Astrobiology, the Transcendent Science: the Promise of Astrobiology As an Integrative Approach for Science and Engineering Education and Research James T Staley

Total Page:16

File Type:pdf, Size:1020Kb

Astrobiology, the Transcendent Science: the Promise of Astrobiology As an Integrative Approach for Science and Engineering Education and Research James T Staley 347 Astrobiology, the transcendent science: the promise of astrobiology as an integrative approach for science and engineering education and research James T Staley Astrobiology is rapidly gaining the worldwide attention of exobiology, a term which, by definition, refers to the scientists, engineers and the public. Astrobiology’s captivation is study of life outside Earth. Excluding Earth and earthl- due to its inherently interesting focus on life, its origins and ings seems inappropriate for at least three reasons. First, it distribution in the Universe. Because of its remarkable breadth as is ironic to disregard Earth, because it is the only place so a scientific field, astrobiology touches on virtually all disciplines in far known in the Universe where life actually exists. the physical, biological and social sciences as well as Second, exobiology implies that there is something very engineering. The multidisciplinary nature and the appeal of its different and strange about creatures from other planetary subject matter make astrobiology ideal for integrating the bodies. Why shouldn’t all living matter in the Universe teaching of science at all levels in educational curricula. The share common properties in the same sense as other rationale for implementing novel educational programs in matter? Third, the study of life on Earth, including its astrobiology is presented along with specific research and evolution and diversity, provides valuable clues and les- educational policy recommendations. sons for the exploration of other worlds that may harbor life. After all, if we cannot understand life, its origins and Addresses its limits on Earth, how can we possibly begin to identify Department of Microbiology, NSF Astrobiology IGERT Program, life and efficiently study it elsewhere? University of Washington, Box 357242, Seattle, WA 98195, USA e-mail: [email protected] The perception of scientists and lay people has changed since NASA introduced the term astrobiology, because Current Opinion in Biotechnology 2003, 14:347–354 it optimistically embraces the study of all life in the Universe, including life on Earth. The introduction of This review comes from a themed issue on the term astrobiology coincided with NASA’s establish- Science policy Edited by Rita R Colwell ment in 1998 of the NASA Astrobiology Institute (NAI), which now encompasses about a dozen universities and 0958-1669/03/$ – see front matter research centers at NASA and elsewhere (http://www.nai. ß 2003 Elsevier Science Ltd. All rights reserved. arc.nasa.gov). In the five years since the NAI began as DOI 10.1016/S0958-1669(03)00073-9 a virtual institute, an international effort has linked its astrobiology program to those of several other countries. These include Spain (Centro de Astrobiologia), the United Abbreviations NAI NASA Astrobiology Institute Kingdom (UK Astrobiology Forum and Network), France NASA National Aeronautics and Space Administration (Groupement de Recherche en Exobiologie), Europe NSF National Science Foundation (The European Exo/Astrobiology Network Association) SETI search for extraterrestrial intelligence and Australia (Australian Centre for Astrobiology). Why is astrobiology so appealing? Introduction How is it that astrobiology has captured the curiosity, This article introduces the multidisciplinary field of astro- fascination and admiration of so many? Surely much of its biology, which bridges the gap between the biological and appeal has to do with the great metaphysical questions of physical sciences and engineering. In addition, recom- astrobiology. Where did we come from? How does life mendations are made for astrobiology to serve as an begin and evolve? What is life’s future? Does life occur alternative model for teaching science and engineering elsewhere in the universe? at all levels of education including primary, secondary, undergraduate and graduate students. I am writing this This young and vigorous field holds great expectations article largely based upon the experience that my collea- that these questions can and will be answered. Herein lies gues and I have had in developing a PhD program in the appeal of astrobiology. Not only is the subject matter astrobiology at the University of