Stars with Special Characteristics

Total Page:16

File Type:pdf, Size:1020Kb

Stars with Special Characteristics Sp.-V/AQuan/1999/10/12:16:09 Page 397 Chapter 16 Stars with Special Characteristics J. Donald Fernie 16.1 Variable Stars ........................ 398 16.2 Cepheid and Cepheid-Like Variables .......... 399 16.3 Variable White Dwarf Tables .............. 400 16.4 Long-Period Variables .................. 406 16.5 Other Variables ...................... 406 16.6 Rotating Variables ..................... 407 16.7 T Tauri Stars ........................ 408 16.8 Flare Stars ......................... 409 16.9 Wolf–Rayet and Luminous Blue Variable Stars .... 410 16.10 Be Stars ........................... 413 16.11 Characteristics of Carbon-Rich Stars .......... 415 16.12 Barium, CH, and Subgiant CH Stars .......... 416 16.13 Hydrogen-Deficient Carbon Stars ............ 417 16.14 Blue Stragglers ....................... 418 16.15 Peculiar A and Magnetic Stars ............. 419 16.16 Pulsars ............................ 420 16.17 Galactic Black Hole Candidate X-Ray Binaries ... 422 16.18 Double Stars ........................ 424 397 Sp.-V/AQuan/1999/10/12:16:09 Page 398 398 / 16 STARS WITH SPECIAL CHARACTERISTICS 16.1 VARIABLE STARS by Douglas S. Hall All types of variables are collected in the General Catalogue of Variable Stars [1]. Except for the eclipsing variables, all are considered intrinsic variables, with the physical mechanism responsible for the variability being of four main classes. The approximate numbers of the principal types, as of 1990, are given in the following: Abbreviation Description Number Pulsating (periodic, multiperiodic, quasiperiodic, or nonperiodic) DCEP/CEP Classical Cepheids + those of uncertain type 638 CW W Virginis stars + BL Herculis stars 172 RR RR Lyrae stars 6180 DSCT δ Scuti stars (some called dwarf Cepheids) 100 SXPHE SX Phe variables, pop. II δ Sct variables 15 BCEP β Cephei stars = β Canis Majoris stars 89 ZZ ZZ Ceti variables 28 RV RV Tauri stars 120 SR Semiregular (sometimes called LPV) variables 3377 L Slow irregular (sometimes called LPV) variables 2389 M Mira stars (sometimes called LPV) 5827 RCB R Coronae Borealis stars 37 Rotating (periodic or quasiperiodic) ELL Ellipsoidal variables 45 ACV α2 Canum Venaticorum variables 163 SXARI SX Ari variables 15 PSR Optically variable pulsars 2 BY BY Draconis variables 34 RS RS Canum Venaticorum binaries 67 FKCOM FK Comae Berenices stars 4 INT Orion variables of the T Tauri type 59 Sp.