 2020 Report No 2020:07 Chalmers University of Technology Department of Mechanics and Maritime Sciences Division of Marine Technology SE-412 96, Gothenburg Sweden Telephone: + 46 (0)31-772 1000 Printed by Chalmers Reproservice Gothenburg, Sweden 2020 Ultimate and Residual Strength Assessment of Ship Structures ARTJOMS KUZNECOVS Chalmers University of Technology Department of Mechanics and Maritime Sciences Division of Marine Technology Abstract The prevention of ship structural failures and reduction of accident consequences contribute to increased safety at sea and reduced environmental impact. A need for reliable and efficient ship designs facilitates knowledge accumulation and the development of tools for the assessment of hull structural responses to acting loads. Important in this regard, ship design criteria are the ultimate and residual strengths of a hull that determine whether a ship may be safely operated in intact and accidentally damaged conditions. Thus, an accurate and reliable procedure for estimating a ship’s strength accounting for all actual foreseeable scenarios and reasonably practicable conditions is necessary. The main objective of this thesis is to develop a new precise and time-efficient methodology for the assessment of the ultimate and residual strength under vertical and biaxial loading conditions.
    [Show full text]
  • Analysis of Ultimate Capacity of the Structural Elements of Single Hull VLCC Subject to Corrosion
    Analysis of ultimate capacity of the structural elements of single hull VLCC subject to corrosion Rachid DAMI Master Thesis Presented in partial fulfillment of the requirements for the double degree: “Advanced Master in Naval Architecture” conferred by University of Liege "Master of Sciences in Applied Mechanics, specialization in Hydrodynamics, Energetic and Propulsion” conferred by Ecole Centrale de Nantes developed at West Pomeranian University of Technology, Szczecin in the framework of the “EMSHIP” Erasmus Mundus Master Course in “Integrated Advanced Ship Design” Ref. 159652-1-2009-1-BE-ERA MUNDUS-EMMC Supervisor: Dr.Maciej Taczala, West Pomeranian University of Technology, Szczecin Reviewer: Dr.Eng. Patrick Kaeding, University Rostock Szczecin, February 2012 Analysis of ultimate capacity of the structural elements of single hull VLCC subject to corrosion 3 ABSTRACT During the last few decades, the emphasis in structural design has been moving from the allowable stress design to the limit state design, because the latter approach has many more advantages. A limit state is formally defined as a condition for which a particular structural member or an entire structure fails to perform the function that it has been designed for. In order to ensure critical for economy and safe design of a ship’s hull, it is necessary to accurately evaluate the capacity of the hull girder considering extreme loads. The objective of this project is to perform the strength analysis for tank structures, according to the Det Norske Veritas (DNV) Rules and Regulations; following the IACS Common Structural Rules (CSR). The general plan and methodology of the project are presented in the report (dissertation).
    [Show full text]
  • An Analysis of the Study of Mechanical Properties and Microstructural Relationship of HSLA Steels Used in Ship Hulls
    World Maritime University The Maritime Commons: Digital Repository of the World Maritime University World Maritime University Dissertations Dissertations 2007 An analysis of the study of mechanical properties and microstructural relationship of HSLA steels used in ship hulls Htay Aung World Maritime University Follow this and additional works at: https://commons.wmu.se/all_dissertations Digital Par t of the Mechanical Engineering Commons Commons Network Recommended Citation Logo Aung, Htay, "An analysis of the study of mechanical properties and microstructural relationship of HSLA steels used in ship hulls" (2007). World Maritime University Dissertations. 190. https://commons.wmu.se/all_dissertations/190 This Dissertation is brought to you courtesy of Maritime Commons. Open Access items may be downloaded for non-commercial, fair use academic purposes. No items may be hosted on another server or web site without express written permission from the World Maritime University. For more information, please contact [email protected]. WORLD MARITIME UNIVERSITY Malmö, Sweden AN ANALYSIS OF THE STUDY OF MECHANICAL PROPERTIES AND MICROSTRUCTURAL RELATIONSHIP OF HSLA STEELS USED IN SHIP HULLS By HTAY AUNG The Union of Myanmar A dissertation submitted to the World Maritime University in partial Fulfilment of the requirements for the award of the degree of MASTER OF SCIENCE In MARITIME AFFAIRS (MARITIME EDUCATION AND TRAINING) 2007 © Copyright HTAY AUNG, 2007. DECLARATION I certify that all the material in this dissertation that is not my own work has been identified, and that no material is included for which a degree has previously been conferred on me. The contents of this dissertation reflect my own personal views, and are not necessarily endorsed by the University.