Washington. of broad interest to virtually all of us, it is basic to our perception of the world in which we live. Furthermore, What a difference a word makes scientists are sanguine about our ability to answer at least For four decades the National Aeronautics and Space some of these questions in the foreseeable future. So, it is Administration (NASA) sponsored a science program on not surprising that the air bristles with excitement and www.current-opinion.com Current Opinion in Biotechnology 2003, 14:347–354 348 Science policy anticipation at astrobiology meetings as scientists report Box 1 Example topic areas in astrobiology. how they are unraveling the mysteries of life, its tenacity, Star birth, death and recycling of elements fragility, distribution and origins. Formation of planetary systems Origin and evolution of life The transcendent nature of astrobiology Search for extraterrestrial biosignatures Astrobiology is remarkable in its extreme breadth and Habitable planets and satellites within and beyond our solar system therefore its potential for multidisciplinary education Earth’s early geosphere, hydrosphere and atmosphere Earth’s early biosphere and research. It touches on virtually all fields of science Mass extinctions and diversity of life and engineering. As a result it is perhaps unique among all Fossil and geochemical evidence of early life disciplines. Astrobiology is unlike, for instance, biology Life in extreme environments which is exclusively centred on the study of all aspects of Planetary protection life on Earth. Astrobiology, by contrast, considers ques- tions that transcend our planetary boundary. When biol- microorganisms are intimately involved in rock weath- ogists ask the question ‘What is life?’ they are constrained ering processes. From an astrobiological perspective, by the range of life forms on Earth. However, when the biological weathering processes leave ‘signatures of life’ astrobiologist asks the same question, all boundaries are such as specific biological compounds or microbial fossils removed. The astrobiologist is no longer confined to life thatcouldbeusedtoidentifylifeonrocksfromother on Earth, but is forced to conjure possibilities beyond the planetary bodies such as Mars. The traditional training of requirements of water and the DNA! RNA! protein geologists and microbiologists does not prepare PhD dogma. Indeed, imagination is the only limitation to the graduates to study these geobiological activities by them- astrobiologist’s thinking, although it is a severe one. To selves; however, in astrobiology, scientists work together test your own imagination, contemplate the question in designing and testing hypotheses and thereby expand- ‘What is life?’ and propose one or two truly alternative ing our understanding of fundamental but poorly studied life styles to that which we know so well. processes. A special multidisciplinary challenge for astrobiology In our astrobiology PhD program at the University of relates to the dating of early events on Earth and provides Washington, we have seen examples of interdisciplinary another example of its transcendent nature. Geologists work that have resulted in unique perspectives. It is working with paleontologists provided us with the noteworthy in this regard that it is not always the faculty Geological Timetable during the last half of the 20th who have made these breakthroughs, but it is often our century. From this effort, much was learned about the PhD students. One example of this is work carried out by past 600 million years of animal and plant evolution. an astronomy student, John Armstrong, and a biology However, little is known about early evolution, that is, student, Llyd Wells, who have worked with an astron- from the Precambrian Eon after Earth’s formation about omy faculty member, Guillermo Gonzalez. They pro- 4.5 billion years ago until 600 million years ago. Our only posed that the Moon, as ‘Earth’sattic’, probably contains hope to uncover this information is through the mutual rocks with microbial fossils and other signatures of life efforts of geologists, micropaleontologists, microbiolo- from Earth that were ejected to the Moon as it drifted gists and phylogeneticists. Fossils alone cannot answer away from Earth after its formation. These fossils would the important questions about the order in which pro- be well preserved, because they have not been exposed cesses such as methanogenesis and sulfate reduction to weathering and tectonic processes on Earth. These occurred, because microbial fossils are too simple. Che- rocks are therefore likely