A Grand Tour of Physics

Total Page:16

File Type:pdf, Size:1020Kb

A Grand Tour of Physics QUANTUM MECHANICS A GRAND TOUR OF PHYSICS (WITH A BIT OF MATHEMATICS) GENERAL RELATIVITY MAR 22-APR 26, 2019 DR. GEORGE DERISE 1:30 – 3:30 PROFESSOR EMERITUS, MATHEMATICS TNCC THOMAS NELSON COMMUNITY COLLEGE ROOM 328. SPRING 2019 A GRAND TOUR OF PHYSICS CLASSICAL MECHANICS LECTURE 1 MAR. 22, 2019 DR. GEORGE DERISE 1:30 – 3:30 PROFESSOR EMERITUS, MATHEMATICS TNCC THOMAS NELSON COMMUNITY COLLEGE ROOM 328. SPRING 2019 A GRAND TOUR OF PHYSICS-DR. GEORGE DERISE PROFESSOR EMERITUS, MATHEMATICS THOMAS NELSON COMMUNITY COLLEGE (HISTORIC TRIANGLE) FRIDAYS; MARCH 22 – APRIL 26, 2019: 1:30 – 3:30; ROOM 328. GOOD WEBSITES: Hyperphysics: http://hyperphysics.phy-astr.gsu.edu/ Khan Academy: https://www.khanacademy.org/ Wikipedia: first paragraphs or introduction usually accessible. YOUTUBE LECTURES: Just search appropriate topic "… youtube" BOOKS: The Fabric of the Cosmos: Space, Time, and the Texture of Reality: Brian Greene The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory: Brian Greene Fearful Symmetry: A. Zee Particle Physics in the Cosmos (Readings from Scientific American Magazine) TOPICS: 1. CLASSICAL MECHANICS 2. ELECTRICITY AND MAGNETISM SPECIAL RELATIVITY 3. QUANTUM MECHANICS 4. PARTICLE PHYSICS 5. GENERAL RELATIVITY 6. ADVANCED THEORIES- SUPERSYMMETRY QUANTUM GRAVITY- STRING THEORY CONSTRUCTING THE UNIVERSE ? CONCEPTS: SYMMETRY BEAUTY IN PHYSICS - IN MATH? SIMPLICITY; ONE ‘THEORY OF EVERYTHING’? GENERALIZATION A BIT OF MATH?? Symmetry is a type of invariance: the property that something does not change under a set of transformations. “ I am quite convinced; and, believe me, if I were again beginning my studies, I should follow the advice of Plato and start with mathematics, a science which proceeds very cautiously and admits nothing as established until it has been rigidly demonstrated. ” GALILEO GALILEI LINCEO DIALOGUE ON THE TWO CHIEF WORLD SYSTEMS 1632 If you wish is to become really a man of science, and not merely a petty experimentalist, I should advise you to apply to every branch of natural philosophy, Including mathematics. THE UNREASONABLE EFFECTIVENESS OF MATHEMATICS IN THE NATURAL SCIENCES EUGENE WIGNER REAL WORLD: RIGID BODY MOTION IDEAL WORLD PLATO; THEORY OF FORMS GEOMETRY The Pythagorean Proposition Elisha S. Loomis 256 proofs! SECOND EDITION: 370 PROOFS! PYTHAGOREAN THEOREM WATER DEMO https://www.youtube.com/watch?v=CAkMUdeB06o b c a “MANN MUSS IMMER GENERALIZIEREN” “One should always generalize” Carl Gustav Jacob Jacobi PYTHAGOREAN THEOREM GENERALIZED TO THREE DIMENSIONS 푎3 + 푏3 = 푐3 푎4 + 푏4 = 푐4 푎5 + 푏5 = 푐5 . 푎푛 + 푏푛 = 푐푛 If an integer n is greater than 2, then the equation has no solutions in non-zero integers a, b, and c. FERMAT’S LAST THEOREM (NUMBER THEORY) Any relevance to physics at all? AXIOMATIC METHOD (example: EUCLIDEAN GEOMETRY) 1. Undefined terms ( point, line; plane; between) 2. Axioms ( given two distinct points, there exists one and only one line connecting them.) 3. Definitions (angle, triangle, polygon) 4. Theorems (the sum of the angles of any triangle is exactly 180 degrees… the Pythagorean Theorem... …There exists exactly Five Platonic Solids) The primary criterion for an axiomatic system is... consistency REAL NUMBER SYSTEM; THE CONTINUUM the order of magnitude of the earth-sun distance is 1011 m. speed of light, c = 3 x 108 m/s; the order of magnitude of c is 108 m/s. the size of the Milky Way Galaxy is 10 orders of magnitude greater than the earth-sun distance. KEPLER’S MYSTERIUM COSMOGRAPHICUM (1596) “Geometry is one and eternal shining in the mind of God”. (letter to Galileo, 1610 ) WILLIAM THOMSON - LORD KELVIN THE THEORY OF VORTEX ATOMS (1867) Stability of atoms accounted for by the