-V/AQuan/1999/10/12:16:09 Page 399 16.2 CEPHEID AND CEPHEID-LIKE VARIABLES / 399 Eruptive (all nonperiodic) IN Orion variables, including T Tauri stars and RW Aurigae stars 898 FU FU Orionis variables 3 GCAS γ Cassiopeiae variables 108 RCB R Coronae Borealis variables 37 UV UV Ceti variables or flare stars 746 SDOR S Doradus variables or P Cygni stars 15 Explosive or Cataclysmic (quasiperiodic or nonperiodic) N Novae 61 NL Novalike variables 30 NR Recurrent novae 8 SN Supernovae 7 UG U Geminorum variables or dwarf novae 182 ZAND Symbiotic variables of the Z Andromedae type 46 Eclipsing (periodic) all types 5074 16.2 CEPHEID AND CEPHEID-LIKE VARIABLES Descriptions of Cepheid families are given below [2–13]: Period IAU designation Name Population (days) DCEP Classical Cepheids I 1.5–60 CW W Vir + BL Her stars II 1–50 RR RR Lyrae stars II 0.4–1 DSCT δ Scuti I 0.04–0.2 BCEP β Cephei stars I 0.15–0.25 Cepheid mean characteristics as a function of period P are given below. The period is that of the fundamental mode. In the K band MK =−2.97 log P − 1.08. The Cepheid ratio of radial velocity amplitude to V -light amplitude is 50 ± 5kms−1 mag.−1. Sp.-V/AQuan/1999/10/12:16:09 Page 400 400 / 16 STARS WITH SPECIAL CHARACTERISTICS a log PMV B − V log L/L log R/R log Teff log M/M log gQ Classical Cepheids 0.4 −2.4 0.49 2.81 1.41 3.76 0.54 2.2 0.036 0.6 −2.9 0.57 3.05 1.55 3.75 0.61 1.9 0.037 0.8 −3.5 0.66 3.30 1.70 3.74 0.68 1.7 0.039 1.0 −4.1 0.75 3.55 1.85 3.72 0.75 1.5 0.040 1.2 −4.7 0.84 3.80 2.00 3.71 0.82 1.3 0.041 1.4 −5.3 0.93 4.06 2.15 3.70 0.89 1.0 0.042 1.6 −5.8 1.01 4.32 2.29 3.70 0.97 0.8 0.044 1.8 −6.4 1.10 4.58 2.44 3.69 1.04 0.6 0.045 δ Sct/Dwarf Cepheidsb −1.4 +2.7 0.20 0.90 0.07 3.91 0.21 4.5 0.039 −1.0 +1.7 0.25 1.22 0.37 3.88 0.25 3.9 0.037 −0.7 +0.8 0.29 1.58 0.59 3.86 0.31 3.6 0.037 Population II Cepheids 0.1 −0.1 0.30 1.95 0.86 3.82 −0.22 2.5 0.049 0.5 −0.9 0.44 2.27 1.08 3.79 −0.22 2.1 0.059 1.0 −1.8 0.60 2.63 1.34 3.75 −0.22 1.5 0.076 1.3 −2.4 0.70 2.87 1.52 3.72 −0.22 1.2 0.080 RR Lyrae starsc −0.5 0.7 0.20 1.47 0.54 3.86 −0.26 3.1 0.036 −0.3 0.7 0.25 1.57 0.67 3.82 −0.26 2.8 0.037 −0.1 0.7 0.38 1.59 0.76 3.78 −0.26 2.7 0.043 β Cephei stars −1.0 −2.5 −0.23 3.99 0.84 4.34 1.02 3.8 0.020 −0.8 −3.1 −0.25 4.33 0.93 4.38 1.15 3.7 0.030 −0.6 −3.8 −0.27 4.69 1.03 4.42 1.22 3.6 0.037 Notes . a Q ≡ P(ρ/ρ)0 5 is the pulsation constant expressed in days. bMany of these stars show higher-order and/or nonradial modes as well. c MV depends on metallicity: MV = 0.20[Fe/H] + 1.0. 16.3 VARIABLE WHITE DWARF TABLES by Paul A. Bradley Tables 16.1, 16.2, and 16.3 give data for the DAV, DBV, and DOV variable white dwarfs, respectively. Sp.