Annelida: Polychaeta: Arenicolidae) Para Venezuela
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Phylogeny of the Family Capitellidae (Annelida)
Title Molecular Phylogeny of the Family Capitellidae (Annelida) Author(s) Tomioka, Shinri; Kakui, Keiichi; Kajihara, Hiroshi Zoological Science, 35(5), 436-445 Citation https://doi.org/10.2108/zs180009 Issue Date 2018-10 Doc URL http://hdl.handle.net/2115/75605 Type article File Information Zoological Science35-5_436‒445(2018).pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP ZOOLOGICAL436 SCIENCE 35: 436–445 (2018) S. Tomioka et al. © 2018 Zoological Society of Japan Molecular Phylogeny of the Family Capitellidae (Annelida) Shinri Tomioka1*, Keiichi Kakui2, and Hiroshi Kajihara2 1Rishiri Town Museum, Senhoshi, Rishiri Is., Hokkaido 097-0311, Japan 2Department of Biological Sciences, Faculty of Science, Hokkaido University, N10 W8, Sapporo, Hokkaido 060-0810, Japan Capitellids have emerged as monophyletic in most but not all recent molecular phylogenies, indi- cating that more extensive taxon sampling is necessary. In addition, monophyly of most or all capitellid genera was questionable, as some diagnostic characters vary ontogenetically within individuals. We tested the monophyly of Capitellidae and eight capitellid genera using phyloge- netic analyses of combined 18S, 28S, H3, and COI gene sequences from 36 putative capitellid spe- cies. In our trees, Capitellidae formed a monophyletic sister group to Echiura, and Capitella was also monophyletic, separated by a long branch from other capitellids. Well-supported clades each containing representatives of different genera, or containing a subset of species within a genus, indicated that Barantolla, Heteromastus, and Notomastus are likely not monophyletic. We mapped three morphological characters traditionally used to define capitellid genera (head width relative to width of first segment, number of thoracic segments, and number of segments with capillary chae- tae) onto our tree. -
Polychaete Worms Definitions and Keys to the Orders, Families and Genera
THE POLYCHAETE WORMS DEFINITIONS AND KEYS TO THE ORDERS, FAMILIES AND GENERA THE POLYCHAETE WORMS Definitions and Keys to the Orders, Families and Genera By Kristian Fauchald NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY In Conjunction With THE ALLAN HANCOCK FOUNDATION UNIVERSITY OF SOUTHERN CALIFORNIA Science Series 28 February 3, 1977 TABLE OF CONTENTS PREFACE vii ACKNOWLEDGMENTS ix INTRODUCTION 1 CHARACTERS USED TO DEFINE HIGHER TAXA 2 CLASSIFICATION OF POLYCHAETES 7 ORDERS OF POLYCHAETES 9 KEY TO FAMILIES 9 ORDER ORBINIIDA 14 ORDER CTENODRILIDA 19 ORDER PSAMMODRILIDA 20 ORDER COSSURIDA 21 ORDER SPIONIDA 21 ORDER CAPITELLIDA 31 ORDER OPHELIIDA 41 ORDER PHYLLODOCIDA 45 ORDER AMPHINOMIDA 100 ORDER SPINTHERIDA 103 ORDER EUNICIDA 104 ORDER STERNASPIDA 114 ORDER OWENIIDA 114 ORDER FLABELLIGERIDA 115 ORDER FAUVELIOPSIDA 117 ORDER TEREBELLIDA 118 ORDER SABELLIDA 135 FIVE "ARCHIANNELIDAN" FAMILIES 152 GLOSSARY 156 LITERATURE CITED 161 INDEX 180 Preface THE STUDY of polychaetes used to be a leisurely I apologize to my fellow polychaete workers for occupation, practised calmly and slowly, and introducing a complex superstructure in a group which the presence of these worms hardly ever pene- so far has been remarkably innocent of such frills. A trated the consciousness of any but the small group great number of very sound partial schemes have been of invertebrate zoologists and phylogenetlcists inter- suggested from time to time. These have been only ested in annulated creatures. This is hardly the case partially considered. The discussion is complex enough any longer. without the inclusion of speculations as to how each Studies of marine benthos have demonstrated that author would have completed his or her scheme, pro- these animals may be wholly dominant both in num- vided that he or she had had the evidence and inclina- bers of species and in numbers of specimens. -
Polychaeta Lana Crumrine
