Signature Redacted
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Commentary on the Kervaire–Milnor Correspondence 1958–1961
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 52, Number 4, October 2015, Pages 603–609 http://dx.doi.org/10.1090/bull/1508 Article electronically published on July 1, 2015 COMMENTARY ON THE KERVAIRE–MILNOR CORRESPONDENCE 1958–1961 ANDREW RANICKI AND CLAUDE WEBER Abstract. The extant letters exchanged between Kervaire and Milnor during their collaboration from 1958–1961 concerned their work on the classification of exotic spheres, culminating in their 1963 Annals of Mathematics paper. Michel Kervaire died in 2007; for an account of his life, see the obituary by Shalom Eliahou, Pierre de la Harpe, Jean-Claude Hausmann, and Claude We- ber in the September 2008 issue of the Notices of the American Mathematical Society. The letters were made public at the 2009 Kervaire Memorial Confer- ence in Geneva. Their publication in this issue of the Bulletin of the American Mathematical Society is preceded by our commentary on these letters, provid- ing some historical background. Letter 1. From Milnor, 22 August 1958 Kervaire and Milnor both attended the International Congress of Mathemati- cians held in Edinburgh, 14–21 August 1958. Milnor gave an invited half-hour talk on Bernoulli numbers, homotopy groups, and a theorem of Rohlin,andKer- vaire gave a talk in the short communications section on Non-parallelizability of the n-sphere for n>7 (see [2]). In this letter written immediately after the Congress, Milnor invites Kervaire to join him in writing up the lecture he gave at the Con- gress. The joint paper appeared in the Proceedings of the ICM as [10]. Milnor’s name is listed first (contrary to the tradition in mathematics) since it was he who was invited to deliver a talk. -
COMBINATORIAL Bn-ANALOGUES of SCHUBERT POLYNOMIALS 0
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 348, Number 9, September 1996 COMBINATORIAL Bn-ANALOGUES OF SCHUBERT POLYNOMIALS SERGEY FOMIN AND ANATOL N. KIRILLOV Abstract. Combinatorial Bn-analogues of Schubert polynomials and corre- sponding symmetric functions are constructed and studied. The development is based on an exponential solution of the type B Yang-Baxter equation that involves the nilCoxeter algebra of the hyperoctahedral group. 0. Introduction This paper is devoted to the problem of constructing type B analogues of the Schubert polynomials of Lascoux and Sch¨utzenberger (see, e.g., [L2], [M] and the literature therein). We begin with reviewing the basic properties of the type A polynomials, stating them in a form that would allow subsequent generalizations to other types. Let W = Wn be the Coxeter group of type An with generators s1, ... ,sn (that is, the symmetric group Sn+1). Let x1, x2, ... be formal variables. Then W naturally acts on the polynomial ring C[x1,...,xn+1] by permuting the variables. Let IW denote the ideal generated by homogeneous non-constant W -symmetric polynomials. By a classical result [Bo], the cohomology ring H(F ) of the flag variety of type A can be canonically identified with the quotient C[x1,...,xn+1]/IW .This ring is graded by the degree and has a distinguished linear basis of homogeneous cosets Xw modulo IW , labelled by the elements w of the group. Let us state for the record that, for an element w W of length l(w), ∈ (0) Xw is a homogeneous polynomial of degree l(w); X1=1; the latter condition signifies proper normalization. -
Millennium Prize for the Poincaré
FOR IMMEDIATE RELEASE • March 18, 2010 Press contact: James Carlson: [email protected]; 617-852-7490 See also the Clay Mathematics Institute website: • The Poincaré conjecture and Dr. Perelmanʼs work: http://www.claymath.org/poincare • The Millennium Prizes: http://www.claymath.org/millennium/ • Full text: http://www.claymath.org/poincare/millenniumprize.pdf First Clay Mathematics Institute Millennium Prize Announced Today Prize for Resolution of the Poincaré Conjecture a Awarded to Dr. Grigoriy Perelman The Clay Mathematics Institute (CMI) announces today that Dr. Grigoriy Perelman of St. Petersburg, Russia, is the recipient of the Millennium Prize for resolution of the Poincaré conjecture. The citation for the award reads: The Clay Mathematics Institute hereby awards the Millennium Prize for resolution of the Poincaré conjecture to Grigoriy Perelman. The Poincaré conjecture is one of the seven Millennium Prize Problems established by CMI in 2000. The Prizes were conceived to record some of the most difficult problems with which mathematicians were grappling at the turn of the second millennium; to elevate in the consciousness of the general public the fact that in mathematics, the frontier is still open and abounds in important unsolved problems; to emphasize the importance of working towards a solution of the deepest, most difficult problems; and to recognize achievement in mathematics of historical magnitude. The award of the Millennium Prize to Dr. Perelman was made in accord with their governing rules: recommendation first by a Special Advisory Committee (Simon Donaldson, David Gabai, Mikhail Gromov, Terence Tao, and Andrew Wiles), then by the CMI Scientific Advisory Board (James Carlson, Simon Donaldson, Gregory Margulis, Richard Melrose, Yum-Tong Siu, and Andrew Wiles), with final decision by the Board of Directors (Landon T. -