to contain geochemical and mical biomarkers for processes and specific microbial fossil evidence that may tell us much about early Earth groups are needed in conjunction with phylogenetic history [1]. In a second paper, they suggest that, had a analyses. Already astrobiologists from the various disci- major sterilizing impact occurred on Earth following the plines are talking with one another about resolving this evolution of life, rocks subsequently ejected from the issue through multidisciplinary efforts. Moon by an impact event could have been brought back to Earth to re-seed it [2]. These papers are having a So, not only does astrobiology provide genuine appeal to major influence on NASA’s
Recommended publications
  • Prebiotic Chemistry, Origin, and Early Evolution of Life
    Say what you are going to say, say it, say what you said Guiding theory Richard Feynman Polyelectrolytes with uniform structure are universal for Darwinism A specific hypothesis to provide context The polyelectrolyte that supported Earth’s first Darwinism was RNA Focus on paradoxes to constrain human self-deception "Settled science" says that RNA is impossible to form prebiotically Strategies for paradox resolution Mineral-guided processes allow RNA to form nonetheless Natural history context The needed chemistry-mineral combination was transient on Earth Your reward A relatively simple path to form RNA prebiotically A relatively narrow date when life on Earth originated prebiotically A clear statement of the next round of paradoxes Elisa Biondi, Hyo-Joong Kim, Daniel Hutter, Clemens Richert, Stephen Mojzsis, Ramon Brasser, Dustin Trail, Kevin Zahnle, David Catling, Rob Lavinsky Say what you are going to say, say it, say what you said Guiding theory Richard Feynman Polyelectrolytes with uniform structure are universal for Darwinism A specific hypothesis to provide context The polyelectrolyte that supported Earth’s first Darwinism was RNA Focus on paradoxes to constrain human self-deception "Settled science" says that RNA is impossible to form prebiotically Strategies for paradox resolution Mineral-guided processes allow RNA to form nonetheless Natural history context The needed chemistry-mineral combination was transient on Earth Your reward A relatively simple path to form RNA prebiotically A relatively narrow date when life on Earth originated prebiotically A clear statement of the next round of paradoxes Elisa Biondi, Hyo-Joong Kim, Daniel Hutter, Clemens Richert, Stephen Mojzsis, Ramon Brasser, Dustin Trail, Kevin Zahnle, David Catling, Rob Lavinsky What does a repeating backbone charge do for informational molecule? O 1.
    [Show full text]
  • Snowball Earth: a Thin-Ice Solution with Flowing Sea Glaciers’’ by David Pollard and James F
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, C09016, doi:10.1029/2005JC003411, 2006 Click Here for Full Article Comment on ‘‘Snowball Earth: A thin-ice solution with flowing sea glaciers’’ by David Pollard and James F. Kasting Stephen G. Warren1,2 and Richard E. Brandt1 Received 22 November 2005; revised 22 May 2006; accepted 9 June 2006; published 14 September 2006. Citation: Warren, S. G., and R. E. Brandt (2006), Comment on ‘‘Snowball Earth: A thin-ice solution with flowing sea glaciers’’ by David Pollard and James F. Kasting, J. Geophys. Res., 111, C09016, doi:10.1029/2005JC003411. 1. Introduction 2. Choices of Model Variables That Favor [1] Pollard and Kasting [2005] (hereinafter referred to as Thin Ice PK) have coupled an energy-balance climate model to an 2.1. Albedo of Cold Glacier Ice ice-shelf flow model, to investigate the Snowball Earth [2] As sea glaciers flowed equatorward into the tropical episodes of the Neoproterozoic, 600–800 million years region of net sublimation, their surface snow and subsurface ago, when the ocean apparently froze all the way to the firn would sublimate away, exposing bare glacier ice to equator [Hoffman and Schrag, 2002]. PK’s particular con- the atmosphere and solar radiation. This ice would be cern was to investigate the possibility that over a wide freshwater (meteoric) ice, which originated from compres- equatorial band where sublimation exceeded snowfall, the sion of snow, so it would contain numerous bubbles, giving bare ice may have been thin enough to permit transmission a high albedo. The albedo of cold (nonmelting) glacier ice of sunlight to the water below, providing an extensive exposed by sublimation (Antarctic ‘‘blue ice’’) has been refugium for the photosynthetic eukaryotes that survived measured as 0.55–0.65 in four experiments in the Atlantic the Snowball events.