Polychaeta Lana Crumrine Well over 200 species of the class Polychaeta are found in waters off the shores of the Pacific Northwest. Larval descriptions are not available for the majority of these species, though descriptions are available of the larvae for at least some species from most families. This chapter provides a dichotomous key to the polychaete larvae to the family level for those families with known or suspected pelagic larva. Descriptions have be $in gleaned from the literature from sites worldwide, and the keys are based on the assumption that developmental patterns are similar in different geographical locations. This is a large assumption; there are cases in which development varies with geography (e.g., Levin, 1984). Identifying polychaetes at the trochophore stage can be difficult, and culturing larvae to advanced stages is advised by several experts in the field (Bhaud and Cazaux, 1987; Plate and Husemann, 1994). Reproduction, Development, and Morphology Within the polychaetes, the patterns of reproduction and larval development are quite variable. Sexes are separate in most species, though hermaphroditism is not uncommon. Some groups undergo a process called epitoky at sexual maturation; benthic adults develop swimming structures, internal organs degenerate, and mating occurs between adults swimming in the water column. Descriptions of reproductive pattern, gamete formation, and spawning can be found in Strathmann (1987). Larval polychaetes generally develop through three stages: the trochophore, metatrochophore, and nectochaete stages. Trochophores are ciliated larvae (see Fig. 1).A band of cilia, the prototroch, is used for locomotion and sometimes feeding. Trochophore larvae are generally broad anteriorly and taper posteriorly. -
Abarenicola Pacifica Phylum: Annelida Class: Polychaeta Order: Capitellida the Lugworm, Or Sand Worm Family: Arenicolidae
Phylum: Annelida Abarenicola pacifica Class: Polychaeta Order: Capitellida The lugworm, or sand worm Family: Arenicolidae Description reddish and are far from the lateral line. All Size: Individuals often over 10 cm long and 1 parapodia are absent in the caudal region. cm wide. Present specimen is approximately Setae (chaetae): (Fig. 3) Bundles of 4 cm in length (from South Slough of Coos notosetae arise from notopodia near Bay). On the West coast, average length is branchiae. Short neurosetae extend along 15 cm (Ricketts and Calvin 1971). neuropodium. Setae present on segments 1- Color: Head and abdomen orange, body a 19 only (Blake and Ruff 2007). mixture of yellow, green and brown with Eyes/Eyespots: None. parapodial areas and branchiae red (Kozloff Anterior Appendages: None. 1993). Branchiae: Prominent and thickly tufted in General Morphology: A sedentary branchial region with bunched setae. polychaete with worm-like, cylindrical body Hemoglobin makes the branchiae appear that tapers at both ends. Conspicuous bright red (Kozloff 1993). segmentation, with segments wider than they Burrow/Tube: Firm, mucus impregnated are long and with no anterior appendages burrows are up to 40 cm long, with typical (Ruppert et al. 2004). Individuals can be fecal castings at tail end. Head end of burrow identified by their green color, bulbous is collapsed as worm continually consumes pharynx (Fig. 1), large branchial gills (Fig. 2) mud (Healy and Wells 1959). Water is and a J-shaped burrow marked at the surface pumped through burrow by pulsating with distinctive coiled fecal castings (Kozloff movements of the body (Ruppert et al. 2004). 1993). -
Contributions from Neuromuscular Development of the Maldanid Polychaete Axiothella Rubrocincta (Annelida)
Brinkmann and Wanninger BMC Evolutionary Biology 2010, 10:168 http://www.biomedcentral.com/1471-2148/10/168 RESEARCH ARTICLE Open Access CapitellidResearch article connections: contributions from neuromuscular development of the maldanid polychaete Axiothella rubrocincta (Annelida) Nora Brinkmann and Andreas Wanninger* Abstract Background: Numerous phylogenetic analyses on polychaete annelids suggest a taxon Capitellida that comprises the three families Maldanidae, Arenicolidae and Capitellidae. Recent molecular studies support the position of the Echiura, traditionally ranked as a separate phylum, within the capitellids. In order to test the robustness of this molecular-based hypothesis we take a different approach using comparative analyses of nervous and muscle system development in the maldanid Axiothella rubrocincta. Employing immunocytochemistry in combination with confocal laserscanning microscopy, we broaden the database on capitellid organogenesis, thereby incorporating classical histological data in our analysis. Besides assessing possible shared features with the echiurans, we also discuss the variability of neural and muscular characters within the Capitellida. Results: The scaffold of the adult central nervous system, which is already established in early developmental stages of Axiothella, consists of cerebral