The Openmosix HOWTO

Total Page:16

File Type:pdf, Size:1020Kb

The Openmosix HOWTO The openMosix HOWTO Live free() or die() Kris Buytaert <buytaert@x−tend.be> and Others Revision History Revision v1.0.3 18 june 2004 Minor Fixes Revision v1.0.2 29 july 2003 RPM Build Revision v1.0.1 19 july 2003 Major updates Revision v1.0 09 july 2003 Minor updates Revision v1.0 11 may 2003 At last Revision v1.0 RC 1 07 may 2003 Major Cleaning Revision v0.95 04 april 2003 Replaced ClumpOS by PlumpOS Revision v0.94 25 february 2003 Patches by Mirko Caserta Revision v0.93 16 february 2003 Extra features and fixes Revision v0.92 21 january 2003 Revision v0.91 27 september 2002 Revision v0.90 03 september 2002 Revision v0.71 26 August 2002 Spleling Fexis Revision v0.70 22 August 2002 Stripped out empty parts, replaced Mosixview with openMosixView Revision v0.50 6 July 2002 First openMosix HOWTO Revision v0.20 5 July 2002 Latest Mosix HOWTO (for now) Revision v0.17 28 June 2002 Revision v0.15 13 March 2002 Revision v0.13 18 Feb 2002 Revision ALPHA 0.03 09 October 2001 "The best way to become acquainted with a subject is to write a book about it." (Benjamin Disraeli) The openMosix HOWTO Table of Contents Chapter 1. Introduction......................................................................................................................................1 1.1. openMosix HOWTO.........................................................................................................................1 1.2. Introduction.......................................................................................................................................1 1.3. Disclaimer.........................................................................................................................................1 1.4. Distribution policy............................................................................................................................2 1.5. New versions of this document.........................................................................................................2 1.6. Feedback...........................................................................................................................................2 Chapter 2. So what is openMosix Anyway ?....................................................................................................3 2.1. A very, very brief introduction to clustering....................................................................................3 2.1.1. A very, very brief introduction to clustering...........................................................................3 2.2. The story so far.................................................................................................................................5 2.2.1. Historical Development...........................................................................................................5 2.2.2. openMosix...............................................................................................................................6 2.2.3. Current state............................................................................................................................6 2.2.4. Which applications work.........................................................................................................7 2.3. openMosix in action: An example....................................................................................................7 2.4. Components......................................................................................................................................7 2.4.1. Process migration....................................................................................................................7 2.4.2. The openMosix File System (oMFS)......................................................................................7 2.4.3. Direct File System Access (DFSA).........................................................................................8 2.5. openMosix Test Drive.......................................................................................................................8 2.6. Pros of openMosix............................................................................................................................8 2.7. Cons of openMosix...........................................................................................................................8 II. Installing openMosix....................................................................................................................................10 Chapter 3. Requirements and Planning..........................................................................................................11 3.1. Hardware requirements...................................................................................................................11 3.2. Hardware Setup Guidelines............................................................................................................11 3.3. Software requirements....................................................................................................................11 3.4. Planning your Cluster.....................................................................................................................11 3.5. Classrooms......................................................................................................................................12 Chapter 4. Distribution specific installations.................................................................................................13 4.1. Installing