stability of knots. Large number of knot types can accommodate all the different elements. Vibrational oscillations of knots could be the mechanism for atomic spectral lines. KEPLER: THREE LAWS OF PLANETARY MOTION (1609-1619) 1. The orbit of every planet is an ellipse with the Sun at one of the two foci. (1609) 2. A line joining a planet and the Sun sweeps out equal areas during equal intervals of time. (1609) “Geometry, which before the origin of things was coeternal 3. The square of the orbital period of a with the divine mind planet is directly proportional to the cube of the semi major axis of its orbit. and is God himself.” (1619) HARMONICES MUNDI 1619 886.65 million miles CURRENT VALUES: Orbital Period 29.5 years Semi-Major Axis 9.58 AU D= 890.56 million miles GALILEO SIDEREUS NUNCIUS 1610 GALILEO s = t2 s = 16t2 s = ½ gt2 2 s = 16 t 2 400 = 16 t 2 25 = t 5 = t How long would it take to die when leaping off a 40 story building? SIR ISAAC NEWTON (1642-1726) THREE LAWS OF MOTION, LAW OF GRAVITATION, INVENTED CALCULUS PHILOSOPHIAE NATURALIS PRINCIPIA MATHEMATICA NEWTON; “HYPOTHESES NON FINGO” E IS THE TOTAL ENERGY OF THE PARTICLE John Couch Adams Urbain Le Verrier MATHEMATICAL DISCOVERY OF NEPTUNE 1846 LAPLACE'S DEMON the first published articulation of causal or scientific determinism, Pierre-Simon Marquis de Laplace (1814). If the Demon knows the precise location and momentum of every atom in the universe, their past and future values for any given time known by him, the future and the past can be known precisely from the laws of classical mechanics. Pierre-Simon Laplace, "A Philosophical Essay on Probabilities” 1814 BASIC ASSUMPTIONS OF CLASSICAL MECHANICS Classical dynamical variables, e.g. position, x momentum, mv kinetic energy, 1/2mv2 take on continuous values. These dynamical variables satisfy a law (usually a differential equation) GLOBAL initial conditions and / or boundary conditions LOCAL A state of a system is represented by giving the positions and velocities of all the particles at a given time t. This is equivalent to require the uniqueness of the solution of the Newton's equations once initial conditions are specified. CLASSICAL MECHANICS: DETERMINISTIC . LAW OF CONSERVATION OF ENERGY In a closed system the total amount of energy is conserved i.e. does not change. Energy may change from one form to another, but the total amount of energy in the closed system remains constant. LAW OF CONSERVATION OF ENERGY H = K + U LINEAR PENDULUM ~ CIRCULAR TRIGONOMETRIC FUNCTIONS LINEAR HARMONIC OSCILLATOR (SPRING) ~ UNIFORM CIRCULAR MOTION UNIFORM ROTATIONAL MOTION ~ LINEAR HARMONIC OSCILLATOR UNIFORM CIRCULAR MOTION GRAPHED AS A TRIGONOMETRIC (CIRCULAR) FUNCTION PROPERTIES OF WAVES 2015-04-22 at 2230 GMT, left to right: Europa, Io, Ganymede, Callisto. https://astronomy.stackexchange.com Newtonian Mechanics A.P. French. 1971. p289 TRIGONOMETRIC (CIRCULAR) FUNCTIONS FOR ONE PARTICLE TRAVELING IN 3 SPACE WE NEED SIX COORDINATES; THREE TO SPECIFY POSITION THREE TO SPECIFY MOMENTUM, THUS WE HAVE A 6 DIMENSIONAL SPACE. TRUE PERIOD OF THE LINEAR PENDULUM x a 0 t PHYSICS FERMAT’S PRINCIPLE of LEAST TIME Time for light to travel a given distance is minimized whatever shape a bubble has initially, it will try to become a sphere. sphere - the shape that minimizes the surface area the shape that requires the least energy “ACTION PRINCIPLE” IN PHYSICS Pierre-Louis Moreau de Maupertuis “Les loix du movement…” 1746 “I…have discovered a universal principle on which all laws are based… This is the principle of least action (a physical quantity called ACTION tends to be minimized) a principle so subtle as to be worthy of a supreme being.” NEWTON’S MECHANICS CAN BE DERIVED FROM THE PRINCIPLE OF LEAST ACTION WHY DOES THE BALL FOLLOW A PARABOLIC