Mathematical Genealogy of the Union College Department of Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

Mathematical Genealogy of the Union College Department of Mathematics Gemma (Jemme Reinerszoon) Frisius Mathematical Genealogy of the Union College Department of Mathematics Université Catholique de Louvain 1529, 1536 The Mathematics Genealogy Project is a service of North Dakota State University and the American Mathematical Society. Johannes (Jan van Ostaeyen) Stadius http://www.genealogy.math.ndsu.nodak.edu/ Université Paris IX - Dauphine / Université Catholique de Louvain Justus (Joost Lips) Lipsius Martinus Antonius del Rio Adam Haslmayr Université Catholique de Louvain 1569 Collège de France / Université Catholique de Louvain / Universidad de Salamanca 1572, 1574 Erycius (Henrick van den Putte) Puteanus Jean Baptiste Van Helmont Jacobus Stupaeus Primary Advisor Secondary Advisor Universität zu Köln / Université Catholique de Louvain 1595 Université Catholique de Louvain Erhard Weigel Arnold Geulincx Franciscus de le Boë Sylvius Universität Leipzig 1650 Université Catholique de Louvain / Universiteit Leiden 1646, 1658 Universität Basel 1637 Union College Faculty in Mathematics Otto Mencke Gottfried Wilhelm Leibniz Ehrenfried Walter von Tschirnhaus Key Universität Leipzig 1665, 1666 Universität Altdorf 1666 Universiteit Leiden 1669, 1674 Johann Christoph Wichmannshausen Jacob Bernoulli Christian M. von Wolff Universität Leipzig 1685 Universität Basel 1684 Universität Leipzig 1704 Christian August Hausen Johann Bernoulli Martin Knutzen Marcus Herz Martin-Luther-Universität Halle-Wittenberg 1713 Universität Basel 1694 Leonhard Euler Abraham Gotthelf Kästner Franz Josef Ritter von Gerstner Immanuel Kant Universität Basel 1726 Universität Leipzig 1739 Universität Königsberg 1770 Joseph Johann von Littrow Joseph Louis Lagrange Friedrich Anton Justus Thibaut Johann Tobias Meyer d.J. Georg Christoph Lichtenberg Johann Friedrich Pfaff Bernard(us) Placidus Johann Nepomuk Bolzano Karl Reinhold Christian-Albrechts-Universität zu Kiel 1796 Georg-August-Universität Göttingen 1773 Georg-August-Universität Göttingen 1765 Georg-August-Universität Göttingen 1786 University of Prague 1805 John Cranke Nikolai Dmitrievich Brashman Simeon Denis Poisson Jean-Baptiste Joseph Fourier Karl Christian von Langsdorf Enno Heeren Dirksen Heinrich Wilhelm Brandes Carl Friedrich Gauß August Ferdinand Möbius Franz Moth Józef Maximilian Petzval Friedrich August Trendelenburg Franz Jakob Clemens University of Cambridge 1774 Moscow State University 1834 École Polytechnique Universität Erfurt 1781 Georg-August-Universität Göttingen 1820 Georg-August-Universität Göttingen 1800 Universität Helmstedt 1799 Universität Leipzig 1815 University of Prague 1822 University of Pest 1832 Universität Berlin 1826 John Dawson Thomas Jones Pafnuty Lvovich Chebyshev Michel Chasles Gustav Peter Lejeune Dirichlet Martin Ohm Christian Ludwig Gerling Carl Gustav Jacob Jacobi Christoph Gudermann Friedrich Wilhelm Bessel Andreas von Ettingshausen Johann Franz Friedrich Encke Otto Wilhelm Fiedler Johannes Frischauf Karl Friesach Franz Clemens Brentano University of Cambridge 1782 University of St. Petersburg 1849 École Polytechnique 1814 Rheinische Friedrich-Wilhelms-Universität Bonn 1827 Friedrich-Alexander-Universität