openMosix......................................................................................................................13 4.2. Before getting openMosix...............................................................................................................13 4.3. Getting openMosix.........................................................................................................................13 4.4. openMosix General Instructions.....................................................................................................14 4.4.1. Kernel Compilation...............................................................................................................14 4.4.2. Syntax of the /etc/openmosix.map file..................................................................................15 4.4.3. oMFS.....................................................................................................................................16 4.5. Red Hat and openMosix..................................................................................................................18 4.6. Suse and openMosix.......................................................................................................................19 4.7. Debian and openMosix...................................................................................................................19 4.8. openMosix and Gentoo...................................................................................................................20 4.9. Other distributions..........................................................................................................................20 i The openMosix HOWTO Table of Contents Chapter 5. Autodiscovery.................................................................................................................................21 5.1. Easy Configuration.........................................................................................................................21 5.2. Compiling auto−discovering...........................................................................................................22 5.3. Troubleshooting autodiscovery.......................................................................................................22 Chapter 6. PlumpOS.........................................................................................................................................24 6.1. What Plump/OS is..........................................................................................................................24 6.2. How does it work?..........................................................................................................................24 6.3. Requirements..................................................................................................................................24 6.4. Getting Started................................................................................................................................25 Chapter 7. Cluster Installation........................................................................................................................27 7.1. Cluster Installations........................................................................................................................27 7.2. DSH, Distributed Shell...................................................................................................................27 III. Administrating openMosix........................................................................................................................29 Chapter 8. Administrating openMosix...........................................................................................................30 8.1. Basic Administration......................................................................................................................30 8.2. Configuration..................................................................................................................................30
Recommended publications
  • Instalación Y Configuración De Un Cluster De Alta Disponibilidad Con Reparto De Carga
    UNIVERSIDAD POLITÉCNICA DE VALENCIA Máster en Ingeniería de Computadores INSTALACIÓN Y CONFIGURACIÓN DE UN CLUSTER DE ALTA DISPONIBILIDAD CON REPARTO DE CARGA SERVIDOR WEB Y MAQUINAS VIRTUALES Alumno: Lenin Alcántara Roa. Director: Pedro López Rodríguez. Febrero 2014 Febrero de 2014 2 Universidad Politécnica de Valencia Febrero de 2014 ÍNDICE 1. INTRODUCCIÓN 5 1.1. Objetivos 6 1.2. Motivación 6 1.3. Resumen 6 2. ESTADO DEL ARTE 7 2.1. ¿Qué es un Cluster? 7 2.2. Clustering de Alta Disponibilidad con Linux 15 2.3. Sistemas Operativos 17 3. ENTORNO TECNOLOGICO 28 3.1. Programación Bash 28 3.2. Servidor DNS 29 3.3. Servidor NFS 29 3.4. Servidor DHCP 30 3.5. Servidor PXE 32 3.6. Servicio dnsmasq 34 3.7. Servicio NIS 35 3.8. Condor 36 3.9. MPI 37 3.10. Almacenamiento RAID 38 3.11. Servicio LVS 42 3.12. Alta Disponibilidad: Corosync, Pacemaker y ldirectord 43 3.13. Virtualización con Linux 44 4. DESCRIPCIÓN DE LA SOLUCIÓN 47 4.1. Configuración del Cluster 48 4.2. Instalación del Sistema Operativo en el Cluster 50 4.3. Administración del Sistema 59 4.4. Almacenamiento 65 4.5. Equilibrado de Carga 66 4.6. Alta Disponibilidad 68 4.7. Sistema de Máquinas Virtuales 70 5. PRUEBAS 73 5.1. Servidor Web 73 5.1.1. Reparto de Carga 73 5.1.2. Alta Disponibilidad 77 5.1.3. Evaluación del Servidor Web 80 5.2. Sistema de Máquinas Virtuales 84 6. CONCLUSIONES 89 6.1. Trabajo Futuro 90 7. BIBLIOGRAFÍA 91 Universidad Politécnica de Valencia 3 Febrero de 2014 4 Universidad Politécnica de Valencia Febrero de 2014 1.
