Proceedings of the Spring Meeting of the Society of Naval
Total Page:16
File Type:pdf, Size:1020Kb
I Cr%-ot-2,%4-o © ETDE-/of- m?- - ?1731593 - cmiem im-mm-mm- mm) i-i mmt>o©^nus-ita gg%-sm mi-f# #...... (T) .................................................................................................jus 3s#-sm ...... (n/ 1- 3 JS7X^ HtjJfJKKS-o* < Sj&ffcc i % .....................................................................................................j&# £$•■ 21 1- 4 Numerical Study on the Aerodynamic Characteristics of a Three-Dimensional Power-Augmented Ram Wing in Ground Effect .................................. VEB fitfr- 31 l- 5 bKimowmi's * 3 >.....................A# • sb mm- 41 ................................... t&iR ##-mo mm-#* m^-w ##- (49 .................................................................................................mm m~ b m#- 59 1- 8 *EEB#©m©Sfitf-i«rE■?v> T-:£ft##1£©I?S-...........................Stg ##- 1- 9 Model Experiments of Ship Capsize in Astern Seas —Second Report — .....................3# mm • @£ #&-#A Z • J. P. Panjaitan • #*B g&A- iS5 #&-# ft-JSP SB-SB ##•■ 77 1-10 Non-Linear Periodic Motions of a Ship Running in Following and Quartering Seas ......................................................................................tSB Sf$ Dracos Vassalos- 89 i-ii i6z6=pcj3it-B Ro-Ro @=m©L .......................................5B w~-mm m- /nh a# • mm##...... 103 1-12 T y TV- h V y 7y #gS^M6So¥E@SiOU-ffl ..........................................................................................................................—S#?£ 119 1- 13 .................................*iB g-m-m# IEE-S1 SU • JH# E# • SB 3f93....... 125 ................................................................................................ MW S- • M/ll m#.......139 2- 1 3 # __ ..................¥Uj #fit-J» BS.......(S) 2-2 Sfr • ## des) 2- 3 mxm&mm < __ ..................................................................................#-me ze-* ......................(m) 2- 4 Prediction of Wave Drift Damping by a Higher Order BEM ...........................................................................Bin Teng • M • MM mk....... 183 2-5 b TFlyingFishJ ©%%#% __ ..................................................... /j\em z- w ss- urn m-m& mx.....(193 ) 2- 6 Water Entry Simulation of Free-Fall Lifeboat (2 nd Report : Effects of Acceleration on the Occupants) —Z# # * M. R. H. Khondoker • #_k #fT 205 OISmBUnON OF nre DOCUMENT IS UM.IMITH) (& DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document 1 1-1 ©SEiLlf ie* it Ba e ie* & e m %* IE* F 32: m** Numerical Simulation for Submerged Body Fitted with Hydrofoil by Boundary Element Method by Satoshi Masuda, Member, Yoshikazu Kasahara, Member Isao Ashidate, Member Summary Recently many kinds of high speed boats have been developed. The