Erlangen-Nürnberg 1811 Georg-August-Universität Göttingen 1812 Humboldt-Universität zu Berlin 1825 Georg-August-Universität Göttingen 1841 Georg-August-Universität Göttingen 1810 Universität Wien Universität Berlin 1844 Universität Leipzig 1859 Universität Wien 1861 Universität Wien 1846 Eberhard-Karls-Universität Tübingen 1862 Adam Sedgwick Andrei Andreyevich Markov H. A. (Hubert Anson) Newton C. Émile (Charles) Picard Gaston Darboux Rudolf Otto Sigismund Lipschitz Julius Plücker Otto Hesse Friedrich Julius Richelot Heinrich Ferdinand Scherk Jožef Stefan Carl Christian Bruhns Emil Weyr Gustav Ritter von Escherich Kazimierz Twardowski University of Cambridge 1811 University of St. Petersburg 1884 Yale University 1850 École Normale Supérieure Paris 1877 École Normale Supérieure Paris 1866 Universität Berlin 1853 Philipps-Universität Marburg 1823 Universität Königsberg 1840 Universität Königsberg 1831 Universität Berlin 1823 Universität Wien 1858 Universität Berlin 1856 University of Prague 1870 Technische Universität Graz 1873 Universität Wien 1891 William Hopkins Georgy Fedoseevich Voronoy E. H. (Eliakim Hastings) Moore Stanislaw Zaremba C. Felix (Christian) Klein Carl Gottfried Neumann Karl Theodor Wilhelm Weierstraß Ernst Eduard Kummer Ludwig Boltzmann Hugo Hans von Seeliger Wilhelm Wirtinger Stanislaw Lesniewski University of Cambridge 1830 University of St. Petersburg 1897 Yale University 1885 Université Paris IV-Sorbonne 1889 Rheinische Friedrich-Wilhelms-Universität Bonn 1868 Universität Königsberg 1856 Universität Königsberg 1854 Martin-Luther-Universität Halle-Wittenberg 1831 Universität Wien 1866 Universität Leipzig 1872 Universität Wien 1887 University of Lwów 1912 Arthur Cayley Oswald Veblen Wacław Sierpiñski C. L. Ferdinand (Carl Louis) Lindemann William Edward Story Hermann Amandus Schwarz Paul Du Bois-Reymond Gustav Herglotz Wilhelm Blaschke Alfred Tarski University of Oxford / University College Dublin / Université de Leyde 1864/1865/1875 The University of Chicago 1903 Uniwersytet Jagielloński 1906 Friedrich-Alexander-Universität Erlangen-Nürnberg 1873 Universität Leipzig 1875 Universität Berlin 1864 Universität Berlin 1859 Ludwig-Maximilians-Universität München 1900 Universität Wien 1908 Uniwersytet Warszawski 1924 Henry Frederick Baker Alonzo Church John Henry Constantine Whitehead Stefan Mazurkiewicz David Hilbert Solomon Lefschetz Leopold (Lipót) Fejér Otto Ludwig Hölder Shiing-Shen Chern Robert Lawson Vaught Donald Anthony Martin Princeton University 1927 Princeton University 1930 University of Lwów 1913 Universität Königsberg 1885 Clark University 1911 Eötvös Loránd University 1902 Eberhard-Karls-Universität Tübingen 1882 Universität Hamburg 1936 University of California, Berkeley 1954 B.S., Massachusetts Institute of Technology 1962 John A. Todd Dana S. Scott William Vallance Douglas Hodge Ioan M. James Karol Borsuk Erhard Schmidt Norman Earl Steenrod Marcel Riesz Emil Artin Thomas Francis Banchoff James Earl Baumgartner Eugene Meyer Kleinberg University of Cambridge 1932 Princeton University 1958 University of Oxford 1953 Uniwersytet Warszawski 1931 Georg-August-Universität Göttingen 1905 Princeton University 1936 Eötvös Loránd University 1912 Universität Leipzig 1921 University of California, Berkeley 1964 University of