TRAJECTORY? THERE IS A MATHEMATICAL EXPRESSION CALLED THE ACTION MINIMIZE THE ACTION: THAT WILL GIVE YOU THE EXACT PARABOLIC TRAJECTORY! ACTION = SUM (KINETIC-POTENTIAL ENERGY) RICHARD FEYNMAN: it [the particle] smells all the paths in the neighborhood and chooses the one that has the least action by a method analogous to the one by which light chose the shortest time. TIME NOETHER’S THEOREM: CONSERVATION LAWS FOLLOW FROM THE SYMMETRY PROPERTIES OF NATURE. If a system has a continuous symmetry, then there are corresponding quantities whose values are conserved in time. If the Lagrangian is invariant under a transformation, then there is a conserved quantity. SPACETIME SYMMETRIES INDEPENDENCE OF TIME → ENERGY CONSERVATION. INDEPENDENCE OF POSITION → MOMENTUM CONSERVATION. INDEPENDENCE OF DIRECTION → ANGULAR MOMENTUM CONSERVATION. CALCULUS OF VARIATIONS EASIEST EXAMPLE: FIND THE SHORTEST ARC LENGTH BETWEEN TWO POINTS GEODESICS THE BRACHISTOCHRONE PROBLEM: Find the shape of the curve down which a bead sliding from rest and accelerated by gravity will slip (without friction) from one point A to another B in the least time. SOLUTION TO THE BRACHISTOCHRONE PROBLEM- THE CYCLOID .
Recommended publications
  • Rotational Motion (The Dynamics of a Rigid Body)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body) Henry Semat City College of New York Robert Katz University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicskatz Part of the Physics Commons Semat, Henry and Katz, Robert, "Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body)" (1958). Robert Katz Publications. 141. https://digitalcommons.unl.edu/physicskatz/141 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Robert Katz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 11 Rotational Motion (The Dynamics of a Rigid Body) 11-1 Motion about a Fixed Axis The motion of the flywheel of an engine and of a pulley on its axle are examples of an important type of motion of a rigid body, that of the motion of rotation about a fixed axis. Consider the motion of a uniform disk rotat­ ing about a fixed axis passing through its center of gravity C perpendicular to the face of the disk, as shown in Figure 11-1. The motion of this disk may be de­ scribed in terms of the motions of each of its individual particles, but a better way to describe the motion is in terms of the angle through which the disk rotates.
    [Show full text]
  • MA-302 Advanced Calculus 8
    Prof. D. P.Patil, Department of Mathematics, Indian Institute of Science, Bangalore Aug-Dec 2002 MA-302 Advanced Calculus 8. Inverse function theorem Carl Gustav Jacob Jacobi† (1804-1851) The exercises 8.1 and 8.2 are only to get practice, their solutions need not be submitted. 8.1. Determine at which points a of the domain of definition G the following maps F have differentiable inverse and give the biggest possible open subset on which F define a diffeomorphism. a). F : R2 → R2 with F(x,y) := (x2 − y2, 2xy) . (In the complex case this is the function z → z2.) b). F : R2 → R2 with F(x,y) := (sin x cosh y,cos x sinh y). (In the complex case this is the function z → sin z.) c). F : R2 → R2 with F(x,y) := (x+ y,x2 + y2) . d). F : R3 → R3 with F(r,ϕ,h) := (r cos ϕ,rsin ϕ,h). (cylindrical coordinates) × 2 2 3 3 e). F : (R+) → R with F(x,y) := (x /y , y /x) . xy f). F : R2 → R2 with F(x,y) := (x2 + y2 ,e ) . 8.2. Show that the following maps F are locally invertible at the given point a, and find the Taylor-expansion F(a) of the inverse map at the point upto order 2. a). F : R3 → R3 with F(x,y,z) := − (x+y+z), xy+xz+yz,−xyz at a =(0, 1, 2) resp. a =(−1, 2, 1). ( Hint : The problem consists in approximating the three zeros of the monic polynomial of degree 3 whose coefficients are close to those of X(X−1)(X−2) resp.