-V/AQuan/1999/10/12:16:09 Page 401 Table 16.1. Names, positions, and magnitudes of the ZZ Ceti (DAV) stars. Variable star Teff VBAmp. Periods WD No. Name name α (2000.0) δ (2000.0) (103 K) (mag.) (mag.) (mag.) (seconds) 0104 −464 BPM 30551 [1, 2] AX Phe 01 06 56 −46 10.2 11.3 [46, 47] 15.26 15.43 0.22 823 + others 0133 −116 R 548 [3–5] ZZ Cet 01 36 10 −11 20.7 12.0 [46–50] 14.16 14.33 0.012 213, 274 0341 −459 BPM 31594 [6–8] VY Hor 03 43 25 −45 48.7 11.5 [46, 47] 15.03 15.24 0.28 402, 618, C, Ha 0416 +272 HL Tau 76 [9–11] V411 Tau 04 18 59 +27 18.4 11.4 [46, 47] 15.20 15.40 0.28 393, 625, 746, C, H 0417 +361 G 38-29 [12] V468 Per 04 20 18 +36 16.6 11.2 [46, 47] 15.59 15.79 0.22 ∼ 1000, C, H 0455 +553 G 191-16 [13, 14] BR Cam 04 59 28 +55 25.3 11.4 [46, 47] 15.98 16.1 0.3 510, 600, 710893, C, H 0507 +0435 HS0507+0434B [15] — 05 10 13 +04 38.6 11.8 15.36 15.6 0.2 355, 445, 560, CH 0517 +307 GD 66 [16, 17] V361 Aur 05 20 38 +30 48.5 12.0 [46, 49, 50] 15.56 15.78 0.02 197, 272, 302, 819, C, H 0837 +403 KUV 08368+4026 [18] — 08 40 08 +40 15.1 — 15.55 15.77 0.03 495, 618 0858 +363 GD 99 [19] VW Lyn 09 01 49 +36 07.2 11.8 [46–49, 51] 14.55 14.74 0.07 350, 481, 592 0921 +354 G117-B15A [20–22] RY LMi 09 24 17 +35 16.9 11.6 [46–51] 15.50 15.72 0.05 215, 271, 304, C, H 1137 +422 KUV 11370+4222 [18] — 11 39 41 +42 05.3 — 16.56 16.78 0.006 257 + others 1159 +803 G255-2 [23] BT Cam 12 01 48 +80 05.0 11.4 [46, 47] 16.04 — 0.04 685, 830 + others 16.3 V 1236 −495 BPM 37093 [24] V886 Cen 12 38 48 −49 49.0 11.7 [46, 48, 50, 51] 13.96 14.14 0.004 ∼ 600 1307 +354 GD 154 [25, 26] BG CVn 13 09 58 +35 09.5 11.2 [46, 48–51] 15.33 15.51 0.10 403, 1089, 1186, C, H 1350 +656 G 238-53 [27] DU Dra 13 52 12 +65 24.9 11.9 [46, 49] 15.51 15.7 0.02 ∼ 206 1401 −1454 EC 14012−1446 [28] IU Vir 14 03 57 −15 01.1 — 15.67 15.50 0.30 610, 724 + others ARIABLE 1422 +095 GD 165 [29–31] CX Boo 14 24 40 +09 17.3 12.0 [46, 49] 14.32 14.46 0.10 114, 120 192, 250, C 1425 −811 L 19-2 [32–34] MY Aps 14 32 18 −81 20.1 12.1 [46, 48–51] 13.75 14.00 0.03 113, 118, 143, 192, 350 1559 +369 R 808 [19] TY CrB 16 01 21 +36 47.0 11.2 [46, 48] 14.36 14.53 0.15 833, complex, C, H 1647 +591 G 226-29 [35, 36] DN Dra 16 48 26 +59 03.5 12.5 [46–51] 12.24 12.40 0.006 109 1714 −547 BPM 24754 [37] — 17 18 54 −54 47.1 12.9 15.60 15.87 0.07 ∼ 1100 W 1855 +338 G 207-9 [38] V470 Lyr 18 57 30 +33 57.2 12.0 [46–48, 51] 14.62 14.81 0.06 259, 292, 557, 739, C HITE 1935 +276 G 185-32 [13] PY Vul 19 37 13 +27 43.3 12.1 [46–48, 50, 51] 12.97 13.15 0.02 141, 215, C, H 1950 +250 GD 385 [7, 39] PT Vul 19 52 28 +25 09.3 11.7 [46, 47] 15.12 15.32 0.05 256, C 2303 +242 PG 2303+242 [40, 41] KR Peg 23 06 16 +24 32.0 11.5 [46, 47] 15.50 15.58b 0.2 394, 483, 540, 611, 936, C, H D 2326 +049 G 29-38 [12, 42–44] ZZ Psc 23 28 49 +05 15.0 11.8 [46–50] 13.03 13.17 0.27 284, 615, 820, C, H WARF 2349 −244 EC 23487−2424 [45] HW Aqr 23 51 22 −24 08.2 — 15.33 15.52 0.24 ∼ 800–1000, complex Notes T aC means combination of frequencies and H means harmonics.