California, Berkeley 1970 The Rockefeller University 1969 Roger Penrose Nicolas Daniels Goodman Michael Francis Atiyah Brian F. Steer Samuel Eilenberg Salomon Bochner Franklin Paul Peterson Wu-Chung Hsiang C. Einar (Carl) Hille John Torrence Tate, Jr. Davide P. Cervone Alan Dana Taylor William Seymour Zwicker University of Cambridge 1958 Stanford University 1968 University of Cambridge 1955 University of Oxford 1961 Uniwersytet Warszawski 1936 Universität Berlin 1921 Princeton University 1955 Princeton University 1963 Stockholm University 1918 Princeton University 1950 Brown University 1993 Dartmouth College 1975 Massachusetts Institute of Technology 1976 K. Paul Tod Julius Barbanel Nigel James Hitchin F. William (Francis) Lawvere David Alvin Buchsbaum Anthony W. Knapp Paco Axel Lagerstrom Kathryn Frances Lesh Thomas Gehret Goodwillie Cassius Ionescu-Tulcea Jonathan Darby Lubin University of Oxford State University of New York at Buffalo 1979 University of Oxford 1972 Columbia University 1963 Columbia University 1954 Princeton University 1965 Princeton University 1942 Massachusetts Institute of Technology 1988 Princeton University 1982 Yale University 1959 Harvard University 1963 Claude R. LeBrun Henrik Pedersen Kimmo Rosenthal Barry M. Mitchell Paul D. Friedman Leon Trilling Brenda Johnson William Warren Fairchild Karl Zimmermann University of Oxford 1980 University of Oxford 1985 State University of New York at Stony Brook 1979 Brown University 1960 State University of New York at Stony Brook 1997 California Institute of Technology 1948 Brown University 1991 University of Illinois at Urbana-Champaign 1967 Brown University 1985 Christina Wiis Tønnesen-Friedman Susan B. Niefield Saul Sigmond Abarbanel University of Southern Denmark 1997 Rutgers University, New Brunswick 1978 Massachusetts Institute of Technology 1959 David I. Gottlieb Tel Aviv University 1972 Kelly Joseph Black Brown University 1992.
Recommended publications
  • MA-302 Advanced Calculus 8
    Prof. D. P.Patil, Department of Mathematics, Indian Institute of Science, Bangalore Aug-Dec 2002 MA-302 Advanced Calculus 8. Inverse function theorem Carl Gustav Jacob Jacobi† (1804-1851) The exercises 8.1 and 8.2 are only to get practice, their solutions need not be submitted. 8.1. Determine at which points a of the domain of definition G the following maps F have differentiable inverse and give the biggest possible open subset on which F define a diffeomorphism. a). F : R2 → R2 with F(x,y) := (x2 − y2, 2xy) . (In the complex case this is the function z → z2.) b). F : R2 → R2 with F(x,y) := (sin x cosh y,cos x sinh y). (In the complex case this is the function z → sin z.) c). F : R2 → R2 with F(x,y) := (x+ y,x2 + y2) . d). F : R3 → R3 with F(r,ϕ,h) := (r cos ϕ,rsin ϕ,h). (cylindrical coordinates) × 2 2 3 3 e). F : (R+) → R with F(x,y) := (x /y , y /x) . xy f). F : R2 → R2 with F(x,y) := (x2 + y2 ,e ) . 8.2. Show that the following maps F are locally invertible at the given point a, and find the Taylor-expansion F(a) of the inverse map at the point upto order 2. a). F : R3 → R3 with F(x,y,z) := − (x+y+z), xy+xz+yz,−xyz at a =(0, 1, 2) resp. a =(−1, 2, 1). ( Hint : The problem consists in approximating the three zeros of the monic polynomial of degree 3 whose coefficients are close to those of X(X−1)(X−2) resp.