commissures that give rise to simple circumesophageal connectives with fused ventral and dorsal roots and a single ventral neurite bundle. From the latter arise segmental neurites that innervate the peripheral bodywall. Since there is no observable regular pattern, and individual neurites are lost during ontogeny, their exact arrangement remains elusive. The pharynx is encircled by a prominent stomatogastric nerve ring, with a pair of anterior and lateral proboscis neurites directly connecting it to the central nervous system. One pair of ventral and one pair of dorsal longitudinal muscles form the earliest rudiments of the bodywall musculature in late larval stages, while a continuous layer of circular muscles is lacking throughout ontogeny. -
The Lugworm <Emphasis Type="Italic">Arenicola Marina
HELGOL,~NDER MEERESUNTERSUCHUNGEN Helgol~nder Meersunters. 50, 37-68 (1996) The lugworm Arenicola marina: a model of physiological adaptation to life in intertidal sediments E. Zebe 1 & D. Schiedek 2 llnstitut fur Zoophysiologie, Westf. Wilhelms-Universit~t; Hindenburgplatz 55, D--48143 Mfinster, Germany 2Institut fiir Ostseeforschung Warnemfinde an der Universit~t Rostock; Seestr. 15, D-18119 Rostock, Germany Manuscript received on 30th January 1994; accepted for pubhcation on 1st August 1994 ABSTRACT: The results of more than two decades of intensive research on the physiological and biochemical features of the lugworm are reviewed with the aim of drawing a general and com- prehensive picture of the adaptation of this species to the special conditions of living in the tidal zone, which may also hold true for the majority of invertebrates found in this habitat. INTRODUCTION In his monograph on the lugworm Arenicola marina, F. Krfiger (1971) outlined the current state of knowledge concerning morphological organization and physiology of this polychaete. Since then the lugworm has, for several reasons, become a popular object of physiological and biochemical studies: (1) It is one of the largest annehds and has a rather simple anatomical organization with a large coelomic cavity extending through most of the body without segmental subdivisions. This makes experimental manipulations, such as injections, particularly easy. (2) It is found in dense populations in the tidal zone throughout the North Sea coast. Hence the supply, even of large numbers of specimens, is easy. Moreover, lugworms can be maintained in ciruculating sea water for several weeks, which renders it feasable to use them in places distant from the coast. -
Ecosystem Engineering in Intertidal Sand by the Lugworm Arenicola Marina
Ecosystem engineering in intertidal sand by the lugworm Arenicola marina Dissertation zur Erlangung eines Doktor der Naturwissenschaften -Dr. rer. nat.- Dem Fachbereich Biologie/Chemie der Uni Bremen vorgelegt von Nils Volkenborn im Oktober 2005 1. Gutachter: Herr Prof. Dr. Wolf Arntz 2. Gutachter: Herr Prof. Dr. Karsten Reise Intertidal sand bioturbated by lugworms (Arenicola marina) and by a backhoe to prepare the exclusion experiment in spring 2002. Contents SUMMARY 1 ZUSAMMENFASSUNG 4 Part 1: General introduction and discussion A INTRODUCTION 1. Biodiversity and ecosystem functioning 9 2. Ecosystem engineering in the marine benthos 11 3. Bioturbation and bioirrigation by the lugworm Arenicola marina 13 4. This thesis 15 4.1. Large-scale lugworm exclusion experiment 15 4.2. Thesis outline 18 B DISCUSSION 1. Ecosystem engineering in intertidal sand performed by lugworms 21 2. Effects of lugworms on sediment characteristics and biogeochemical cycling 24 3. Effects of lugworms on the benthic community 28 4. Large-scale lugworm exclosures: advantages and possible artefacts 31 5. Ecosystem engineering in the marine benthos 34 6. Implications and scope for further research 35 6.1. Effects of lugworms on biogeochemical processes and the microbial community 36 6.2. Habitat web versus food web in soft sediment benthos 37 6.3. Ecosystem engineering, biodiversity, and ecosystem functioning 38 C REFERENCES 41 Part 2: Publications List of publications 51 1. Intertidal habitat succession inhibited by lugworm bioturbation Volkenborn, N., Hedtkamp, S.I.C., van Beusekom, J.E.E., Reise, K. 53 2. Habitat shift from diffusive to permeable sediment characteristics in intertidal sand by the lugworm Arenicola marina Volkenborn, N., Polerecky, L., Hedtkamp, S. -
Submarine Cables in Olympic Coast National Marine Sanctuary: History, Impact, and Management Lessons