Recommended publications
  • The Star Newsletter
    THE HOT STAR NEWSLETTER ? An electronic publication dedicated to A, B, O, Of, LBV and Wolf-Rayet stars and related phenomena in galaxies ? No. 70 2002 July-August http://www.astro.ugto.mx/∼eenens/hot/ editor: Philippe Eenens http://www.star.ucl.ac.uk/∼hsn/index.html [email protected] ftp://saturn.sron.nl/pub/karelh/uploads/wrbib/ Contents of this newsletter Call for Data . 1 Abstracts of 12 accepted papers . 2 Abstracts of 2 submitted papers . 10 Abstracts of 6 proceedings papers . 11 Jobs .......................................................................13 Meetings ...................................................................14 Call for Data The multiplicity of 9 Sgr G. Rauw and H. Sana Institut d’Astrophysique, Universit´ede Li`ege,All´eedu 6 Aoˆut, BˆatB5c, B-4000 Li`ege(Sart Tilman), Belgium e-mail: [email protected], [email protected] The non-thermal radio emission observed for a number of O and WR stars implies the presence of a small population of relativistic electrons in the winds of these objects. Electrons could be accelerated to relativistic velocities either in the shock region of a colliding wind binary (Eichler & Usov 1993, ApJ 402, 271) or in the shocks due to intrinsic wind instabilities of a single star (Chen & White 1994, Ap&SS 221, 259). Dougherty & Williams (2000, MNRAS 319, 1005) pointed out that 7 out of 9 WR stars with non-thermal radio emission are in fact binary systems. This result clearly supports the colliding wind scenario. In the present issue of the Hot Star Newsletter, we announce the results of a multi-wavelength campaign on the O4 V star 9 Sgr (= HD 164794; see the abstract by Rauw et al.).
    [Show full text]
  • Pos(INTEGRAL 2010)091
    A candidate former companion star to the Magnetar CXOU J164710.2-455216 in the massive Galactic cluster Westerlund 1 PoS(INTEGRAL 2010)091 P.J. Kavanagh 1 School of Physical Sciences and NCPST, Dublin City University Glasnevin, Dublin 9, Ireland E-mail: [email protected] E.J.A. Meurs School of Cosmic Physics, DIAS, and School of Physical Sciences, DCU Glasnevin, Dublin 9, Ireland E-mail: [email protected] L. Norci School of Physical Sciences and NCPST, Dublin City University Glasnevin, Dublin 9, Ireland E-mail: [email protected] Besides carrying the distinction of being the most massive young star cluster in our Galaxy, Westerlund 1 contains the notable Magnetar CXOU J164710.2-455216. While this is the only collapsed stellar remnant known for this cluster, a further ~10² Supernovae may have occurred on the basis of the cluster Initial Mass Function, possibly all leaving Black Holes. We identify a candidate former companion to the Magnetar in view of its high proper motion directed away from the Magnetar region, viz. the Luminous Blue Variable W243. We discuss the properties of W243 and how they pertain to the former Magnetar companion hypothesis. Binary evolution arguments are employed to derive a progenitor mass for the Magnetar of 24-25 M Sun , just within the progenitor mass range for Neutron Star birth. We also draw attention to another candidate to be member of a former massive binary. 8th INTEGRAL Workshop “The Restless Gamma-ray Universe” Dublin, Ireland September 27-30, 2010 1 Speaker Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.