    [Show full text]
  • Der Vierfarbensatz. Geschichte, Topologische Grundlagen Und
    Der Vierfarbensatz Geschichte, topologische Grundlagen und Beweisidee von Prof. Dr. RudolfjFritsch Universität München unter Mitarbeit von Gerda Fritsch, Gräfelfing Wissenschaftsverlag Mannheim • Leipzig - Wien • Zürich Mathematische Institut dar Universität München Die Deutsche Bibliothek - CIP-Einheitsaufnahme Fritsch, Rudolf: Der Vierfarbensatz: Geschichte, topologische Grundlagen und Beweisidee / von Rudolf Fritsch. Unter Mitarb. von Gerda Fritsch. - Mannheim; Leipzig; Wien; Zürich: BI-Wiss.-Verl., 1994 ISBN 3-411-15141-2 Gedruckt auf säurefreiem Papier mit neutralem pH-Wert (bibliotheksfest) Alle Rechte, auch die der Übersetzung in fremde Sprachen, vorbehalten. Kein Teil dieses Werkes darf ohne schriftliche Einwilligung des Verlages in irgendeiner Form (Fotokopie, Mikrofilm oder ein anderes Verfahren), auch nicht für Zwecke der Unterrichtsgestaltung, reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden. © Bibliographisches Institut & F. A. Brockhaus AG, Mannheim 1994 Druck: RK Offsetdruck GmbH, Speyer Bindearbeit: Progressdruck GmbH, Speyer Printed in Germany ISBN 3-411-15141-2 Für Dorothee Veronika Bernhard Inhalt s Verzeichnis Statt eines Vorworts 3 Wie man dieses Buch lesen kann 6 1 Geschichte 7 2 (Topologische) Landkarten 45 2.1 Heuristische Vorüberlegungen 45 2.2 Grenzlinien 48 2.3 Formale Definition 61 Ecken 63 Länder 64 Zusammenhang von Landkarten 66 Reduktion auf Landkarten aus Streckenzügen 67 2.4 Grundlegende Beispiele 70 2.5 Landesgrenzen 75 2.6 Gemeinsame Grenzlinien
    [Show full text]
  • Einstein's Physical Strategy, Energy Conservation, Symmetries, And
    Einstein’s Physical Strategy, Energy Conservation, Symmetries, and Stability: “but Grossmann & I believed that the conservation laws were not satisfied” April 12, 2016 J. Brian Pitts Faculty of Philosophy, University of Cambridge jbp25@cam.ac.uk Abstract Recent work on the history of General Relativity by Renn, Sauer, Janssen et al. shows that Einstein found his field equations partly by a physical strategy including the Newtonian limit, the electromagnetic analogy, and energy conservation. Such themes are similar to those later used by particle physicists. How do Einstein’s physical strategy and the particle physics deriva- tions compare? What energy-momentum complex(es) did he use and why? Did Einstein tie conservation to symmetries, and if so, to which? How did his work relate to emerging knowledge (1911-14) of the canonical energy-momentum tensor and its translation-induced conservation? After initially using energy-momentum tensors hand-crafted from the gravitational field equa- ′ µ µ ν tions, Einstein used an identity from his assumed linear coordinate covariance x = Mν x to relate it to the canonical tensor. Usually he avoided using matter Euler-Lagrange equations and so was not well positioned to use or reinvent the Herglotz-Mie-Born understanding that the canonical tensor was conserved due to translation symmetries, a result with roots in Lagrange, Hamilton and Jacobi. Whereas Mie and Born were concerned about the canonical tensor’s asymmetry, Einstein did not need to worry because his Entwurf Lagrangian is modeled not so much on Maxwell’s theory (which avoids negative-energies but gets an asymmetric canonical tensor as a result) as on a scalar theory (the Newtonian limit).
    [Show full text]
  • Carl Gustav Jacob Jacobi
    CARL GUSTAV JACOB JACOBI Along with Norwegian Niels Abel, German mathematician Carl Gustav Jacob Jacobi (December 10, 1804 – February 18, 1851) was one of the founders of the theory of elliptic functions, which he described in his 1829 work Fundamenta Nova Theoriae Functionum Ellipticarum (New Foundations of the Theory of Elliptic Functions). His achievements in this area drew praise from Joseph-Louis Lagrange, who had spent some 40 years studying elliptic integrals. Jacobi also investigated number theory, mathematical analysis, geometry and differential equations. His work with determinants, in particular the Hamilton-Jacobi theory, a technique of solving a system of partial differential equations by transforming coordinates, is important in the presentation of dynamics and quantum mechanics. V.I. Arnold wrote of the Hamilton-Jacobi method, “… this is the most powerful method known for exact integration.” Born in Potsdam, Jacobi was the son of a prosperous Jewish banker. His older brother Moritz Hermann Jacobi was a well-known physicist and engineer. The latter worked as a leading researcher at the Academy of Sciences in St. Petersburg. During their lifetimes Moritz was the better known of the two for his work on the practical applications of electricity and especially for his discovery in 1838 of galvanoplastics. Also called electrotyping, it is a process something like electroplating for making duplicate plates of relief, or letterpress, printing. Carl was constantly mistaken for his brother or even worse congratulated for having such a distinguished and accomplished brother. To one such compliment he responded with annoyance, “I am not his brother, he is mine.” Carl Jacobi demonstrated great talent for both languages and mathematics from an early age.