    [Show full text]
  • The First Billion Years: Warm and Wet Or Cold and Icy? Robert M
    The First Billion Years: Warm and Wet or Cold and Icy? Robert M. Haberle Space Science and Astrobiology Division NASA/Ames Research Center July 15, 2014 Mars 8 Meeting Acknowledgements: Mike Carr, David Catling, and Kevin Zahnle Haberle, 8th Mars Conference Evidence for a Different Valley Networks Climate Isotopic Heavy Isotopes Aqueous Minerals 14N/15N 170±15 (Viking) 20Ne/22Ne ~10 (Meteorites) 36Ar/38Ar 4.2±0.2 (MSL) δ13C 46±4‰ (MSL) Elmann and Edwards (2014) 129Xe/132Xe ~ 2.5 (Viking) Haberle, 8th Mars Conference The First Billion Years Haberle, 8th Mars Conference Faint Young Sun Problem Noachian Haberle, 8th Mars Conference Atmospheric Redox and Outgassing The oxidation state of volcanic gases (principally H2/H2O) is governed by the oxidation state (fO2) of the upper mantle. During core(a) formation After core(b) formation Since core formation was fast (< 10 My), the mantle was likely weakly reducing and Outgassing products were mostly CO2, H2O, and N2 Haberle, 8th Mars Conference 1-D Calculations of Pollack et al. (1987) Main Conclusion: Early Mars was Continuously Warm and Wet - 5 bars of CO2 maintained against carbonate loss by impact recycling Haberle, 8th Mars Conference Problems With This Model Haberle, 8th Mars Conference 1. CO2 condenses in the atmosphere reducing the greenhouse effect. Latent heat release warms the upper atmosphere Kasting (1991) Haberle, 8th Mars Conference 2. Collision Induced Absorption Overestimated We now have more accurate absorption data based on theoretical and experimental data Old parameterizations overestimated induced-dipole absorption -1 in the 250-500 cm region Haberle, 8th Mars Conference Wordsworth et al.
    [Show full text]
  • Life Beyond the Solar System: Remotely Detectable Biosignatures
    Life Beyond the Solar System: Remotely Detectable Biosignatures Shawn Domagal-Goldman 1,NancyY.Kiang2,NikiParenteau3,DavidC.Catling4,Shiladitya DasSarma 5,YukaFujii6,ChesterE.Harman7,AdrianLenardic8,EnricPall´e9,ChristopherT. Reinhard 10,EdwardW.Schwieterman11,JeanSchneider12,HarrisonB.Smith13,Motohide Tamura 14,DanielAngerhausen15,GiadaArney1 ,VladimirS.Airapetian16,NatalieM. Batalha 3 ,CharlesS.Cockell17,LeroyCronin18,RussellDeitrick19,AnthonyDelGenio2 , Theresa Fisher 13 ,DawnM.Gelino20,J.LeeGrenfell21,HilairyE.Hartnett13 ,Siddharth Hegde 22,YasunoriHori23,Bet¨ulKa¸car24,JoshuaKrissansen-Totten4 ,TimothyLyons11 , William B. Moore 25,NorioNarita26,StephanieL.Olson11 Heike Rauer 27,TylerD.Robinson 