    [Show full text]
  • Luminous Blue Variables
    Review Luminous Blue Variables Kerstin Weis 1* and Dominik J. Bomans 1,2,3 1 Astronomical Institute, Faculty for Physics and Astronomy, Ruhr University Bochum, 44801 Bochum, Germany 2 Department Plasmas with Complex Interactions, Ruhr University Bochum, 44801 Bochum, Germany 3 Ruhr Astroparticle and Plasma Physics (RAPP) Center, 44801 Bochum, Germany Received: 29 October 2019; Accepted: 18 February 2020; Published: 29 February 2020 Abstract: Luminous Blue Variables are massive evolved stars, here we introduce this outstanding class of objects. Described are the specific characteristics, the evolutionary state and what they are connected to other phases and types of massive stars. Our current knowledge of LBVs is limited by the fact that in comparison to other stellar classes and phases only a few “true” LBVs are known. This results from the lack of a unique, fast and always reliable identification scheme for LBVs. It literally takes time to get a true classification of a LBV. In addition the short duration of the LBV phase makes it even harder to catch and identify a star as LBV. We summarize here what is known so far, give an overview of the LBV population and the list of LBV host galaxies. LBV are clearly an important and still not fully understood phase in the live of (very) massive stars, especially due to the large and time variable mass loss during the LBV phase. We like to emphasize again the problem how to clearly identify LBV and that there are more than just one type of LBVs: The giant eruption LBVs or h Car analogs and the S Dor cycle LBVs.
    [Show full text]
  • 100 Closest Stars Designation R.A
    100 closest stars Designation R.A. Dec. Mag. Common Name 1 Gliese+Jahreis 551 14h30m –62°40’ 11.09 Proxima Centauri Gliese+Jahreis 559 14h40m –60°50’ 0.01, 1.34 Alpha Centauri A,B 2 Gliese+Jahreis 699 17h58m 4°42’ 9.53 Barnard’s Star 3 Gliese+Jahreis 406 10h56m 7°01’ 13.44 Wolf 359 4 Gliese+Jahreis 411 11h03m 35°58’ 7.47 Lalande 21185 5 Gliese+Jahreis 244 6h45m –16°49’ -1.43, 8.44 Sirius A,B 6 Gliese+Jahreis 65 1h39m –17°57’ 12.54, 12.99 BL Ceti, UV Ceti 7 Gliese+Jahreis 729 18h50m –23°50’ 10.43 Ross 154 8 Gliese+Jahreis 905 23h45m 44°11’ 12.29 Ross 248 9 Gliese+Jahreis 144 3h33m –9°28’ 3.73 Epsilon Eridani 10 Gliese+Jahreis 887 23h06m –35°51’ 7.34 Lacaille 9352 11 Gliese+Jahreis 447 11h48m 0°48’ 11.13 Ross 128 12 Gliese+Jahreis 866 22h39m –15°18’ 13.33, 13.27, 14.03 EZ Aquarii A,B,C 13 Gliese+Jahreis 280 7h39m 5°14’ 10.7 Procyon A,B 14 Gliese+Jahreis 820 21h07m 38°45’ 5.21, 6.03 61 Cygni A,B 15 Gliese+Jahreis 725 18h43m 59°38’ 8.90, 9.69 16 Gliese+Jahreis 15 0h18m 44°01’ 8.08, 11.06 GX Andromedae, GQ Andromedae 17 Gliese+Jahreis 845 22h03m –56°47’ 4.69 Epsilon Indi A,B,C 18 Gliese+Jahreis 1111 8h30m 26°47’ 14.78 DX Cancri 19 Gliese+Jahreis 71 1h44m –15°56’ 3.49 Tau Ceti 20 Gliese+Jahreis 1061 3h36m –44°31’ 13.09 21 Gliese+Jahreis 54.1 1h13m –17°00’ 12.02 YZ Ceti 22 Gliese+Jahreis 273 7h27m 5°14’ 9.86 Luyten’s Star 23 SO 0253+1652 2h53m 16°53’ 15.14 24 SCR 1845-6357 18h45m –63°58’ 17.40J 25 Gliese+Jahreis 191 5h12m –45°01’ 8.84 Kapteyn’s Star 26 Gliese+Jahreis 825 21h17m –38°52’ 6.67 AX Microscopii 27 Gliese+Jahreis 860 22h28m 57°42’ 9.79,
    [Show full text]
  • The Observer's Handbook for 1929
    The O bserver’s H andbook FOR 1929 PUBLISHED BY The Royal A stronomical Society of Canada E d ited by C. A. CHANT TWENTY-FIRST YEAR OF PUBLICATION TORONTO 198 College Street Printed for the Society 1929 CALENDAR The O bserver’s H andbook FOR 1929 PUBLISHED BY The Royal Astronomical Society of Canada TORONTO 198 C ollege Street Prin ted for the Society 1929 CONTENTS Preface ------- 3 Anniversaries and Festivals - 3 Symbols and Abbreviations - 4 Solar and Sidereal Time - 5 Ephemeris of the Sun - - - 6 Occultations of Fixed Stars by the Moon - 8 Times of Sunrise and Sunset - 9 Planets for the Year ------ 22 Eclipses in 1929 - - - - 26 The Sky and Astronomical Phenomena