    [Show full text]
  • Emil Artin in America
    MATHEMATICAL PERSPECTIVES BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 50, Number 2, April 2013, Pages 321–330 S 0273-0979(2012)01398-8 Article electronically published on December 18, 2012 CREATING A LIFE: EMIL ARTIN IN AMERICA DELLA DUMBAUGH AND JOACHIM SCHWERMER 1. Introduction In January 1933, Adolf Hitler and the Nazi party assumed control of Germany. On 7 April of that year the Nazis created the notion of “non-Aryan descent”.1 “It was only a question of time”, Richard Brauer would later describe it, “until [Emil] Artin, with his feeling for individual freedom, his sense of justice, his abhorrence of physical violence would leave Germany” [5, p. 28]. By the time Hitler issued the edict on 26 January 1937, which removed any employee married to a Jew from their position as of 1 July 1937,2 Artin had already begun to make plans to leave Germany. Artin had married his former student, Natalie Jasny, in 1929, and, since she had at least one Jewish grandparent, the Nazis classified her as Jewish. On 1 October 1937, Artin and his family arrived in America [19, p. 80]. The surprising combination of a Roman Catholic university and a celebrated American mathematician known for his gnarly personality played a critical role in Artin’s emigration to America. Solomon Lefschetz had just served as AMS president from 1935–1936 when Artin came to his attention: “A few days ago I returned from a meeting of the American Mathematical Society where as President, I was particularly well placed to know what was going on”, Lefschetz wrote to the president of Notre Dame on 12 January 1937, exactly two weeks prior to the announcement of the Hitler edict that would influence Artin directly.
    [Show full text]
  • Mathematicians Fleeing from Nazi Germany
    Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D.
    [Show full text]
  • Academic Genealogy of the Oakland University Department Of
    Basilios Bessarion Mystras 1436 Guarino da Verona Johannes Argyropoulos 1408 Università di Padova 1444 Academic Genealogy of the Oakland University Vittorino da Feltre Marsilio Ficino Cristoforo Landino Università di Padova 1416 Università di Firenze 1462 Theodoros Gazes Ognibene (Omnibonus Leonicenus) Bonisoli da Lonigo Angelo Poliziano Florens Florentius Radwyn Radewyns Geert Gerardus Magnus Groote Università di Mantova 1433 Università di Mantova Università di Firenze 1477 Constantinople 1433 DepartmentThe Mathematics Genealogy Project of is a serviceMathematics of North Dakota State University and and the American Statistics Mathematical Society. Demetrios Chalcocondyles http://www.mathgenealogy.org/ Heinrich von Langenstein Gaetano da Thiene Sigismondo Polcastro Leo Outers Moses Perez Scipione Fortiguerra Rudolf Agricola Thomas von Kempen à Kempis Jacob ben Jehiel Loans Accademia Romana 1452 Université de Paris 1363, 1375 Université Catholique de Louvain 1485 Università di Firenze 1493 Università degli Studi di Ferrara 1478 Mystras 1452 Jan Standonck Johann (Johannes Kapnion) Reuchlin Johannes von Gmunden Nicoletto Vernia Pietro Roccabonella Pelope Maarten (Martinus Dorpius) van Dorp Jean Tagault François Dubois Janus Lascaris Girolamo (Hieronymus Aleander) Aleandro Matthaeus Adrianus Alexander Hegius Johannes Stöffler Collège Sainte-Barbe 1474 Universität Basel 1477 Universität Wien 1406 Università di Padova Università di Padova Université Catholique de Louvain 1504, 1515 Université de Paris 1516 Università di Padova 1472 Università
    [Show full text]
  • Mathematical Genealogy of the Wellesley College Department Of