    [Show full text]
  • A Simplified Approach to Estimate the Ultimate Longitudinal Strength of Ship Hull
    130 Journal of Marine Science and Technology, Vol. 11, No. 3, pp. 130-148 (2003) A SIMPLIFIED APPROACH TO ESTIMATE THE ULTIMATE LONGITUDINAL STRENGTH OF SHIP HULL Hsin-Chuan Kuo* and Jiang-Ren Chang** Key words: simplified approach, ultimate longitudinal strength, hull girder, “collapse” have been identified as responses to an ex- stiffened panel. cessive hull girder bending moment. These may take place, presumably, with but a single application of load so that the possibility of their occurring must be weighted ABSTRACT against the extreme or worst likely load value. In additions, because aging ships may have suffered dam- In this paper, the calculation of the ultimate longitudinal strength ages due to hull corrosion and fatigue, their structural of the ship hull is revisited. A simplified approach dealing with the longitudinal ultimate strength of ship hull has been developed and an resistance may weaken and further collapse under ap- effective numerical program is implemented based on the individual plied loads even smaller than designed loads. components of ship structures. It is, then, possible to find the ultimate The conventional longitudinal strength calcula- strength of the whole ship structure by evaluating those individual tion for a ship mainly concerns the elastic response of components. Comparisons of numerical results from the proposed hull girder due to an assumed wave load and then, the approach and published literatures are conducted for further validation. Since relative errors of calculations of the current approach to the elastic section modulus of hull girder, which is taken as literature with respect to the experimental data are within 3%, it is the primary surveying index of the longitudinal bending shown that the proposed approach can be adopted for the estimation strength, can be achieved by using the linear bending of the ultimate bending strength of ship hull in sagging or hogging theory.
    [Show full text]
  • Ultimate Longitudinal Strength of Composite Ship Hulls
    Curved and Layer. Struct. 2017; 4:158–166 Research Article Open Access Xiangming Zhang*, Lingkai Huang, Libao Zhu, Yuhang Tang, and Anwen Wang Ultimate Longitudinal Strength of Composite Ship Hulls DOI 10.1515/cls-2017-0012 posite materials. There are now all-composite naval ships Received Dec 15, 2016; accepted Mar 12, 2017 in service. Longitudinal bending moment carried by ship hull Abstract: A simple analytical model to estimate the lon- girder increasing with the increasing length of composite gitudinal strength of ship hulls in composite materials ship hulls, the ship safety related to longitudinal ultimate under buckling, material failure and ultimate collapse is strength becomes more important at design. According to presented in this paper. Ship hulls are regarded as as- traditional ship design rules, the longitudinal strength of semblies of stiffened panels which idealized as group of the ship hull built of steel with length exceeding 60 m plate-stiffener combinations. Ultimate strain of the plate- must be assessed. The stiffness of composite materials is stiffener combination is predicted under buckling or ma- generally low. Longitudinal deformation of ship hulls in terial failure with composite beam-column theory. The ef- composite materials is usually larger than that built of fects of initial imperfection of ship hull and eccentricity of steel. Recent years, with the rapid development trend and load are included. Corresponding longitudinal strengths momentum of construction of large-scale and super large of ship hull are derived in a straightforward method. A composite ship hulls, the length of ship hulls in composite longitudinally framed ship hull made of symmetrically materials are increasing so that the study of longitudinal stacked unidirectional plies under sagging is analyzed.