SUBMARINE CABLES IN OLYMPIC COAST NATIONAL MARINE SANCTUARY: HISTORY, IMPACT, AND MANAGEMENT LESSONS AUGUST 2018| sanctuaries.noaa.gov | MARINE SANCTUARIES CONSERVATION SERIES ONMS-18-01 U.S. Department of Commerce Wilbur Ross, Secretary National Oceanic and Atmospheric Administration RDML Timothy Gallaudet, Acting Administrator National Ocean Service Russell Callender, Ph.D., Assistant Administrator Office of National Marine Sanctuaries John Armor, Director Report Authors: Liam Antrim1, Len Balthis2, and Cynthia Cooksey3 1Olympic Coast National Marine Sanctuary 2National Centers for Coastal Ocean Science 3National Marine Fisheries Service Suggested Citation: Antrim, L., Balthis, L., Cooksey, C. 2018. Submarine cables in Olympic Coast National Marine Sanctuary: History, Impact, and Management Lessons. Marine Sanctuaries Conservation Series ONMS-18-01. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Office of National Marine Sanctuaries, Silver Spring, MD. 60 pp. Cover Photo: OCNMS. About the Marine Sanctuaries Conservation Series The Office of National Marine Sanctuaries, part of the National Oceanic and Atmospheric Administration, serves as the trustee for a system of marine protected areas encompassing more than 620,000 square miles of ocean and Great Lakes waters. The 13 national marine sanctuaries and two marine national monuments within the National Marine Sanctuary System represent areas of America’s ocean and Great Lakes environment that are of special national significance. Within their waters, giant humpback whales breed and calve their young, coral colonies flourish, and shipwrecks tell stories of our maritime history. Habitats include beautiful coral reefs, lush kelp forests, whale migration corridors, spectacular deep- sea canyons, and underwater archaeological sites. These special places also provide homes to thousands of unique or endangered species and are important to America’s cultural heritage. -
Irish Biodiversity: a Taxonomic Inventory of Fauna
Irish Biodiversity: a taxonomic inventory of fauna Irish Wildlife Manual No. 38 Irish Biodiversity: a taxonomic inventory of fauna S. E. Ferriss, K. G. Smith, and T. P. Inskipp (editors) Citations: Ferriss, S. E., Smith K. G., & Inskipp T. P. (eds.) Irish Biodiversity: a taxonomic inventory of fauna. Irish Wildlife Manuals, No. 38. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Section author (2009) Section title . In: Ferriss, S. E., Smith K. G., & Inskipp T. P. (eds.) Irish Biodiversity: a taxonomic inventory of fauna. Irish Wildlife Manuals, No. 38. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Cover photos: © Kevin G. Smith and Sarah E. Ferriss Irish Wildlife Manuals Series Editors: N. Kingston and F. Marnell © National Parks and Wildlife Service 2009 ISSN 1393 - 6670 Inventory of Irish fauna ____________________ TABLE OF CONTENTS Executive Summary.............................................................................................................................................1 Acknowledgements.............................................................................................................................................2 Introduction ..........................................................................................................................................................3 Methodology........................................................................................................................................................................3 -
Marine Ecology Progress Series 533:177
Vol. 533: 177–190, 2015 MARINE ECOLOGY PROGRESS SERIES Published August 6 doi: 10.3354/meps11315 Mar Ecol Prog Ser Expansion of lugworms towards southern European habitats and their identification using combined ecological, morphological and genetic approaches A. Pires*, R. Martins, L. Magalhães, A. M. V. M. Soares, E. Figueira, V. Quintino, A. M. Rodrigues, R. Freitas Departamento de Biologia e CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal ABSTRACT: This study presents the first record of the recently colonizing lugworm species Areni- cola defodiens in the Iberian Peninsula, and both A. defodiens and Arenicola marina in the Ria de Aveiro lagoon (northwest Portugal). We aimed firstly to provide a distinction between these 2 spe- cies, using combined morphological and genetic approaches, and secondly to determine their spa- tial distribution in the lagoon. Morphological characteristics such as annulation pattern, gill mor- phology, and