for each Month 28 Phenomena of Jupiter’s Satellites - 52 Meteors and Shooting Stars - - - 54 Elements of the Solar System - 55 Satellites of the Solar System - 56 Double Stars, with a short list - 57 Variable Stars, with a short list 59 Distances of the Stars - 61 The Brightest Stars, their magnitudes, types, proper motions, distances and radial velocities - 63 Astronomical Constants - 71 Index - - - - - - - 72 PREFACE It may be stated that four circular star-maps, 9 inches in diameter, roughly for the four seasons, may be obtained from the Director of University Extension, University of Toronto, for one cent each; also a set of 12 circular maps, 5 inches in diameter, with brief explanation, is supplied by Popular Astronomy, Northfield, Minn., for 15 cents. Besides these may be mentioned Young’s Uranography, containing four maps with R.A. and Decl. circles and excellent descriptions of the constellations, price 72 cents; Norton's Star Atlas and Telescopic Handbook (10s.
    [Show full text]
  • SXP 1062, a Young Be X-Ray Binary Pulsar with Long Spin Period⋆
    A&A 537, L1 (2012) Astronomy DOI: 10.1051/0004-6361/201118369 & c ESO 2012 Astrophysics Letter to the Editor SXP 1062, a young Be X-ray binary pulsar with long spin period Implications for the neutron star birth spin F. Haberl1, R. Sturm1, M. D. Filipovic´2,W.Pietsch1, and E. J. Crawford2 1 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, 85748 Garching, Germany e-mail: [email protected] 2 University of Western Sydney, Locked Bag 1797, Penrith South DC, NSW1797, Australia Received 31 October 2011 / Accepted 1 December 2011 ABSTRACT Context. The Small Magellanic Cloud (SMC) is ideally suited to investigating the recent star formation history from X-ray source population studies. It harbours a large number of Be/X-ray binaries (Be stars with an accreting neutron star as companion), and the supernova remnants can be easily resolved with imaging X-ray instruments. Aims. We search for new supernova remnants in the SMC and in particular for composite remnants with a central X-ray source. Methods. We study the morphology of newly found candidate supernova remnants using radio, optical and X-ray images and inves- tigate their X-ray spectra. Results. Here we report on the discovery of the new supernova remnant around the recently discovered Be/X-ray binary pulsar CXO J012745.97−733256.5 = SXP 1062 in radio and X-ray images. The Be/X-ray binary system is found near the centre of the supernova remnant, which is located at the outer edge of the eastern wing of the SMC. The remnant is oxygen-rich, indicating that it developed from a type Ib event.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Urania Nr 5/2001
    Eta Carinae To zdjęcie mgławicy otaczającej gwiazdę // Carinae uzyskano za po­ mocą telskopu kosmicznego Hubble a (K. Davidson i J. Mors). Porównując je z innymi zdjęciami, a w szczególności z obrazem wyko­ nanym 17 miesięcy wcześniej, Auto­ rzy stwierdzili rozprężanie się mgła­ wicy z szybkością ok. 2,5 min km/h, co prowadzi do wniosku, że rozpo­ częła ona swe istnienie około 150 lat temu. To bardzo ciekawy i intrygujący wynik. Otóż największy znany roz­ błysk )j Carinae miał miejsce w roku 1840. Wtedy gwiazda ta stała się naj­ jaśniejszą gwiazdą południowego nie­ ba i jasność jej przez krótki czas znacznie przewyższała blask gwiaz­ dy Canopus. Jednak pyłowy dysk ob­ serwowany wokół)/ Carinae wydaje się być znacznie młodszy - jego wiek (ekspansji) jest oceniany na 100 lat, co może znaczyć, że powstał w cza­ sie innego, mniejszego wybuchu ob­ serwowanego w roku 1890. Więcej na temat tego intrygują­ cego obiektu przeczytać można we­ wnątrz numeru, w artykule poświę­ conym tej gwieździe. NGC 6537 Obserwacje przeprowadzone teleskopem Hubble’a pokazały istnienie wielkich falowych struktur w mgławicy Czerwonego Pająka (NGC 6537) w gwiazdozbiorze Strzelca.Ta gorąca i „wietrzna” mgławica powstała wokół jednej z najgorętszych gwiazd Wszech­ świata, której wiatr gwiazdowy wiejący z prędkością 2000-4500 kilometrów na sekundę wytwarza fale o wysokości 100 miliardów kilometrów. Sama mgławica rozszerza się z szybkością 300 km/s. Jest też ona wyjątkowo gorąca — ok. 10000 K. Sama gwiazda, która utworzyła mgławicę, jest obecnie białym karłem i musi mieć temperaturę nie niższą niż pół miliona stopni — jest tak gorąca, że nie widać jej w obszarach uzyskanych teleskopem Hubble’a, a świeci głównie w promieniowaniu X.