    [Show full text]
  • ULTIMATE STRENGTH of HULL GIRDER for PASSENGER SHIPS Doctoral Dissertation
    TKK Dissertations 22 Espoo 2006 ULTIMATE STRENGTH OF HULL GIRDER FOR PASSENGER SHIPS Doctoral Dissertation Hendrik Naar Helsinki University of Technology Department of Mechanical Engineering Ship Laboratory TKK Dissertations 22 Espoo 2006 ULTIMATE STRENGTH OF HULL GIRDER FOR PASSENGER SHIPS Doctoral Dissertation Hendrik Naar Dissertation for the degree of Doctor of Science in Technology to be presented with due permission of the Department of Mechanical Engineering for public examination and debate in Auditorium 216 at Helsinki University of Technology (Espoo, Finland) on the 10th of March, 2006, at 12 noon. Helsinki University of Technology Department of Mechanical Engineering Ship Laboratory Teknillinen korkeakoulu Konetekniikan osasto Laivalaboratorio Distribution: Helsinki University of Technology Department of Mechanical Engineering Ship Laboratory P.O. Box 5300 (Tietotie 1) FI - 02015 TKK FINLAND URL: http://www.tkk.fi/Units/Ship/ Tel. +358-(0)9-4511 Fax +358-(0)9-451 4173 E-mail: [email protected] © 2006 Hendrik Naar ISBN 951-22-8028-0 ISBN 951-22-8029-9 (PDF) ISSN 1795-2239 ISSN 1795-4584 (PDF) URL: http://lib.tkk.fi/Diss/2006/isbn9512280299/ TKK-DISS-2101 Picaset Oy Helsinki 2006 AB HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF DOCTORAL DISSERTATION P. O. BOX 1000, FI-02015 TKK http://www.tkk.fi Author Hendrik Naar Name of the dissertation Ultimate Strength of Hull Girder for Passenger Ships Date of manuscript 12.09.2005 Date of the dissertation 10.03.2006 Monograph Article dissertation (summary + original articles) Department Department of Mechanical Engineering Laboratory Ship Laboratory Field of research Strength of materials Opponent(s) Preben Terndrup Pedersen, Ivo Senjanović Supervisor Petri Varsta (Instructor) Petri Varsta Abstract The ultimate strength of the hull girder for large passenger ships with numerous decks and openings was investigated.
    [Show full text]
  • Analytical and Numerical Determination of the Hull
    Master Thesis / Proyecto Fin de Carrera: ANALYTICAL AND NUMERICAL DETERMINATION OF THE HULL GIRDER DEFLECTION OF INLAND NAVIGATION VESSELS DETERMINACIÓN ANALÍTICA Y NUMÉRICA DE LA DEFLEXIÓN DEL BUQUE-VIGA DE BUQUES DE NAVEGACIÓN INTERIOR Director de proyecto: Dr. Pascual Martí Montrull Doctor Ingeniero Industrial Universidad Politécnica de Cartagena Estudiante: Diego Elías Torralba Ben-Amar Ingeniería Naval y Oceánica Universidad Politécnica de Cartagena Mayo, 2015 1 ACKNOWLEDGEMENTS / AGRADECIMIENTOS First, I would like to thank Mr. Pascual Martí Montrull for supervising and helping me with this thesis. Second, thanks to the Classification Society Bureau Veritas in Antwerp for the opportunity of developing my master thesis with their collaboration. Especially, I would like to mention the help given by Mr. Nzengu, Mr. Tri and Mr. Deeb, my daily supervisors. I want also to thank all the employees of BV, who helped me as well and made my stay quite comfortable. Moreover, I would like to thank the professor Mr. Philippe Rigo, from the Université de Liège. Thanks to him, I could carry out my master thesis in such an important company for a naval engineer. Finally, thanks to my family and friends, who are always there, are patient with me and support me whenever I need it. Thank you very much to all of you Primero, me gustaría agradecer a mi supervisor, el Doctor Pascual Martí Montrull, por ayudarme con este proyecto y por ser mi tutor. Gracias a la Sociedad de Clasificación Bureau Veritas en Amberes por darme la oportunidad de desarrollar my Proyecto Fin de Carrera con su colaboración. Especialmente, me gustaría mencionar la ayuda recibida por parte de Mr.
    [Show full text]
  • LONGITUDINAL STRENGTH of SHIPS a Simplified Approach a Thesis Submitted for the Degree of Master of Science in the Faculty of En
    LONGITUDINAL STRENGTH OF SHIPS A simplified approach A thesis submitted for the Degree of Master of Science in the Faculty of Engineering of the University of Glasgow by Jose Manuel Antunes Mendes GORDO Department of Naval Architecture and Ocean Engineering University of Glasgow (C) Jose Gordo, 1993 ProQuest Number: 13832027 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13832027 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 my Wife and my Children, Rita and Bernardo. Contents Contents i Notation iv List of Figures viii List of Tables x Acknowledgements xi Summary xii 1 Introduction 1 2 Strength of Plate Elements 3 2.1 Load-Shortening Curves for Plates under Uniaxial Loading 6 2.1.1 Slenderness and Effective Width 8 2.1.2. Aspect Ratio and Transverse Strength 12 2.2 Effect of Residual Stresses 16 2.2.1 Approach for Design Formulas (DFM) 16 2.2.2 Physical Approach Method (PAM) 20 2.2.3. Comparison between models 24 2.3 Effect of Initial Deformations 27 2.4 Effect of Biaxial Loading 30 2.4.1 Reduction Factor 32 2.4.2 Formulation Adopted 33 2.5 Effect of Lateral Pressure 35 2.6 Effect of Edge Shear 37 3 Strength of Stiffened Plates 40 3.1 Review of the literature 43 3.1.1 Theoretical approaches 43 3.1.2 Tests 44 3.1.2.1 Uniaxial compression 44 3.1.2.2 Compression and lateral pres­ sure 46 3.2 Modes of failure 47 3.2.1 Plate induced failure 47 3.2.2 Flexural buckling of columns 48 3.2.2.1 Faulkner's method 48 3.