    Nilos Kabasilas Mathematical Genealogy of the Wellesley College Department of Mathematics Elissaeus Judaeus Demetrios Kydones The Mathematics Genealogy Project is a service of North Dakota State University and the American Mathematical Society. http://www.genealogy.math.ndsu.nodak.edu/ Georgios Plethon Gemistos Manuel Chrysoloras 1380, 1393 Basilios Bessarion 1436 Mystras Johannes Argyropoulos Guarino da Verona 1444 Università di Padova 1408 Cristoforo Landino Marsilio Ficino Vittorino da Feltre 1462 Università di Firenze 1416 Università di Padova Angelo Poliziano Theodoros Gazes Ognibene (Omnibonus Leonicenus) Bonisoli da Lonigo 1477 Università di Firenze 1433 Constantinople / Università di Mantova Università di Mantova Leo Outers Moses Perez Scipione Fortiguerra Demetrios Chalcocondyles Jacob ben Jehiel Loans Thomas à Kempis Rudolf Agricola Alessandro Sermoneta Gaetano da Thiene Heinrich von Langenstein 1485 Université Catholique de Louvain 1493 Università di Firenze 1452 Mystras / Accademia Romana 1478 Università degli Studi di Ferrara 1363, 1375 Université de Paris Maarten (Martinus Dorpius) van Dorp Girolamo (Hieronymus Aleander) Aleandro François Dubois Jean Tagault Janus Lascaris Matthaeus Adrianus Pelope Johann (Johannes Kapnion) Reuchlin Jan Standonck Alexander Hegius Pietro Roccabonella Nicoletto Vernia Johannes von Gmunden 1504, 1515 Université Catholique de Louvain 1499, 1508 Università di Padova 1516 Université de Paris 1472 Università di Padova 1477, 1481 Universität Basel / Université de Poitiers 1474, 1490 Collège Sainte-Barbe
    [Show full text]
  • A History of Mathematics in America Before 1900.Pdf
    THE BOOK WAS DRENCHED 00 S< OU_1 60514 > CD CO THE CARUS MATHEMATICAL MONOGRAPHS Published by THE MATHEMATICAL ASSOCIATION OF AMERICA Publication Committee GILBERT AMES BLISS DAVID RAYMOND CURTISS AUBREY JOHN KEMPNER HERBERT ELLSWORTH SLAUGHT CARUS MATHEMATICAL MONOGRAPHS are an expression of THEthe desire of Mrs. Mary Hegeler Carus, and of her son, Dr. Edward H. Carus, to contribute to the dissemination of mathe- matical knowledge by making accessible at nominal cost a series of expository presenta- tions of the best thoughts and keenest re- searches in pure and applied mathematics. The publication of these monographs was made possible by a notable gift to the Mathematical Association of America by Mrs. Carus as sole trustee of the Edward C. Hegeler Trust Fund. The expositions of mathematical subjects which the monographs will contain are to be set forth in a manner comprehensible not only to teach- ers and students specializing in mathematics, but also to scientific workers in other fields, and especially to the wide circle of thoughtful people who, having a moderate acquaintance with elementary mathematics, wish to extend their knowledge without prolonged and critical study of the mathematical journals and trea- tises. The scope of this series includes also historical and biographical monographs. The Carus Mathematical Monographs NUMBER FIVE A HISTORY OF MATHEMATICS IN AMERICA BEFORE 1900 By DAVID EUGENE SMITH Professor Emeritus of Mathematics Teacliers College, Columbia University and JEKUTHIEL GINSBURG Professor of Mathematics in Yeshiva College New York and Editor of "Scripta Mathematica" Published by THE MATHEMATICAL ASSOCIATION OF AMERICA with the cooperation of THE OPEN COURT PUBLISHING COMPANY CHICAGO, ILLINOIS THE OPEN COURT COMPANY Copyright 1934 by THE MATHEMATICAL ASSOCIATION OF AMKRICA Published March, 1934 Composed, Printed and Bound by tClfe QlolUgUt* $Jrr George Banta Publishing Company Menasha, Wisconsin, U.