    [Show full text]
  • Photometry Request-B Persei.Pdf
    Will the radio source b Persei be eclipsed? R. T. Zavala1 & J. J. Sanborn2 December 14, 2012 The ellipsoidal variable star b Persei (HR1324, HD26961, V=4.6) consists of a non-eclipsing close binary (A-B) with a 1.5 day orbital period within a hierarchical triple system (AB-C) with a 701 day orbit (Hill et al. 1976). As with other close binary systems (e.g. β Per) b Per exhibits flares of non- thermal radio emission (Hjellming & Wade 1973). As noted by Hill et al. (1976) the evolutionary nature of the close binary in b Per is uncertain. It may already be a mass-transferring Algol binary, or it may be a precursor to the mass-transfer stage. The absence of eclipses in the close binary and b Per’s status as a single-lined spectroscopic binary limit our knowledge of this stellar radio source. Our observations using the Navy Precision Optical Interferometer (NPOI) resolved the AB-C components for the first time. The triple system orbit is nearly edge-on with an inclination of approximately 90 degrees (Fig. 1). This suggests the possibility of observing eclipses of the non- eclipsing (i ~ 40 degrees; Hill et al. 1976) close binary and the third star. The third star may eclipse both components of the close binary depending on the close binary orbital phase. Eclipses are important as they allow us to add lightcurve modeling to our arsenal of techniques for investigating the evolutionary state of the close binary components. The reality of our edge-on orbit for b Per C is supported by Hill et al.
    [Show full text]
  • Variable Star Classification and Light Curves Manual
    Variable Star Classification and Light Curves An AAVSO course for the Carolyn Hurless Online Institute for Continuing Education in Astronomy (CHOICE) This is copyrighted material meant only for official enrollees in this online course. Do not share this document with others. Please do not quote from it without prior permission from the AAVSO. Table of Contents Course Description and Requirements for Completion Chapter One- 1. Introduction . What are variable stars? . The first known variable stars 2. Variable Star Names . Constellation names . Greek letters (Bayer letters) . GCVS naming scheme . Other naming conventions . Naming variable star types 3. The Main Types of variability Extrinsic . Eclipsing . Rotating . Microlensing Intrinsic . Pulsating . Eruptive . Cataclysmic . X-Ray 4. The Variability Tree Chapter Two- 1. Rotating Variables . The Sun . BY Dra stars . RS CVn stars . Rotating ellipsoidal variables 2. Eclipsing Variables . EA . EB . EW . EP . Roche Lobes 1 Chapter Three- 1. Pulsating Variables . Classical Cepheids . Type II Cepheids . RV Tau stars . Delta Sct stars . RR Lyr stars . Miras . Semi-regular stars 2. Eruptive Variables . Young Stellar Objects . T Tau stars . FUOrs . EXOrs . UXOrs . UV Cet stars . Gamma Cas stars . S Dor stars . R CrB stars Chapter Four- 1. Cataclysmic Variables . Dwarf Novae . Novae . Recurrent Novae . Magnetic CVs . Symbiotic Variables . Supernovae 2. Other Variables . Gamma-Ray Bursters . Active Galactic Nuclei 2 Course Description and Requirements for Completion This course is an overview of the types of variable stars most commonly observed by AAVSO observers. We discuss the physical processes behind what makes each type variable and how this is demonstrated in their light curves. Variable star names and nomenclature are placed in a historical context to aid in understanding today’s classification scheme.