    [Show full text]
  • Clustering with Openmosix
    Clustering with openMosix Maurizio Davini (Department of Physics and INFN Pisa) Presented by Enrico Mazzoni (INFN Pisa) Introduction • What is openMosix? – Single-System Image – Preemptive Process Migration – The openMosix File System (MFS) • Application Fields • openMosix vs Beowulf • The people behind openMosix • The openMosix GNU project • Fork of openMosix code 12/06/2003 HTASC 2 The openMosix Project MileStones • Born early 80s on PDP-11/70. One full PDP and disk-less PDP, therefore process migration idea. • First implementation on BSD/pdp as MS.c thesis. • VAX 11/780 implementation (different word size, different memory architecture) • Motorola / VME bus implementation as Ph.D. thesis in 1993 for under contract from IDF (Israeli Defence Forces) • 1994 BSDi version • GNU and Linux since 1997 • Contributed dozens of patches to the standard Linux kernel • Split Mosix / openMosix November 2001 • Mosix standard in Linux 2.5? 12/06/2003 HTASC 3 What is openMOSIX • Linux kernel extension (2.4.20) for clustering • Single System Image - like an SMP, for: – No need to modify applications – Adaptive resource management to dynamic load characteristics (CPU intensive, RAM intensive, I/O etc.) – Linear scalability (unlike SMP) 12/06/2003 HTASC 4 A two tier technology 1. Information gathering and dissemination – Support scalable configurations by probabilistic dissemination algorithms – Same overhead for 16 nodes or 2056 nodes 2. Pre-emptive process migration that can migrate any process, anywhere, anytime - transparently – Supervised by adaptive
    [Show full text]
  • The Openmosix Resource Sharing Algorithms Are Designed to Respond On-Line to Variations in the Resource Usage Among the Nodes
    Institute of Fundamental Technological Research, Polish Academy of Sciences, Department of Mechanics and Physics of Fluids Documentation on Linux clustering with openMosix Version 1.0.1 Supervisor of the project: Tomasz Kowalewski Administration: Piotr Matejek Technical performers: Ihor Trots & Vasyl Kovalchuk Cluster’s web page: http://fluid.ippt.gov.pl/mosix/ Warsaw, 2004 Table of contents: 1 OpenMosix …………………………………………………….. 3 1.1 Installing openMosix ……………………………………….. 4 1.2 Configuration steps openMosix …………………………… 8 1.3 OpenMosix in action ……………………………………….. 10 1.4 OpenMosixview …………………………………………….. 11 2 Masquerading and IP-tables ………………………………... 14 2.1 Applying iptables and Patch-o-Matic kernel patches 15 2.2 Configuring IP Masquerade on Linux 2.4.x Kernels …. 22 3 Parallel Virtual Machine PVM ………………………………. 29 3.1 Building and Installing ……………………………………… 29 3.2 Running PVM Programs .................................................. 32 4 Message Passing Interface MPI ………………………….… 34 4.1 Configuring, Making and Installing .................................. 34 4.2 Programming Tools ......................................................... 38 4.3 Some details ……………………………………….……….. 41 5 References …………………………………………………….. 46 2 1 OpenMosix Introduction OpenMosix is a kernel extension for single-system image clustering. Clustering technologies allow two or more Linux systems to combine their computing resources so that they can work cooperatively rather than in isolation. OpenMosix is a tool for a Unix-like kernel, such as Linux, consisting of adaptive resource sharing algorithms. It allows multiple uniprocessors and symmetric multiprocessors (SMP nodes) running the same kernel to work in close cooperation. The openMosix resource sharing algorithms are designed to respond on-line to variations in the resource usage among the nodes. This is achieved by migrating processes from one node to another, preemptively and transparently, for load-balancing and to prevent thrashing due to memory swapping.
    [Show full text]
  • Lives Video Editor
    GABRIEL FINCH LiVES: LiVES is a Video Editing System RECIFE-PE – JULHO/2013. UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA APLICADA LiVES: LiVES is a Video Editing System Dissertação apresentada ao Programa de Pós-Graduação em Informática Aplicada como exigência parcial à obtenção do título de Mestre. Área de Concentração: Engenharia de Software Orientador: Prof. Dr. Giordano Ribeiro Eulalio Cabral RECIFE-PE – JULHO/2013. Ficha Catalográfica F492L Finch, Gabriel LiVES: LiVES is a video editing system / Gabriel Finch. -- Recife, 2013. 132 f. Orientador (a): Giordano Cabral. Dissertação (Mestrado em Informática Aplicada) – Universidade Federal Rural de Pernambuco, Departamento de Estatísticas e Informática, Recife, 2013. Inclui referências e apêndice. 1. Software - Desenvolvimento 2. Prototipagem 3. Multimídia 4. Usuários de computador 5. Vídeo digital I. Cabral, Giordano, orientador II. Título CDD 005.1 ACKNOWLEDGEMENTS The author would like to thank: The staff and students at UFRPE. All the LiVES users and contributors. My family. and the following, who have helped along the way: Niels Elburg, Denis "Jaromil" Rojo, Tom Schouten, Andraz Tori, Silvano "Kysucix" Galliani, Kentaro Fukuchi, Dr. Jun Iio, Oyvind Kolas, Carlo Prelz, Yves Degoyon, Lady Xname, timesup.org, LinuxFund, VJ Pixel, estudiolivre, mediasana, Felipe Machado, elphel.com. RESUMO Relativamente pouca pesquisa científica tem sido executado até à data atinente aos requisitos dos usuários de aplicativos de processamento de vídeo. Nesta dissertação, apresentamos um novo termo "Experimental VJ", e examinamos os requisitos de software para essa classe de usuário, derivados de uma variedade de fontes. Por meios desses requisitos, definimos os atributos que seria necessário um programa criado para satisfazer essas demandas possuir.