    [Show full text]
  • Ultimate Strength of Ships Hull Girders
    NTIS # PB2011- SSC-459 RELIABILITY-BASED PERFORMANCE ASSESSMENT OF DAMAGED SHIPS This document has been approved For public release and sale; its Distribution is unlimited SHIP STRUCTURE COMMITTEE 2011 Ship Structure Committee RADM P.F. Zukunft RDML Thomas Eccles U. S. Coast Guard Assistant Commandant, Chief Engineer and Deputy Commander Assistant Commandant for Marine Safety, Security For Naval Systems Engineering (SEA05) and Stewardship Co-Chair, Ship Structure Committee Co-Chair, Ship Structure Committee Mr. H. Paul Cojeen Dr. Roger Basu Society of Naval Architects and Marine Engineers Senior Vice President American Bureau of Shipping Mr. Christopher McMahon Mr. Victor Santos Pedro Director, Office of Ship Construction Director Design, Equipment and Boating Safety, Maritime Administration Marine Safety, Transport Canada Mr. Kevin Baetsen Dr. Neil Pegg Director of Engineering Group Leader - Structural Mechanics Military Sealift Command Defence Research & Development Canada - Atlantic Mr. Jeffrey Lantz, Mr. Edward Godfrey Commercial Regulations and Standards for the Director, Structural Integrity and Performance Division Assistant Commandant for Marine Safety, Security and Stewardship Dr. John Pazik Mr. Jeffery Orner Director, Ship Systems and Engineering Research Deputy Assistant Commandant for Engineering and Division Logistics SHIP STRUCTURE SUB-COMMITTEE AMERICAN BUREAU OF SHIPPING (ABS) DEFENCE RESEARCH & DEVELOPMENT CANADA ATLANTIC Mr. Craig Bone Dr. David Stredulinsky Mr. Phil Rynn Mr. John Porter Mr. Tom Ingram MARITIME ADMINISTRATION (MARAD) MILITARY SEALIFT COMMAND (MSC) Mr. Chao Lin Mr. Michael W. Touma Mr. Richard Sonnenschein Mr. Jitesh Kerai NAVY/ONR / NAVSEA/ NSWCCD TRANSPORT CANADA Mr. David Qualley / Dr. Paul Hess Natasa Kozarski Mr. Erik Rasmussen / Dr. Roshdy Barsoum Luc Tremblay Mr. Nat Nappi, Jr.
    [Show full text]
  • Proceedings of the Spring Meeting of the Society of Naval
    I Cr%-ot-2,%4-o © ETDE-/of- m?- - ?1731593 - cmiem im-mm-mm- mm) i-i mmt>o©^nus-ita gg%-sm mi-f# #...... (T) .................................................................................................jus 3s#-sm ...... (n/ 1- 3 JS7X^ HtjJfJKKS-o* < Sj&ffcc i % .....................................................................................................j&# £$•■ 21 1- 4 Numerical Study on the Aerodynamic Characteristics of a Three-Dimensional Power-Augmented Ram Wing in Ground Effect .................................. VEB fitfr- 31 l- 5 bKimowmi's * 3 >.....................A# • sb mm- 41 ................................... t&iR ##-mo mm-#* m^-w ##- (49 .................................................................................................mm m~ b m#- 59 1- 8 *EEB#©m©Sfitf-i«rE■?v> T-:£ft##1£©I?S-...........................Stg ##- 1- 9 Model Experiments of Ship Capsize in Astern Seas —Second Report — .....................3# mm • @£ #&-#A Z • J. P. Panjaitan • #*B g&A- iS5 #&-# ft-JSP SB-SB ##•■ 77 1-10 Non-Linear Periodic Motions of a Ship Running in Following and Quartering Seas ......................................................................................tSB Sf$ Dracos Vassalos- 89 i-ii i6z6=pcj3it-B Ro-Ro @=m©L .......................................5B w~-mm m- /nh a# • mm##...... 103 1-12 T y TV- h V y 7y #gS^M6So¥E@SiOU-ffl ..........................................................................................................................—S#?£ 119 1- 13 .................................*iB g-m-m# IEE-S1
    [Show full text]