    [Show full text]
  • SMU PHYSICS 1303: Introduction to Mechanics
    SMU PHYSICS 1303: Introduction to Mechanics Stephen Sekula1 1Southern Methodist University Dallas, TX, USA SPRING, 2019 S. Sekula (SMU) SMU — PHYS 1303 SPRING, 2019 1 Outline Conservation of Energy S. Sekula (SMU) SMU — PHYS 1303 SPRING, 2019 2 Conservation of Energy Conservation of Energy NASA, “Hipnos” by Molinos de Viento and available under Creative Commons from Flickr S. Sekula (SMU) SMU — PHYS 1303 SPRING, 2019 3 Conservation of Energy Key Ideas The key ideas that we will explore in this section of the course are as follows: I We will come to understand that energy can change forms, but is neither created from nothing nor entirely destroyed. I We will understand the mathematical description of energy conservation. I We will explore the implications of the conservation of energy. Jacques-Louis David. “Portrait of Monsieur de Lavoisier and his Wife, chemist Marie-Anne Pierrette Paulze”. Available under Creative Commons from Flickr. S. Sekula (SMU) SMU — PHYS 1303 SPRING, 2019 4 Conservation of Energy Key Ideas The key ideas that we will explore in this section of the course are as follows: I We will come to understand that energy can change forms, but is neither created from nothing nor entirely destroyed. I We will understand the mathematical description of energy conservation. I We will explore the implications of the conservation of energy. Jacques-Louis David. “Portrait of Monsieur de Lavoisier and his Wife, chemist Marie-Anne Pierrette Paulze”. Available under Creative Commons from Flickr. S. Sekula (SMU) SMU — PHYS 1303 SPRING, 2019 4 Conservation of Energy Key Ideas The key ideas that we will explore in this section of the course are as follows: I We will come to understand that energy can change forms, but is neither created from nothing nor entirely destroyed.
    [Show full text]
  • Chapter 5 the Relativistic Point Particle
    Chapter 5 The Relativistic Point Particle To formulate the dynamics of a system we can write either the equations of motion, or alternatively, an action. In the case of the relativistic point par- ticle, it is rather easy to write the equations of motion. But the action is so physical and geometrical that it is worth pursuing in its own right. More importantly, while it is difficult to guess the equations of motion for the rela- tivistic string, the action is a natural generalization of the relativistic particle action that we will study in this chapter. We conclude with a discussion of the charged relativistic particle. 5.1 Action for a relativistic point particle How can we find the action S that governs the dynamics of a free relativis- tic particle? To get started we first think about units. The action is the Lagrangian integrated over time, so the units of action are just the units of the Lagrangian multiplied by the units of time. The Lagrangian has units of energy, so the units of action are L2 ML2 [S]=M T = . (5.1.1) T 2 T Recall that the action Snr for a free non-relativistic particle is given by the time integral of the kinetic energy: 1 dx S = mv2(t) dt , v2 ≡ v · v, v = . (5.1.2) nr 2 dt 105 106 CHAPTER 5. THE RELATIVISTIC POINT PARTICLE The equation of motion following by Hamilton’s principle is dv =0. (5.1.3) dt The free particle moves with constant velocity and that is the end of the story.