    [Show full text]
  • Load Balancing Experiments in Openmosix”, Inter- National Conference on Computers and Their Appli- Cations , Seattle WA, March 2006 0 0 5 4 9
    Machine Learning Approach to Tuning Distributed Operating System Load Balancing Algorithms Dr. J. Michael Meehan Alan Ritter Computer Science Department Computer Science Department Western Washington University Western Washington University Bellingham, Washington, 98225 USA Bellingham, Washington, 98225 USA [email protected] [email protected] Abstract 2.6 Linux kernel openMOSIX patch was in the process of being developed. This work concerns the use of machine learning techniques (genetic algorithms) to optimize load 2.1 Load Balancing in openMosix balancing policies in the openMosix distributed The standard load balancing policy for openMosix operating system. Parameters/alternative algorithms uses a probabilistic, decentralized approach to in the openMosix kernel were dynamically disseminate load balancing information to other altered/selected based on the results of a genetic nodes in the cluster. [4] This allows load information algorithm fitness function. In this fashion optimal to be distributed efficiently while providing excellent parameter settings and algorithms choices were scalability. The major components of the openMosix sought for the loading scenarios used as the test load balancing scheme are the information cases. dissemination and migration kernel daemons. The information dissemination daemon runs on each 1 Introduction node and is responsible for sending and receiving The objective of this work is to discover ways to load messages to/from other nodes. The migration improve the openMosix load balancing algorithm. daemon receives migration requests from other The approach we have taken is to create entries in nodes and, if willing, carries out the migration of the the /proc files which can be used to set parameter process. Thus, the system is sender initiated to values and select alternative algorithms used in the offload excess load.
    [Show full text]
  • HPC with Openmosix
    HPC with openMosix Ninan Sajeeth Philip St. Thomas College Kozhencheri IMSc -Jan 2005 [email protected] Acknowledgements ● This document uses slides and image clippings available on the web and in books on HPC. Credit is due to their original designers! IMSc -Jan 2005 [email protected] Overview ● Mosix to openMosix ● Why openMosix? ● Design Concepts ● Advantages ● Limitations IMSc -Jan 2005 [email protected] The Scenario ● We have MPI and it's pretty cool, then why we need another solution? ● Well, MPI is a specification for cluster communication and is not a solution. ● Two types of bottlenecks exists in HPC - hardware and software (OS) level. IMSc -Jan 2005 [email protected] Hardware limitations for HPC IMSc -Jan 2005 [email protected] The Scenario ● We are approaching the speed and size limits of the electronics ● Major share of possible optimization remains with software part - OS level IMSc -Jan 2005 [email protected] Hardware limitations for HPC IMSc -Jan 2005 [email protected] How Clusters Work? Conventional supe rcomputers achieve their speed using extremely optimized hardware that operates at very high speed. Then, how do the clusters out-perform them? Simple, they cheat. While the supercomputer is optimized in hardware, the cluster is so in software. The cluster breaks down a problem in a special way so that it can distribute all the little pieces to its constituents. That way the overall problem gets solved very efficiently. - A Brief Introduction To Commodity Clustering Ryan Kaulakis IMSc -Jan 2005 [email protected] What is MOSIX? ● MOSIX is a software solution to minimise OS level bottlenecks - originally designed to improve performance of MPI and PVM on cluster systems http://www.mosix.org Not open source Free for personal and academic use IMSc -Jan 2005 [email protected] MOSIX More Technically speaking: ● MOSIX is a Single System Image (SSI) cluster that allows Automated Load Balancing across nodes through preemptive process migrations.