28,SarahRugheimer29,NickSiegler30,EvgenyaL.Shkolnik13 ,KarlR.Stapelfeldt30 ,Sara Walker 31 1NASA Goddard Space Flight Center,2NASA Goddard Institute for Space Studies,3NASA Ames Research Center,4Dept. Earth and Space Sciences / Astrobiology Program, University of Washington,5Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland,6Earth-Life Science Institute, Tokyo Institute of Technology and NASA Goddard Institute for Space Studies,7Columbia University and NASA Goddard Institute for Space Studies,8Rice Univer- sity ,9Instituto de Astrof´ısica de Canaria, Spain,10School of Earth and Atmospheric Sciences, Georgia Institute of Technology,11Dept. Earth Sciences, University of California, Riverside, California,12Paris Observatory,13School of Earth and Space Exploration, Arizona State University,14University
    [Show full text]
  • The Rationale for a Long-Lived Geophysical
    THE RATIONALE FOR A LONG-LIVED GEOPHYSICAL NETWORK MISSION TO MARS Submitted to The Mars Panel, NRC Decadal Survey for the Planetary Sciences Division, SMD, NASA Phil Christensen, Chair; Wendy Calvin, Vice Chair Written by Bruce Banerdt JPL Robert Grimm SwRI Franck Montmessin Scot Rafkin SwRI Tilman Spohn DLR Matthias Grott DLR Service Aeronomie Peter Read Oxford Ulli Christensen MPS Bob Haberle NASA-Ames Yosio Nakamura Gerald Schubert UCLA Veronique Dehant ROB Martin Knapmeyer DLR U Texas (ret.) Sue Smrekar JPL Linda Elkins-Tanton MIT Philippe Lognonné IPGP Roger Phillips SwRI Mike Wilson JPL Endorsed by Oded Aharonson Caltech François Forget Kurt Klaus Boeing Thomas Ruedas Carnegie Don Albert CRREL CNRS-LMD Jörg Knollenberg DLR Chris Russell UCLA Carlton Allen NASA-JSC Matt Fouch ASU Naoki Kobayashi JAXA David Sandwell Scripps Robert Anderson JPL Brenda Franklin JPL Ulrich Koehler DLR Nicholas Schmerr Carnegie Scott Anderson SwRI Herbert Frey GSFC Carlos Lange U Alberta Nicole Schmitz DLR Jeff Andrews-Hanna Jeannine Gagnepain- Gary Latham DOE (ret.) Richard Schultz U Nevada Colo. School of Mines Beyneix IPGP Mark Leese Open U Mindi Searls U Colorado Jafar Arkani-Hamed Rafael Garcia Frank Lemoine GSFC Karsten Seiferlin U Bern McGill U Obs. Midi-Pyrenees Robert Lillis UC Berkeley Nikolai Shapiro IPGP Gabriele Arnold U Münster Jim Garvin GSFC John Longhi Charles Shearer UNM Sami Asmar JPL Rebecca Ghent U Toronto Lamont-Doherty Brian Shiro NOAA Lisa Baldwin DLR Domenico Giardini ETH Paul Lundgren JPL Mark Simons Caltech Don Banfield Cornell Lori Glaze GSFC Mioara Mandea GFZ Norman Sleep Stanford Amy Barr SwRI Matthew Golombek JPL Michael Manga John C.