    [Show full text]
  • A Rhetorical Analysis of Sir Isaac Newton's Principia A
    A RHETORICAL ANALYSIS OF SIR ISAAC NEWTON’S PRINCIPIA A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS IN THE GRADUATE SCHOOL OF THE TEXAS WOMAN’S UNIVERSITY DEPARTMENT OF ENGLISH, SPEECH, AND FOREIGN LANGUAGES COLLEGE OF ARTS AND SCIENCES BY GIRIBALA JOSHI, B.S., M.S. DENTON, TEXAS AUGUST 2018 Copyright © 2018 by Giribala Joshi DEDICATION Nature and Nature’s Laws lay hid in Night: God said, “Let Newton be!” and all was light. ~ Alexander Pope Dedicated to all the wonderful eighteenth-century Enlightenment thinkers and philosophers! ii ACKNOWLEDGMENTS I would like to acknowledge the continuous support and encouragement that I received from the Department of English, Speech and Foreign Languages. I especially want to thank my thesis committee member Dr. Ashley Bender, and my committee chair Dr. Brian Fehler, for their guidance and feedback while writing this thesis. iii ABSTRACT GIRIBALA JOSHI A RHETORICAL ANALYSIS OF SIR ISAAC NEWTON’S PRINCIPIA AUGUST 2018 In this thesis, I analyze Isaac Newton's Philosophiae Naturalis Principia Mathematica in the framework of Aristotle’s theories of rhetoric. Despite the long-held view that science only deals with brute facts and does not require rhetoric, we learn that science has its own special topics. This study highlights the rhetorical situation of the Principia and Newton’s rhetorical strategies, emphasizing the belief that scientific facts and theories are also rhetorical constructions. This analysis shows that the credibility of the author and the text, the emotional debates before and after the publication of the text, the construction of logical arguments, and the presentation style makes the book the epitome of scientific writing.
    [Show full text]
  • Sliding and Rolling: the Physics of a Rolling Ball J Hierrezuelo Secondary School I B Reyes Catdicos (Vdez- Mdaga),Spain and C Carnero University of Malaga, Spain
    Sliding and rolling: the physics of a rolling ball J Hierrezuelo Secondary School I B Reyes Catdicos (Vdez- Mdaga),Spain and C Carnero University of Malaga, Spain We present an approach that provides a simple and there is an extra difficulty: most students think that it adequate procedure for introducing the concept of is not possible for a body to roll without slipping rolling friction. In addition, we discuss some unless there is a frictional force involved. In fact, aspects related to rolling motion that are the when we ask students, 'why do rolling bodies come to source of students' misconceptions. Several rest?, in most cases the answer is, 'because the didactic suggestions are given. frictional force acting on the body provides a negative acceleration decreasing the speed of the Rolling motion plays an important role in many body'. In order to gain a good understanding of familiar situations and in a number of technical rolling motion, which is bound to be useful in further applications, so this kind of motion is the subject of advanced courses. these aspects should be properly considerable attention in most introductory darified. mechanics courses in science and engineering. The outline of this article is as follows. Firstly, we However, we often find that students make errors describe the motion of a rigid sphere on a rigid when they try to interpret certain situations related horizontal plane. In this section, we compare two to this motion. situations: (1) rolling and slipping, and (2) rolling It must be recognized that a correct analysis of rolling without slipping.
    [Show full text]
  • Carl Gustav Jacob Jacobi
    CARL GUSTAV JACOB JACOBI Along with Norwegian Niels Abel, German mathematician Carl Gustav Jacob Jacobi (December 10, 1804 – February 18, 1851) was one of the founders of the theory of elliptic functions, which he described in his 1829 work Fundamenta Nova Theoriae Functionum Ellipticarum (New Foundations of the Theory of Elliptic Functions). His achievements in this area drew praise from Joseph-Louis Lagrange, who had spent some 40 years studying elliptic integrals. Jacobi also investigated number theory, mathematical analysis, geometry and differential equations. His work with determinants, in particular the Hamilton-Jacobi theory, a technique of solving a system of partial differential equations by transforming coordinates, is important in the presentation of dynamics and quantum mechanics. V.I. Arnold wrote of the Hamilton-Jacobi method, “… this is the most powerful method known for exact integration.” Born in Potsdam, Jacobi was the son of a prosperous Jewish banker. His older brother Moritz Hermann Jacobi was a well-known physicist and engineer. The latter worked as a leading researcher at the Academy of Sciences in St. Petersburg. During their lifetimes Moritz was the better known of the two for his work on the practical applications of electricity and especially for his discovery in 1838 of galvanoplastics. Also called electrotyping, it is a process something like electroplating for making duplicate plates of relief, or letterpress, printing. Carl was constantly mistaken for his brother or even worse congratulated for having such a distinguished and accomplished brother. To one such compliment he responded with annoyance, “I am not his brother, he is mine.” Carl Jacobi demonstrated great talent for both languages and mathematics from an early age.