    [Show full text]
  • Introduction Course Outline Why Does This Fail? Lectures Tutorials
    Course Outline • Prerequisites – COMP2011 Data Organisation • Stacks, queues, hash tables, lists, trees, heaps,…. Introduction – COMP2021 Digital Systems Structure • Assembly programming • Mapping of high-level procedural language to assembly COMP3231/9201/3891/9283 language – or the postgraduate equivalent (Extended) Operating Systems – You are expected to be competent Kevin Elphinstone programmers!!!! • We will be using the C programming language – The dominant language for OS implementation. – Need to understand pointers, pointer arithmetic, explicit 2 memory allocation. Why does this fail? Lectures • Common for all courses (3231/3891/9201/9283) void func(int *x, int *y) • Wednesday, 2-4pm { • Thursday, 5-6pm *x = 1; *y = 2; – All lectures are here (EE LG03) – The lecture notes will be available on the course web site } • Available prior to lectures, when possible. void main() – The lecture notes and textbook are NOT a substitute for { attending lectures. int *a, *b; func(a,b); } 3 4 Tutorials Assignments • Assignments form a substantial component of • Start in week 2 your assessment. • A tutorial participation mark will • They are challenging!!!! – Because operating systems are challenging contribute to your final assessment. • We will be using OS/161, – Participation means participation, NOT – an educational operating system attendance. – developed by the Systems Group At Harvard – Comp9201/3891/9283 students excluded – It contains roughly 20,000 lines of code and comments • You will only get participation marks in your enrolled tutorial. 5 6 1 Assignments Assignments • Assignments are in pairs • Don’t under estimate the time needed to do the – Info on how to pair up available soon assignments. • We usually offer advanced versions of the – ProfQuotes: [About the midterm] "We can't keep you working assignments on it all night, it's not OS.“ Ragde, CS341 – Available bonus marks are small compared to amount of • If you start a couple days before they are due, you will be late.
    [Show full text]
  • The Utility Coprocessor: Massively Parallel Computation from the Coffee Shop
    The Utility Coprocessor: Massively Parallel Computation from the Coffee Shop John R. Douceur, Jeremy Elson, Jon Howell, and Jacob R. Lorch Microsoft Research Abstract slow jobs that take several minutes without UCop be- UCop, the “utility coprocessor,” is middleware that come interactive (15–20 seconds) with it. Thanks to makes it cheap and easy to achieve dramatic speedups the recent emergence of utility-computing services like of parallelizable, CPU-bound desktop applications using Amazon EC2 [8] and FlexiScale [45], which rent com- utility computing clusters in the cloud. To make UCop puters by the hour on a moment’s notice, anyone with a performant, we introduced techniques to overcome the credit card and $10 can use UCop to speed up his own low available bandwidth and high latency typical of the parallel applications. networks that separate users’ desktops from a utility One way to describe UCop is that it effectively con- computing service. To make UCop economical and easy verts application software into a scalable cloud service to use, we devised a scheme that hides the heterogene- targeted at exactly one user. This goal entails five re- ity of client configurations, allowing a single cluster to quirements. Configuration transparency means the ser- serve virtually everyone: in our Linux-based prototype, vice matches the user’s application, library, and con- the only requirement is that users and the cluster are us- figuration state. Non-invasive installation means UCop ing the same major kernel version. works with a user’s existing file system and application This paper presents the design, implementation, and configuration.
    [Show full text]
  • Legoos: a Disseminated, Distributed OS for Hardware Resource
    LegoOS: A Disseminated, Distributed OS for Hardware Resource Disaggregation Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang, Purdue University https://www.usenix.org/conference/osdi18/presentation/shan This paper is included in the Proceedings of the 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’18). October 8–10, 2018 • Carlsbad, CA, USA ISBN 978-1-939133-08-3 Open access to the Proceedings of the 13th USENIX Symposium on Operating Systems Design and Implementation is sponsored by USENIX. LegoOS: A Disseminated, Distributed OS for Hardware Resource Disaggregation Yizhou Shan, Yutong Huang, Yilun Chen, Yiying Zhang Purdue University Abstract that can fit into monolithic servers and deploying them in datacenters is a painful and cost-ineffective process that The monolithic server model where a server is the unit often limits the speed of new hardware adoption. of deployment, operation, and failure is meeting its lim- We believe that datacenters should break mono- its in the face of several recent hardware and application lithic servers and organize hardware devices like CPU, trends. To improve resource utilization, elasticity, het- DRAM, and disks as independent, failure-isolated, erogeneity, and failure handling in datacenters, we be- network-attached components, each having its own con- lieve that datacenters should break monolithic servers troller to manage its hardware. This hardware re- into disaggregated, network-attached hardware compo- source disaggregation architecture is enabled by recent nents. Despite the promising benefits of hardware re- advances in network technologies [24, 42, 52, 66, 81, 88] source disaggregation, no existing OSes or software sys- and the trend towards increasing processing power in tems can properly manage it.