    [Show full text]
  • Habitability Models for Astrobiology
    Astrobiology, 21, 8. (August, 2021) DOI: 10.1089/ast.2020.2342 Habitability Models for Astrobiology Abel Méndez, Planetary Habitability Laboratory, University of Puerto Rico at Arecibo, Puerto Rico, USA Edgard G. Rivera-Valentín, Lunar and Planetary Institute, USRA, Houston, Texas, USA Dirk Schulze-Makuch, Center for Astronomy and Astrophysics, Technische Universität Berlin, Berlin, Germany; German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany; Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany. Justin Filiberto, Lunar and Planetary Institute, USRA, Houston, Texas, USA Ramses M. Ramírez, University of Central Florida, Department of Physics, Orlando, Florida, USA; Space Science Institute, Boulder, Colorado, USA. Tana E. Wood, USDA Forest Service International Institute of Tropical Forestry, San Juan, Puerto Rico, USA Alfonso Dávila, NASA Ames Research Center, Moffett Field, California, USA Chris McKay, NASA Ames Research Center, Moffett Field, California, USA Kevin N. Ortiz Ceballos, Planetary Habitability Laboratory, University of Puerto Rico at Arecibo, Puerto Rico, USA Marcos Jusino-Maldonado, Planetary Habitability Laboratory, University of Puerto Rico at Arecibo, Puerto Rico, USA Nicole J. Torres-Santiago, Planetary Habitability Laboratory, University of Puerto Rico at Arecibo, Puerto Rico, USA Guillermo Nery, Planetary Habitability Laboratory, University of Puerto Rico at Arecibo, Puerto Rico, USA René Heller, Max Planck Institute for Solar System Research; Institute for Astrophysics,
    [Show full text]
  • C Copyright 2013 Marcela Ewert Sarmiento
    c Copyright 2013 Marcela Ewert Sarmiento Microbial Challenges and Solutions to Inhabiting the Dynamic Architecture of Saline Ice Formations Marcela Ewert Sarmiento A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2013 Reading Committee: Jody W. Deming, Chair John A. Baross Rebecca Woodgate Program Authorized to Offer Degree: School of Oceanography and Astrobiology Program University of Washington Abstract Microbial Challenges and Solutions to Inhabiting the Dynamic Architecture of Saline Ice Formations Marcela Ewert Sarmiento Chair of the Supervisory Committee: Walters Endowed Professor Jody W. Deming Oceanography Sea ice contains a microscopic network of brine inclusions effectively colonized by organisms from the three major clades of life. The architecture of this brine channel network is dynamic, with surface area, brine volume fraction, and brine salinity changing with temper- ature. This dynamic architecture may have also played a role in the origin and early evolution of life (Chapter 1). Sea-ice microorganisms experience multiple stressors, including low temperature, high salinity and fluctuations in those parameters. This dissertation discusses two bacterial adaptations to these challenges: the production of extracellular polysaccharide substances (EPS) and the accumulation of compatible solutes. Two Arctic bacteria were used as model organisms; the psychrophilic Colwellia psychrerythraea strain 34H (Cp34H), which grows at a comparatively narrow range
    [Show full text]
  • Valles Marineris Landslides: Evidence for a Strength Limit to Martian Relief? ⁎ Florence Bigot-Cormier , David R
    Earth and Planetary Science Letters 260 (2007) 179–186 www.elsevier.com/locate/epsl Valles Marineris landslides: Evidence for a strength limit to Martian relief? ⁎ Florence Bigot-Cormier , David R. Montgomery Quaternary Research Center and Department of Earth & Space Sciences, University of Washington, Seattle, WA 098195, United States Received 16 March 2007; received in revised form 11 May 2007; accepted 19 May 2007 Available online 26 May 2007 Editor: T. Spohn Abstract Unresolved controversies in Martian geology surround the role of active tectonics and a wetter climate early in Mars history, and particularly the history and amount of liquid water at or near the surface. Among the various lines of evidence brought into such debates are the massive landslides along the walls of Valles Marineris, which generally have been interpreted as resulting from marsquakes, and therefore necessitating active tectonics, under either wet or dry conditions. We analyze Valles Marineris landslides using digital elevation data from the Mars Orbiter Laser Altimeter (MOLA) and find that a relief limit consistent with the intact strength of evaporites or other weak sedimentary rock defines an upper bound to the length and relief of unfailed slopes, as would material with the strength properties of basalt lithology subjected to ground accelerations of about 0.2 g. In contrast to prior interpretations of Valles Marineris landslides, we propose an alternative, complementary hypothesis that does not require significant pore-water pressures or ground acceleration based on the close correspondence between back-calculated material strength properties and values consistent with portions of the chasm walls at least locally being composed of relatively weak materials, such as potentially frozen evaporites and/or mixtures of ash fall or flow deposits, ice, hydrated salts and lava flows.