    [Show full text]
  • Chapter 5 ANGULAR MOMENTUM and ROTATIONS
    Chapter 5 ANGULAR MOMENTUM AND ROTATIONS In classical mechanics the total angular momentum L~ of an isolated system about any …xed point is conserved. The existence of a conserved vector L~ associated with such a system is itself a consequence of the fact that the associated Hamiltonian (or Lagrangian) is invariant under rotations, i.e., if the coordinates and momenta of the entire system are rotated “rigidly” about some point, the energy of the system is unchanged and, more importantly, is the same function of the dynamical variables as it was before the rotation. Such a circumstance would not apply, e.g., to a system lying in an externally imposed gravitational …eld pointing in some speci…c direction. Thus, the invariance of an isolated system under rotations ultimately arises from the fact that, in the absence of external …elds of this sort, space is isotropic; it behaves the same way in all directions. Not surprisingly, therefore, in quantum mechanics the individual Cartesian com- ponents Li of the total angular momentum operator L~ of an isolated system are also constants of the motion. The di¤erent components of L~ are not, however, compatible quantum observables. Indeed, as we will see the operators representing the components of angular momentum along di¤erent directions do not generally commute with one an- other. Thus, the vector operator L~ is not, strictly speaking, an observable, since it does not have a complete basis of eigenstates (which would have to be simultaneous eigenstates of all of its non-commuting components). This lack of commutivity often seems, at …rst encounter, as somewhat of a nuisance but, in fact, it intimately re‡ects the underlying structure of the three dimensional space in which we are immersed, and has its source in the fact that rotations in three dimensions about di¤erent axes do not commute with one another.
    [Show full text]
  • Coupling Effect of Van Der Waals, Centrifugal, and Frictional Forces On
    PCCP View Article Online PAPER View Journal | View Issue Coupling effect of van der Waals, centrifugal, and frictional forces on a GHz rotation–translation Cite this: Phys. Chem. Chem. Phys., 2019, 21,359 nano-convertor† Bo Song,a Kun Cai, *ab Jiao Shi, ad Yi Min Xieb and Qinghua Qin c A nano rotation–translation convertor with a deformable rotor is presented, and the dynamic responses of the system are investigated considering the coupling among the van der Waals (vdW), centrifugal and frictional forces. When an input rotational frequency (o) is applied at one end of the rotor, the other end exhibits a translational motion, which is an output of the system and depends on both the geometry of the system and the forces applied on the deformable part (DP) of the rotor. When centrifugal force is Received 25th September 2018, stronger than vdW force, the DP deforms by accompanying the translation of the rotor. It is found that Accepted 26th November 2018 the translational displacement is stable and controllable on the condition that o is in an interval. If o DOI: 10.1039/c8cp06013d exceeds an allowable value, the rotor exhibits unstable eccentric rotation. The system may collapse with the rotor escaping from the stators due to the strong centrifugal force in eccentric rotation. In a practical rsc.li/pccp design, the interval of o can be found for a system with controllable output translation. 1 Introduction components.18–22 Hertal et al.23 investigated the significant deformation of carbon nanotubes (CNTs) by surface vdW forces With the rapid development in nanotechnology, miniaturization that were generated between the nanotube and the substrate.