AMERICAN MATHEMATICAL SOCIETY Business Office: P.O. Box 6248, Providence, Rhode Island 02940 William J
AMERICAN MATHEMATICAL SOCIETY Business Office: P.O. Box 6248, Providence, Rhode Island 02940 William J. LeVeque, Executive Director Lincoln K. Durst, Deputy Director OFFICERS President: R. H. Bing, Dept. of Mathematics, University of Texas at Austin, Austin, TX 78712 President-elect: Peter D. Lax, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 Vice-Presidents: William Browder, Dept. of Mathematics, Box 708, Fine Hall, Princeton University, Princeton, NJ 08540; Julia B. Robinson, 243 Lake Dr., Berkeley, CA 94708; George W. Whitehead, Dept. of Mathematics, Room 2-284, Massachusetts Institute of Technology, Cambridge, MA 02139 Secretary: Everett Pitcher, Dept. of Mathematics, Lehigh University, Bethelehem, PA 18015 Associate Secretaries: Raymond G. Ayoub, Dept. of Mathematics, 203 McAllister Building, Pennsylvania State University, University Park, PA 16802; Paul T. Bateman, Dept. of Mathematics, University of Illinois, Urbana, IL 61801; Frank T. Birtel, College of Arts and Sciences, Tulane University, New Orleans, LA 70118; Kenneth A. Ross, Dept. of Mathema tics, University of Oregon, Eugene, OR 97403 Treasurer: Franklin P. Peterson, Dept. of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139 Associate Treasurer: Steve Armentrout, Dept. of Mathematics, 230 McAllister Building, Penn sylvania State University, University Park, PA 16802 Board of Trustees: Steve Armentrout (ex officio); R. H. Bing (ex officio); Joseph J. Kohn, Dept. of Mathematics, Princeton University, Princeton, NJ 08540; Calvin C. Moore, Dept. of Mathematics, University of California, Berkeley, CA 94720; Cathleen S. Morawetz, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012; Richard S. Palais, Dept. of Mathematics, Brandeis University, Waltham, MA 02154; Franklin P. -
Writing the History of Dynamical Systems and Chaos
Historia Mathematica 29 (2002), 273–339 doi:10.1006/hmat.2002.2351 Writing the History of Dynamical Systems and Chaos: View metadata, citation and similar papersLongue at core.ac.uk Dur´ee and Revolution, Disciplines and Cultures1 brought to you by CORE provided by Elsevier - Publisher Connector David Aubin Max-Planck Institut fur¨ Wissenschaftsgeschichte, Berlin, Germany E-mail: [email protected] and Amy Dahan Dalmedico Centre national de la recherche scientifique and Centre Alexandre-Koyre,´ Paris, France E-mail: [email protected] Between the late 1960s and the beginning of the 1980s, the wide recognition that simple dynamical laws could give rise to complex behaviors was sometimes hailed as a true scientific revolution impacting several disciplines, for which a striking label was coined—“chaos.” Mathematicians quickly pointed out that the purported revolution was relying on the abstract theory of dynamical systems founded in the late 19th century by Henri Poincar´e who had already reached a similar conclusion. In this paper, we flesh out the historiographical tensions arising from these confrontations: longue-duree´ history and revolution; abstract mathematics and the use of mathematical techniques in various other domains. After reviewing the historiography of dynamical systems theory from Poincar´e to the 1960s, we highlight the pioneering work of a few individuals (Steve Smale, Edward Lorenz, David Ruelle). We then go on to discuss the nature of the chaos phenomenon, which, we argue, was a conceptual reconfiguration as -
Prizes and Awards Session
PRIZES AND AWARDS SESSION Wednesday, July 12, 2021 9:00 AM EDT 2021 SIAM Annual Meeting July 19 – 23, 2021 Held in Virtual Format 1 Table of Contents AWM-SIAM Sonia Kovalevsky Lecture ................................................................................................... 3 George B. Dantzig Prize ............................................................................................................................. 5 George Pólya Prize for Mathematical Exposition .................................................................................... 7 George Pólya Prize in Applied Combinatorics ......................................................................................... 8 I.E. Block Community Lecture .................................................................................................................. 9 John von Neumann Prize ......................................................................................................................... 11 Lagrange Prize in Continuous Optimization .......................................................................................... 13 Ralph E. Kleinman Prize .......................................................................................................................... 15 SIAM Prize for Distinguished Service to the Profession ....................................................................... 17 SIAM Student Paper Prizes .................................................................................................................... -