hydrofoil type is one of them. On considering the hydrofoil type, one important problem is interaction, for example, interaction between the main hull and the hydrofoil, the hydrofoil and the free surface etc. Here we consider the interaction between the free surface and a submerged lifting body by numerical simulation. The submerged lifting body is composed of a submerged body and a hydrofoil adapted to it. The numerical method is the Boundary Element Method (BEM) that was originally developed at Hiroshima Univer sity by Mori and Qi., We have modified the original method and have applied it to this case. We measured the lifting force and the pressure distribution on the hydrofoil in the NKK Tsu' Ship Model Basin, and confirmed that BEM is an effective method for the interaction problem between the free surface and a submerged lifting body. By using this BEM, we considered the depth effect of the lifting force of the submerged lifting body, the optimum location of the adapted hydrofoil and the optimum submerged body shape, <Dr£kW.i\y^OM&X%> -d So ¥E5n i. m 9 h k A-SiS MMt 9 y X—(TSL, Techno Super Liner) gro ?fir;btiTV>S „ (TSt-F265SD &0/J'M©t>0*^n o k < KSo*Vi-CViSo C©j:5 ± 3 S C k3 -ti: SifoS©b © kt, # ^•k.-ti:f^S!C^vxr^@k»S©»t, Sakffc **5^3© 2UT* 3 < ftSOEfb, # A&#©@af#R j: a. qeTK, MptfS k LT%*#©g3^ 85 m T 40 kt kUtiXIstCo f CT Fig. 12 © Type A -cum a aa*m©#2 \Z7xt J: 5 -kcb 0, * =F»K j: ? -C±U Sm©iB5iB<bmS>5 o$9 #*#©##i:S#*©#Ze%f$KJ:!)» #±3tirs„ %*#©#%!&#*&©#%ka ttiSiScpr S § ,,2,3,5) ayo-txMb @n-s,) * fc*KlS < fSffl 3 nx * NKKx.>*J-7 V v^a„_4-pEffl\*nmmmko =>-k «, ** NKK F S*rfSISfSKiSfCx3-ti:)i b ©T* a1,2,3>o C©##a- F %G15 ¥fig8¥5H 15, 16 E 2 H*31»Bgggl*a #179# $ya6SE^E*@Ki?nr, *4>g?28®±©E#tf-$i# dt- W(f) (8 ) itf, SJfHffl, SSSillLTltmSS k 3n 9n ©JtE&ESfrv^, 5tkiK, : ,_ H@|*> 6 %&**S©%HE j: 3S**? j: tir* t£^E± .M=iM.| e**» (9) dn dn L=o ©EAEW^O^SfilSUfco ko=g/Uo 2. ^ES>£©5tit-fb mrnmm ..._, zomvmvmM* ; H-SJSfOli*? Fig. 1©±5 K$»5„ ETmtSk GO) A#BkiBSL, $ S&SUSStfr Kutta ©#{$: > ;/ -Wi/ k T 3 k, SIBSSSB Laplace ©SStST-^S r'^re+—^rE-=const. ' (11) it3o '( -- 1 Cp TE+—Cp TE- (12) (1) i*s?B eo ^tb, %#gmmk u ^ y z ifrlRlB 3 ^©±^E5- S(l)Sr Green ggESS^TSSSr k i SfflH y^Ek^^JC-oviTBEF'Ci-^Srfflvi-C, 5$ c^=iH"7<&-i^("7)<fe (2) (6), (7)&#Wt. ga*EBRk«iadff k»3.CCT; Bm#@%SEb%^ES&L,y , ES©E8£f SS^TS^kST© J: -5 E»30 3/\ . 2/,+i.j+3Aj—6/,-i.j+/,-_2.j ^©Ak##m±©mEA©m#&#^.i * * « s, dx/t.'} ' 6/lx (13) #±©^[6]#%#^^ Hl/%, c B@EAK#f 3(&#A df\ _ fi.i+i —fi.j-i SB±.^('2)S, TENT teSfflv>T 1 ^©UtifSc-tbSS ,dy)u~ 2Ay........................... (14) (M-Y'JM-V ^ ° - ‘i ■ ’ i r : ' m'-fi, \dt ),-.j +\dt ),.j 2 faDri- 2-#-SE,=0 - P=1,2, -, W (3) (15) 0=1 0=1 aw , At 2 Kutta B5$(ll) %%^b©^{4=k L-C#m s^!Lt^ ■ ' ■ <-» V, ^(12) C33,ViTB#%1^?> Wake®©ASS D”-fLT4;(-4y* v - ,/.f :v(5),: SH-f 3 C kr##^(4=S#JSg#,3 3 kW#3o L* L-H^K Wake.ESS-fbS-STESU-SSfra © BM c©k@©%#&#BMT©i3caseins.f.