    [Show full text]
  • Hamiltonian System and Dissipative System
    Hamiltonian system and Dissipative system: Motivating example: (energy and DE) y00 + qy = 0 system: y0 = v, v0 = −qy y00 + py0 + qy = 0 system: y0 = v, v0 = −qy − pv 1 1 Energy function: E(y, v) = v2 + qy2 2 2 1 where v2 is the kinetic energy (note that m = 1) 2 1 and qy2 is the potential energy (example: q = g) 2 1 y00 + qy = 0 d d 1 1 E(y(t), v(t)) = v2(t) + qy2(t) = v(t)v0(t) + qy(t)y0(t) dt dt 2 2 = v(t)(−qy(t)) + qy(t) · v(t) = 0 (energy is conserved) y00 + py0 + qy = 0 d d 1 1 E(y(t), v(t)) = v2(t) + qy2(t) = v(t)v0(t) + qy(t)y0(t) dt dt 2 2 = v(t)(−qy(t) − pv(t)) + qy(t) · v(t) = −p[v(t)]2 ≤ 0 (energy is dissipated) 2 Definition: dx dy = f(x, y), = g(x, y). dt dt If there is a function H(x, y) such that for each solution orbit d (x(t), y(t)), we have H(x(t), y(t)) = 0, then the system is a dt Hamiltonian system, and H(x, y) is called conserved quantity. (or energy function, Hamiltonian) If there is a function H(x, y) such that for each solution orbit d (x(t), y(t)), we have H(x(t), y(t)) ≤ 0, then the system is a dt dissipative system, and H(x, y) is called Lyapunov function. (or energy function) 3 Example: If a satellite is circling around the earth, it is a Hamil- tonian system; but if it drops to the earth, it is a dissipative system.
    [Show full text]
  • Some Comments on Multiple Discovery in Mathematics
    Journal of Humanistic Mathematics Volume 7 | Issue 1 January 2017 Some Comments on Multiple Discovery in Mathematics Robin W. Whitty Queen Mary University of London Follow this and additional works at: https://scholarship.claremont.edu/jhm Part of the History of Science, Technology, and Medicine Commons, and the Other Mathematics Commons Recommended Citation Whitty, R. W. "Some Comments on Multiple Discovery in Mathematics," Journal of Humanistic Mathematics, Volume 7 Issue 1 (January 2017), pages 172-188. DOI: 10.5642/jhummath.201701.14 . Available at: https://scholarship.claremont.edu/jhm/vol7/iss1/14 ©2017 by the authors. This work is licensed under a Creative Commons License. JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/ The editorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds professional ethical guidelines. However the views and opinions expressed in each published manuscript belong exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for them. See https://scholarship.claremont.edu/jhm/policies.html for more information. Some Comments on Multiple Discovery in Mathematics1 Robin M. Whitty Queen Mary University of London r.whitty@qmul.ac.uk Synopsis Among perhaps many things common to Kuratowski's Theorem in graph theory, Reidemeister's Theorem in topology, and Cook's Theorem in theoretical com- puter science is this: all belong to the phenomenon of simultaneous discovery in mathematics. We are interested to know whether this phenomenon, and its close cousin repeated discovery, give rise to meaningful questions regarding causes, trends, categories, etc.
    [Show full text]
  • Mathematics in the Austrian-Hungarian Empire
    Mathematics in the Austrian-Hungarian Empire Christa Binder The appointment policy in the Austrian-Hungarian Empire In: Martina Bečvářová (author); Christa Binder (author): Mathematics in the Austrian-Hungarian Empire. Proceedings of a Symposium held in Budapest on August 1, 2009 during the XXIII ICHST. (English). Praha: Matfyzpress, 2010. pp. 43–54. Persistent URL: http://dml.cz/dmlcz/400817 Terms of use: © Bečvářová, Martina © Binder, Christa Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz THE APPOINTMENT POLICY IN THE AUSTRIAN- -HUNGARIAN EMPIRE CHRISTA BINDER Abstract: Starting from a very low level in the mid oft the 19th century the teaching and research in mathematics reached world wide fame in the Austrian-Hungarian Empire before World War One. How this was complished is shown with three examples of careers of famous mathematicians. 1 Introduction This symposium is dedicated to the development of mathematics in the Austro- Hungarian monarchy in the time from 1850 to 1914. At the beginning of this period, in the middle of the 19th century the level of teaching and researching mathematics was very low – with a few exceptions – due to the influence of the jesuits in former centuries, and due to the reclusive period in the first half of the 19th century. But even in this time many efforts were taken to establish a higher education.
    [Show full text]