Raoul Bott (1923–2005)
Remembering Raoul Bott (1923–2005) Loring W. Tu, Coordinating Editor With contributions from Rodolfo Gurdian, Stephen Smale, David Mumford, Arthur Jaffe, Shing-Tung Yau, and Loring W. Tu Raoul Bott passed away The contributions are listed in the order in on December 20, 2005. which the contributors first met Raoul Bott. As Over a five-decade career the coordinating editor, I have added a short he made many profound introductory paragraph (in italics) to the beginning and fundamental contri- of each contribution. —Loring Tu butions to geometry and topology. This is the sec- Rodolfo Gurdian ond part of a two-part article in the Notices to Rodolfo Gurdian was one of Raoul Bott’s room- commemorate his life and mates when they were undergraduates at McGill. work. The first part was The imaginary chicken-stealing incident in this arti- an authorized biography, cle is a reference to a real chicken leg incident they “The life and works of experienced together at Mont Tremblant, recounted Raoul Bott” [4], which in [4]. he read and approved What follows is an account of some of the mischief a few years before his that Raoul Bott and I carried out during our days Photo by Bachrach. at McGill. Figure 1. Raoul Bott in 2002. death. Since then there have been at least three I met Raoul in 1941, when we were in our volumes containing remembrances of Raoul Bott first year at McGill University. Both of us lived in by his erstwhile collaborators, colleagues, students, Douglas Hall, a student dormitory of the university, and friends [1], [2], [7]. -
Fundamental Theorems in Mathematics
SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635]. -
The Legacy of Norbert Wiener: a Centennial Symposium
http://dx.doi.org/10.1090/pspum/060 Selected Titles in This Series 60 David Jerison, I. M. Singer, and Daniel W. Stroock, Editors, The legacy of Norbert Wiener: A centennial symposium (Massachusetts Institute of Technology, Cambridge, October 1994) 59 William Arveson, Thomas Branson, and Irving Segal, Editors, Quantization, nonlinear partial differential equations, and operator algebra (Massachusetts Institute of Technology, Cambridge, June 1994) 58 Bill Jacob and Alex Rosenberg, Editors, K-theory and algebraic geometry: Connections with quadratic forms and division algebras (University of California, Santa Barbara, July 1992) 57 Michael C. Cranston and Mark A. Pinsky, Editors, Stochastic analysis (Cornell University, Ithaca, July 1993) 56 William J. Haboush and Brian J. Parshall, Editors, Algebraic groups and their generalizations (Pennsylvania State University, University Park, July 1991) 55 Uwe Jannsen, Steven L. Kleiman, and Jean-Pierre Serre, Editors, Motives (University of Washington, Seattle, July/August 1991) 54 Robert Greene and S. T. Yau, Editors, Differential geometry (University of California, Los Angeles, July 1990) 53 James A. Carlson, C. Herbert Clemens, and David R. Morrison, Editors, Complex geometry and Lie theory (Sundance, Utah, May 1989) 52 Eric Bedford, John P. D'Angelo, Robert E. Greene, and Steven G. Krantz, Editors, Several complex variables and complex geometry (University of California, Santa Cruz, July 1989) 51 William B. Arveson and Ronald G. Douglas, Editors, Operator theory/operator algebras and applications (University of New Hampshire, July 1988) 50 James Glimm, John Impagliazzo, and Isadore Singer, Editors, The legacy of John von Neumann (Hofstra University, Hempstead, New York, May/June 1988) 49 Robert C. Gunning and Leon Ehrenpreis, Editors, Theta functions - Bowdoin 1987 (Bowdoin College, Brunswick, Maine, July 1987) 48 R. -
Calculus Redux