    [Show full text]
  • List of Easy Double Stars for Winter and Spring  = Easy  = Not Too Difficult  = Difficult but Possible
    List of Easy Double Stars for Winter and Spring = easy = not too difficult = difficult but possible 1. Sigma Cassiopeiae (STF 3049). 23 hr 59.0 min +55 deg 45 min This system is tight but very beautiful. Use a high magnification (150x or more). Primary: 5.2, yellow or white Seconary: 7.2 (3.0″), blue 2. Eta Cassiopeiae (Achird, STF 60). 00 hr 49.1 min +57 deg 49 min This is a multiple system with many stars, but I will restrict myself to the brightest one here. Primary: 3.5, yellow. Secondary: 7.4 (13.2″), purple or brown 3. 65 Piscium (STF 61). 00 hr 49.9 min +27 deg 43 min Primary: 6.3, yellow Secondary: 6.3 (4.1″), yellow 4. Psi-1 Piscium (STF 88). 01 hr 05.7 min +21 deg 28 min This double forms a T-shaped asterism with Psi-2, Psi-3 and Chi Piscium. Psi-1 is the uppermost of the four. Primary: 5.3, yellow or white Secondary: 5.5 (29.7), yellow or white 5. Zeta Piscium (STF 100). 01 hr 13.7 min +07 deg 35 min Primary: 5.2, white or yellow Secondary: 6.3, white or lilac (or blue) 6. Gamma Arietis (Mesarthim, STF 180). 01 hr 53.5 min +19 deg 18 min “The Ram’s Eyes” Primary: 4.5, white Secondary: 4.6 (7.5″), white 7. Lambda Arietis (H 5 12). 01 hr 57.9 min +23 deg 36 min Primary: 4.8, white or yellow Secondary: 6.7 (37.1″), silver-white or blue 8.
    [Show full text]
  • Pos(ICRC2019)832 † ∗ [email protected] Speaker
    Probing Particle Diffusion around Two Nearby Pulsars with TeV Gamma-Ray Observations from HAWC PoS(ICRC2019)832 Hao Zhou∗ Los Alamos National Laboratory E-mail: [email protected] for the HAWC Collaborationy Nearby cosmic-ray accelerators, especially pulsar wind nebulae, are possible origins of the local multi-GeV positron excess. Pulsar Geminga and B0656+14, less than 300 pc from the Earth, have been postulated as the main sources of the positron excess. With one and half years of data, the HAWC gamma-ray observatory discovered very extended TeV gamma-ray structures produced from high-energy electrons and positrons around these two nearby middle-aged pulsars. Morphology studies suggest that the diffusion in the vicinity of these two pulsars is 100 times slower than the average in our Galaxy. This result provides important constraints on the origin of positron excess, but raises questions like why diffusion is so slow at high energies near these pulsars. With more than twice of data from the previous results, we now explore the possibility of energy-dependent diffusion at these sources. 36th International Cosmic Ray Conference -ICRC2019- July 24th - August 1st, 2019 Madison, WI, U.S.A. ∗Speaker. yFor a complete author list and acknowledgemets, see PoS(ICRC2019)1177 and http://www.hawc- observatory.org/collaboration/icrc2019.php c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/ Probing Particle Diffusion with HAWC Hao Zhou 1. Introduction Pulsar wind nebulae are known as efficient particle accelerators of electrons and positrons.
    [Show full text]