    [Show full text]
  • Mathematical Genealogy of the Union College Department of Mathematics
    Gemma (Jemme Reinerszoon) Frisius Mathematical Genealogy of the Union College Department of Mathematics Université Catholique de Louvain 1529, 1536 The Mathematics Genealogy Project is a service of North Dakota State University and the American Mathematical Society. Johannes (Jan van Ostaeyen) Stadius http://www.genealogy.math.ndsu.nodak.edu/ Université Paris IX - Dauphine / Université Catholique de Louvain Justus (Joost Lips) Lipsius Martinus Antonius del Rio Adam Haslmayr Université Catholique de Louvain 1569 Collège de France / Université Catholique de Louvain / Universidad de Salamanca 1572, 1574 Erycius (Henrick van den Putte) Puteanus Jean Baptiste Van Helmont Jacobus Stupaeus Primary Advisor Secondary Advisor Universität zu Köln / Université Catholique de Louvain 1595 Université Catholique de Louvain Erhard Weigel Arnold Geulincx Franciscus de le Boë Sylvius Universität Leipzig 1650 Université Catholique de Louvain / Universiteit Leiden 1646, 1658 Universität Basel 1637 Union College Faculty in Mathematics Otto Mencke Gottfried Wilhelm Leibniz Ehrenfried Walter von Tschirnhaus Key Universität Leipzig 1665, 1666 Universität Altdorf 1666 Universiteit Leiden 1669, 1674 Johann Christoph Wichmannshausen Jacob Bernoulli Christian M. von Wolff Universität Leipzig 1685 Universität Basel 1684 Universität Leipzig 1704 Christian August Hausen Johann Bernoulli Martin Knutzen Marcus Herz Martin-Luther-Universität Halle-Wittenberg 1713 Universität Basel 1694 Leonhard Euler Abraham Gotthelf Kästner Franz Josef Ritter von Gerstner Immanuel Kant
    [Show full text]
  • Sacred Rhetorical Invention in the String Theory Movement
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Communication Studies Theses, Dissertations, and Student Research Communication Studies, Department of Spring 4-12-2011 Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement Brent Yergensen University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/commstuddiss Part of the Speech and Rhetorical Studies Commons Yergensen, Brent, "Secular Salvation: Sacred Rhetorical Invention in the String Theory Movement" (2011). Communication Studies Theses, Dissertations, and Student Research. 6. https://digitalcommons.unl.edu/commstuddiss/6 This Article is brought to you for free and open access by the Communication Studies, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Communication Studies Theses, Dissertations, and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT by Brent Yergensen A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Communication Studies Under the Supervision of Dr. Ronald Lee Lincoln, Nebraska April, 2011 ii SECULAR SALVATION: SACRED RHETORICAL INVENTION IN THE STRING THEORY MOVEMENT Brent Yergensen, Ph.D. University of Nebraska, 2011 Advisor: Ronald Lee String theory is argued by its proponents to be the Theory of Everything. It achieves this status in physics because it provides unification for contradictory laws of physics, namely quantum mechanics and general relativity. While based on advanced theoretical mathematics, its public discourse is growing in prevalence and its rhetorical power is leading to a scientific revolution, even among the public.
    [Show full text]
  • SPEED MANAGEMENT ACTION PLAN Implementation Steps
    SPEED MANAGEMENT ACTION PLAN Implementation Steps Put Your Speed Management Plan into Action You did it! You recognized that speeding is a significant Figuring out how to implement a speed management plan safety problem in your jurisdiction, and you put a lot of time can be daunting, so the Federal Highway Administration and effort into developing a Speed Management Action (FHWA) has developed a set of steps that agency staff can Plan that holds great promise for reducing speeding-related adopt and tailor to get the ball rolling—but not speeding! crashes and fatalities. So…what’s next? Agencies can use these proven methods to jump start plan implementation and achieve success in reducing speed- related crashes. Involve Identify a Stakeholders Champion Prioritize Strategies for Set Goals, Track Implementation Market the Develop a Speed Progress, Plan Management Team Evaluate, and Celebrate Success Identify Strategy Leads INVOLVE STAKEHOLDERS In order for the plan to be successful, support and buy-in is • Outreach specialists. needed from every area of transportation: engineering (Federal, • Governor’s Highway Safety Office representatives. State, local, and Metropolitan Planning Organizations (MPO), • National Highway Transportation Safety Administration (NHTSA) Regional Office representatives. enforcement, education, and emergency medical services • Local/MPO/State Department of Transportation (DOT) (EMS). Notify and engage stakeholders who were instrumental representatives. in developing the plan and identify gaps in support. Potential • Police/enforcement representatives. stakeholders may include: • FHWA Division Safety Engineers. • Behavioral and infrastructure funding source representatives. • Agency Traffic Operations Engineers. • Judicial representatives. • Agency Safety Engineers. • EMS providers. • Agency Pedestrian/Bicycle Coordinators. • Educators. • Agency Pavement Design Engineers.
    [Show full text]