THE NEWSLETTER OF THE MATHEMATICAL ASSOCIATION OF AMERICA VOLUME 6 NUMBER 2 MARCH-APRIL 1986 Calculus Redux Paul Zorn hould calculus be taught differently? Can it? Common labus to match, little or no feedback on regular assignments, wisdom says "no"-which topics are taught, and when, and worst of all, a rich and powerful subject reduced to Sare dictated by the logic of the subject and by client mechanical drills. departments. The surprising answer from a four-day Sloan Client department's demands are sometimes blamed for Foundation-sponsored conference on calculus instruction, calculus's overcrowded and rigid syllabus. The conference's chaired by Ronald Douglas, SUNY at Stony Brook, is that first surprise was a general agreement that there is room for significant change is possible, desirable, and necessary. change. What is needed, for further mathematics as well as Meeting at Tulane University in New Orleans in January, a for client disciplines, is a deep and sure understanding of diverse and sometimes contentious group of twenty-five fac the central ideas and uses of calculus. Mac Van Valkenberg, ulty, university and foundation administrators, and scientists Dean of Engineering at the University of Illinois, James Ste from client departments, put aside their differences to call venson, a physicist from Georgia Tech, and Robert van der for a leaner, livelier, more contemporary course, more sharply Vaart, in biomathematics at North Carolina State, all stressed focused on calculus's central ideas and on its role as the that while their departments want to be consulted, they are language of science. less concerned that all the standard topics be covered than That calculus instruction was found to be ailing came as that students learn to use concepts to attack problems in a no surprise. -
Arxiv:Math/9912128V1 [Math.RA] 15 Dec 1999 Iigdiagrams
TOTAL POSITIVITY: TESTS AND PARAMETRIZATIONS SERGEY FOMIN AND ANDREI ZELEVINSKY Introduction A matrix is totally positive (resp. totally nonnegative) if all its minors are pos- itive (resp. nonnegative) real numbers. The first systematic study of these classes of matrices was undertaken in the 1930s by F. R. Gantmacher and M. G. Krein [20, 21, 22], who established their remarkable spectral properties (in particular, an n × n totally positive matrix x has n distinct positive eigenvalues). Earlier, I. J. Schoenberg [41] discovered the connection between total nonnegativity and the following variation-diminishing property: the number of sign changes in a vec- tor does not increase upon multiplying by x. Total positivity found numerous applications and was studied from many dif- ferent angles. An incomplete list includes: oscillations in mechanical systems (the original motivation in [22]), stochastic processes and approximation theory [25, 28], P´olya frequency sequences [28, 40], representation theory of the infinite symmetric group and the Edrei-Thoma theorem [13, 44], planar resistor networks [11], uni- modality and log-concavity [42], and theory of immanants [43]. Further references can be found in S. Karlin’s book [28] and in the surveys [2, 5, 38]. In this paper, we focus on the following two problems: (i) parametrizing all totally nonnegative matrices; (ii) testing a matrix for total positivity. Our interest in these problems stemmed from a surprising representation-theoretic connection between total positivity and canonical bases for quantum groups, dis- covered by G. Lusztig [33] (cf. also the surveys [31, 34]). Among other things, he extended the subject by defining totally positive and totally nonnegative elements for any reductive group. -
Applications at the International Congress by Marty Golubitsky
From SIAM News, Volume 39, Number 10, December 2006 Applications at the International Congress By Marty Golubitsky Grigori Perelman’s decision to decline the Fields Medal, coupled with the speculations surrounding this decision, propelled the 2006 Fields Medals to international prominence. Stories about the medals and the award ceremony at the International Congress of Mathematicians in Madrid this summer appeared in many influential news outlets (The New York Times, BBC, ABC, . .) and even in popular magazines (The New Yorker). In Madrid, the topologist John Morgan gave an excellent account of the history of the Poincaré conjecture and the ideas of Richard Hamilton and Perelman that led to the proof that the three-dimensional conjecture is correct. As Morgan pointed out, proofs of the Poincaré con- jecture and its direct generalizations have led to four Fields Medals: to Stephen Smale (1966), William Thurston (1982), Michael Freedman (1986), and now Grigori Perelman. The 2006 ICM was held in the Palacio Municipal de Congressos, a modern convention center on the outskirts of Madrid, which easily accommodated the 3600 or so participants. The interior of the convention center has a number of intriguing views—my favorite, shown below, is from the top of the three-floor-long descending escalator. Alfio Quarteroni’s plenary lecture on cardiovascular mathematics was among the many ses- The opening ceremony included a welcome sions of interest to applied mathematicians. from Juan Carlos, King of Spain, as well as the official announcement of the prize recipients—not only the four Fields Medals but also the Nevanlinna Prize and the (newly established) Gauss Prize.