&g m-#±mm-e&3. ^ 3 -r wake ®©mm Assm afnfn%m, g*s®-c©j&ss, mwnass*L, (/(/) Bum f E*B3&*#©#mmss*f. c, be *{SiScS^U T£+, T£- B*Em##-e©±m kT ES5v?"<, , . @A$E&*: , V, :z=? ■ ' - ' (6) f=I-«‘>f~if-f f ^ <" END Fig. 2 Flow of calculation sswfstae x o <p%mgfn 3 MOtotfr 'si'+n'*WE1r 3 £k c <t •? T, ZQ& E*-fe>-9 —SSffi±KS»a*,-HTffl*fToteo C©E, 0&#lBLA. E*4z y-9" —A?S@±Kj3Vi-tESK%e>^j;-5 CjbQX LA. 3-bm#E@»aA,A#, m@&#BLA. Fig. 3 <^TE+~ !t+a‘f>TE+ (16) KEft-fe y-9* —©EiHE^'fo iSScoviTtt-y- —tKS; 4>TE-K n_a<l>T£- (17) $ASAtej:y:£t*©rHI K-?WTG3#%#&mW%. Table 1 E#b#k^»©* a tt, 5$ (12) KOV»t Newton ©REl£&fflv>T8i$T3 ZttfTBZo BLfcOSWMH*©*) k5«3), (4), (5)*6fcA 4. # # Matrix T#< .Fig. 2 El+JJCsftft 0 ©atKotAt, a*#g Zwto %*##KK o t> Tsgg? £ an, n-tffimmzmtfr'pmofrtu mm*m e^.m-#^{4=(±Fk =0.713T, #KED©»'v*3-e-t±tSf njlSP k LT#Ef 3X h^y b mUELAo *###B Fig. 12 © Type A k^3. *EE©SE'C,'kt 55%©feE£k L, ffl&t* 3° kT3. &A# tbLA. %sm©#%$cik«, %*#©mmmm t/0 k^*#©s 3. H^Sfc«tz>'#tHEE 5 Lpp S-fflUTfroA. 4.i :&^mm # S*#j3 <k K, MTeSSEOViTlffi&fToA (1) *4»RBm±<DEA (2) *m±©a##i iifLA. $A%R*@#KA. (3) 3 #|Rj©;£ij£# Fig. 4 EzKE^SSi k § 2§*ft©&*SI@: E J: m%mkLT, g+mta-c&3*Em#@%*#t* Table 1 Conditions of experiments and calculations <pm<D&(D2WM&m'fc, mt^?&3a*#©g@ Measured B.E.H aLpp=3.953m, S^WStt0.22m-C$,3„ $A*fR Submerged body Hydrofoil Submerged body Hydrofoil 6.#%}$-COEttB=1.674m, SSSgflSE#f 3 + Hvdrofoil + Hydrofoil d/Loo=0.06 O o o o Xt--Mt 1/21.5 k»3.C©k@A9#ka**6L< d/Lop=0.08 O O O o d/Lpp=0.10 o O o o Xh?y bKj:?-C##@il?W3. d/Lop=0.13 o o o o d/Loo=0.20 o o EBI±©EABtE K ttEE 6 mm, SfSSffil.O kg/cm 2 © d/Loo=0.25 o o Hydrofoil o Sensor position Submerged body Fig. 3 Position of pressure measuring sensors A wmx&g&xsk mm# mesured by load cell (Hydrofoil) mesured by pressure measuring sensor (Hydrofoil) r cal by B.BM / '(Submerged body + Hydrofoil) cal by B£M ___ (Hydrofoil) —■ " __.—' caL bv B£M ^ (Submerged body + Hydrofoil) mesured, by , load cell ; [Submerged body -s + Hydrofoil) mesured by pressure measuring sensor (Submerged body + Hydrofoi) Fig. 4 Cl for each submergence depth thifflwa-vr,Fig. 5 if fcSiSEi,5 EMitKioT**/; #@±©E/7E/F^^f. Fig.6 Ea*^m##©#e© m^©#A& 0 k LT Span;Wd©±®kT®© 8K#©-?-?#, vr*»f£„ ©s§tE± stf^nas^u mmo ©v-^ bthcihi r#*7c-fk $ o , k mnm.b%mm&M?z>b, \iC&EzM###@*#EStttoEttS; < *5KifS±®©E#**;*:§ < *o, cxm^m^vx^-s®^^5„ vi-5, SatoKttth$?iakEASi5)-EJ: 5g*iiJ: <-$$( T@-CttZ§:*^K©^E J;SEAWstittdxS t>„ ## k R# @ %*#E O V^TE A^A©^ &fr ^ w. ztumnm15%mmsm±©aa©*&#*.; % k, *^m#m©^m±®©EA^#^-1s„ _ Fig. 5 ©±5 EH-mSSkSWgm&WBL T> £1t e,fL3. 6akA,s@%mm©m@©#m6m-gk%&. t©a S1 ©ti&kiS^SSa* 0.08 ©i§£-Ctt, ttjo ± %- nfca>e.**E^S®EAIhifflE«:»SERIES 35%ggW>LTt^B kA%^S. o*0&*i$E*VJx _ fc. EE^S®Sf>i,. a%d#R%BSE#L-C S <»5kg6g@-CJ:9*#£z&£#9, f©®fCi #© Ag#m k ir) 9 ®a^ g, ^ f 3 C k &#© 6 vx ■oX^M(omtJ*mT-t^c ttz, ^*8#@&!k#k 3.