    [Show full text]
  • Life in the Cold Biosphere: the Ecology of Psychrophile
    Life in the cold biosphere: The ecology of psychrophile communities, genomes, and genes Jeff Shovlowsky Bowman A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2014 Reading Committee: Jody W. Deming, Chair John A. Baross Virginia E. Armbrust Program Authorized to Offer Degree: School of Oceanography i © Copyright 2014 Jeff Shovlowsky Bowman ii Statement of Work This thesis includes previously published and submitted work (Chapters 2−4, Appendix 1). The concept for Chapter 3 and Appendix 1 came from a proposal by JWD to NSF PLR (0908724). The remaining chapters and appendices were conceived and designed by JSB. JSB performed the analysis and writing for all chapters with guidance and editing from JWD and co- authors as listed in the citation for each chapter (see individual chapters). iii Acknowledgements First and foremost I would like to thank Jody Deming for her patience and guidance through the many ups and downs of this dissertation, and all the opportunities for fieldwork and collaboration. The members of my committee, Drs. John Baross, Ginger Armbrust, Bob Morris, Seelye Martin, Julian Sachs, and Dale Winebrenner provided valuable additional guidance. The fieldwork described in Chapters 2, 3, and 4, and Appendices 1 and 2 would not have been possible without the help of dedicated guides and support staff. In particular I would like to thank Nok Asker and Lewis Brower for giving me a sample of their vast knowledge of sea ice and the polar environment, and the crew of the icebreaker Oden for a safe and fascinating voyage to the North Pole.
    [Show full text]
  • Waiting for O2
    Downloaded from specialpapers.gsapubs.org on May 11, 2015 The Geological Society of America Special Paper 504 2014 Waiting for O2 Kevin Zahnle* Space Science Division, National Aeronautics and Space Administration Ames Research Center, MS 245-3, Moffett Field, California 94035, USA David Catling Department of Earth and Space Sciences/Astrobiology Program, University of Washington, Seattle, Washington 98195, USA ABSTRACT Oxygenic photosynthesis appears to be necessary for an oxygen-rich atmosphere like Earth’s. However, available geological and geochemical evidence suggests that at least 200 m.y., and possibly as many as 700 m.y., elapsed between the advent of oxygenic photosynthesis and the establishment of an oxygen atmosphere. The inter- regnum implies that at least one other necessary condition for O2 needed to be met. Here, we argue that the second condition was the oxidation of the surface and crust to the point where free O2 became more stable than competing reduced gases such as CH4, and that the cause of Earth’s surface oxidation was the same cause as it is for other planets with oxidized surfaces: hydrogen escape to space. The duration of the interregnum was determined by the rate of hydrogen escape and by the size of the reduced reservoir that needed to be oxidized before O2 became favored. We speculate that hydrogen escape determined the history of continental growth, and we are confi - dent that hydrogen escape provided a progressive bias to biological evolution. INTRODUCTION atmosphere, a state that is more widespread in the solar system. Oxygen and oxidation are different things and refl ect different This volume addresses Earth from its beginnings in the processes acting on different time scales, although it is plausible Hadean ca.