faecal cast size enabled differentiation between both species, and we provide an updated taxonomic key for the valid species of the Family Arenicolidae known in the Iberian Peninsula. To confirm the distinction between A. defodiens and A. marina, 16S rDNA and COI gene sequencing analyses were performed. The percentage of nucleotide divergence between A. defodiens and A. marina was 13.5% for COI and 5% for 16S, and phylogenetic analyses showed that these are closely related species. Recent surveys conducted in Ria de Aveiro lagoon indicate that both species are dispersing throughout the system. Lugworm faecal casts were observed for the first time at 4 sites in 2009, and then at 7 sites in 2011. -
Sexual Reproductive Modes in Polychaetes: Classification and Diversity
BULLETIN OF MARINE SCIENCE, 48(2): 500-516,1991 SEXUAL REPRODUCTIVE MODES IN POLYCHAETES: CLASSIFICATION AND DIVERSITY W Herbert Wilson ABSTRACT A two-factor classification system for types of reproductive modes within the Polychaeta is described. The classification is based on the type ofIarval development and the fate of the female gametes (free-spawned or brooded in a variety of ways). A compilation ofinformation from the literature allowed the classification of 306 species. The Orders Phyllodocida and Spionida show the greatest diversity of reproductive modes. The most common reproductive mode involves the free spawning of gametes and the development of planktotrophic larvae. It is apparent that there has been multiple evolution of many reproductive modes during the course of polychaete evolution. This plasticity is argued to exceed that of the Classes Gas- tropoda, Bivalvia and Malacostraca. Polychaetes display an extraordinary diversity of reproductive traits (Schroeder and Hermans, 1975). It is not uncommon for congeneric species to possess rad- ically different means of reproduction. For example, the maldanid Axiothella mucosa produces gelatinous egg masses attached to the female tube (Bookhout and Hom, 1949). Sibling species of A. rubrocincta brood their young inside their tube and free spawn demersal eggs, respectively (Wilson, 1983). The plasticity of polychaete life histories has undoubtedly contributed to their success in the marine environment (Knox, 1977). Although a considerable literature exists on the reproductive traits of poly- chaetes (see references in Table 2), there has been no effort to survey the distri- bution of reproductive modes across orders and families. Fauchald (1983) divided polyaetes generally into three general reproductive life styles, although interme- diate species that are difficult to classify are common. -
Annelid Diversity: Historical Overview and Future Perspectives
diversity Review Annelid Diversity: Historical Overview and Future Perspectives María Capa 1,* and Pat Hutchings 2,3 1 Departament de Biologia, Universitat de les Illes Balears, 07122 Palma, Spain 2 Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney 2010, Australia; [email protected] 3 Biological Sciences, Macquarie University, North Ryde 2109, Australia * Correspondence: [email protected] Abstract: Annelida is a ubiquitous, common and diverse group of organisms, found in terrestrial, fresh waters and marine environments. Despite the large efforts put into resolving the evolutionary relationships of these and other Lophotrochozoa, and the delineation of the basal nodes within the group, these are still unanswered. Annelida holds an enormous diversity of forms and biological strategies alongside a large number of species, following Arthropoda, Mollusca, Vertebrata and perhaps Platyhelminthes, among the species most rich in phyla within Metazoa. The number of currently accepted annelid species changes rapidly when taxonomic groups are revised due to synonymies and descriptions of a new species. The group is also experiencing a recent increase in species numbers as a consequence of the use of molecular taxonomy methods, which allows the delineation of the entities within species complexes. This review aims at succinctly reviewing the state-of-the-art of annelid diversity and summarizing the main systematic revisions carried out in the group. Moreover, it should be considered as the introduction to the papers that form this Special Issue on Systematics and Biodiversity of Annelids. Keywords: Annelida; diversity; systematics; species; new developments; special issue Citation: Capa, M.; Hutchings, P. Annelid Diversity: Historical Overview and Future Perspectives.