    [Show full text]
  • Habitability Models for Planetary Sciences
    White Paper for the Planetary Science and Astrobiology Decadal Survey 2023–2032 (July 14, 2020) ​ Habitability Models for Planetary Sciences Abel Méndez, ([email protected]) ​ ​ Planetary Habitability Laboratory, University of Puerto Rico at Arecibo, USA 1 2 1 3 4 Edgard G. Rivera-Valentín ,​ Dirk Schulze-Makuch ,​ Justin Filiberto ,​ Ramses Ramírez ,​ Tana E. Wood ,​ Alfonso 5 5 ​ 6 ​ ​ 6 6​ 7 ​ 8 Dávila ,​ Chris McKay ,​ Kevin Ortiz Ceballos ,​ Marcos Jusino-Maldonado ,​ Guillermo Nery ,​ René Heller ,​ Paul Byrne ,​ ​ 9​ 10 ​ 11 ​ 11 ​ ​ 12 ​ Michael J. Malaska ,​ Erica Nathan ,​ Marta Filipa Simões ,​ André Antunes ,​ Jesús Martínez-Frías ,​ Ludmila 13 ​ 14 ​ 15 ​ 16 ​ ​ 17 Carone ,​ Noam R. Izenberg ,​ Dimitra Atri ,​ Humberto Itic Carvajal Chitty ,​ Priscilla Nowajewski-Barra ,​ Frances ​ 18 ​ 19 ​ 1 20 ​ 21 22​ Rivera-Hernández ,​ Corine Brown ,​ Kennda Lynch ,​ David Catling ,​ Jorge I. Zuluaga ,​ Juan F. Salazar ,​ Howard 23 ​ 4 ​ ​ 24 ​ 25 ​ 26 ​ 27 Chen ,​ Grizelle González ,​ Madhu Kashyap Jagadeesh ,​ Rory Barnes ,​ Charles S. Cockell ,​ Jacob Haqq-Misra ​ ​ ​ ​ ​ ​ 1 2 3 4 L​ unar and Planetary Institute, USRA, USA; T​ echnical University Berlin, Germany; E​ arth-Life Science Institute, Japan; I​ nternational Institute of ​ 5 ​ 6 ​ Tropical Forestry, USDA Forest Service, Puerto Rico, USA; N​ ASA Ames Research Center, USA; P​ lanetary Habitability Laboratory, University of 7 ​ ​ 8 9 Puerto Rico at Arecibo, Puerto Rico, USA; M​ ax Planck Institute for Solar System Research, Germany, N​ orth Carolina State University, USA;
    [Show full text]
  • Habitability Models for Planetary Sciences
    White Paper for the Planetary Science and Astrobiology Decadal Survey 2023–2032 (July 14, 2020) ​ Habitability Models for Planetary Sciences Abel Méndez, Planetary Habitability Laboratory, University of Puerto Rico at Arecibo, USA ([email protected]) ​ ​ Edgard G. Rivera-Valentín, Lunar and Planetary Institute, USRA, USA Dirk Schulze-Makuch, Technical University Berlin, Germany Justin Filiberto, Lunar and Planetary Institute, USRA, USA Ramses Ramírez, Earth-Life Science Institute, Japan Tana E. Wood, International Institute of Tropical Forestry, USDA Forest Service, Puerto Rico, USA Alfonso Dávila, NASA Ames Research Center, USA Chris McKay, NASA Ames Research Center, USA Kevin Ortiz Ceballos, Planetary Habitability Laboratory, University of Puerto Rico at Arecibo, Puerto Rico, USA Marcos Jusino-Maldonado, Planetary Habitability Laboratory, University of Puerto Rico at Arecibo, Puerto Rico, USA Guillermo Nery, University of Puerto Rico at Arecibo, Puerto Rico, USA René Heller, Max Planck Institute for Solar System Research, Germany Paul Byrne, North Carolina State University, USA Michael J. Malaska, Jet Propulsion Laboratory / California Institute of Technology, USA Erica Nathan, Brown University, USA Marta Filipa Simões, State Key Laboratory of Lunar and Planetary Sciences, China André Antunes, State Key Laboratory of Lunar and Planetary Sciences, China Jesús Martínez-Frías, Instituto de Geociencias (CSIC-UCM), Spain Ludmila Carone, Max Planck Institute for Astronomy, Germany Noam R. Izenberg, Johns Hopkins Applied Physics Laboratory, USA Dimitra Atri, Center for Space Science, New York University Abu Dhabi, United Arab Emirates Humberto Itic Carvajal Chitty, Universidad Simón Bolívar, Venezuela Priscilla Nowajewski-Barra, Fundación Ciencias Planetarias, Chile Frances Rivera-Hernández, Dartmouth College, USA Corine Brown, Macquarie University, Australia Kennda Lynch, Lunar and Planetary Institute, USRA, USA David Catling, University of Washington, USA Jorge I.
    [Show full text]