    [Show full text]
  • Architectural Review of Load Balancing Single System Image
    Journal of Computer Science 4 (9): 752-761, 2008 ISSN 1549-3636 © 2008 Science Publications Architectural Review of Load Balancing Single System Image Bestoun S. Ahmed, Khairulmizam Samsudin and Abdul Rahman Ramli Department of Computer and Communication Systems Engineering, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia Abstract: Problem statement: With the growing popularity of clustering application combined with apparent usability, the single system image is in the limelight and actively studied as an alternative solution for computational intensive applications as well as the platform for next evolutionary grid computing era. Approach: Existing researches in this field concentrated on various features of Single System Images like file system and memory management. However, an important design consideration for this environment is load allocation and balancing that is usually handled by an automatic process migration daemon. Literature shows that the design concepts and factors that affect the load balancing feature in an SSI system are not clear. Result: This study will review some of the most popular architecture and algorithms used in load balancing single system image. Various implementations from the past to present will be presented while focusing on the factors that affect the performance of such system. Conclusion: The study showed that although there are some successful open source systems, the wide range of implemented systems investigated that research activity should concentrate on the systems that have already been proposed and proved effectiveness to achieve a high quality load balancing system. Key words: Single system image, NOWs (network of workstations), load balancing algorithm, distributed systems, openMosix, MOSIX INTRODUCTION resources transparently irrespective of where they are available[1].The load balancing single system image Cluster of computers has become an efficient clusters dominate research work in this environment.
    [Show full text]
  • Distributed-Operating-Systems.Pdf
    Distributed Operating Systems Overview Ye Olde Operating Systems OpenMOSIX OpenSSI Kerrighed Quick Preview Front Back Distributed Operating Systems vs Grid Computing Grid System User Space US US US US US US Operating System OS OS OS OS OS OS Nodes Nodes Amoeba, Plan9, OpenMosix, Xgrid, SGE, Condor, Distcc, OpenSSI, Kerrighed. Boinc, GpuGrid. Distributed Operating Systems vs Grid Computing Problems with the grid. Programs must utilize that library system. Usually requiring seperate programming. OS updates take place N times. Problems with dist OS Security issues – no SSL. Considered more complicated to setup. Important Note Each node, even with distributed operating systems, boots a kernel. This kernel can vary depending on the role of the node and overall architecture of the system. User Space Operating System OS OS OS OS OS OS Nodes Amoeba Andrew S. Tanenbaum Earliest documentation: 1986 What modern language was originally developed for use in Amoeba? Anyone heard of Orca? Sun4c, Sun4m, 386/486, 68030, Sun 3/50, Sun 3/60. Amoeba Plan9 Started development in the 1980's Released in 1992 (universities) and 1995 (general public). All devices are part of the filesystem. X86, MIPS, DEC Alpha, SPARC, PowerPC, ARM. Union Directories, basis of UnionFS. /proc first implemente d here. Plan9 Rio , the Plan9 window manager showing ”faces(1), stats(8), acme(1) ” and many more things. Plan9 Split nodes into 3 distinct groupings. Terminals File servers Computational servers Uses the ”9P” protocol. Low level, byte protocol, not block. Used from filesystems, to printer communication. Author: Ken Thompso n Plan9 / Amoeba Both Plan9 and Amoeba make User Space groupings of nodes, into specific categories.
    [Show full text]
  • SEMINARIS DOCENTS DE CASO 03/04 - 2Q NÚM GRUP: Facultat D´Informàtica De Barcelona - Departament AC - UPC
    SEMINARIS DOCENTS DE CASO 03/04 - 2Q NÚM GRUP: Facultat d´Informàtica de Barcelona - Departament AC - UPC Fitxa corresponent al treball sobre un tema d´actualitat dins del tema 6 del curs. Aquest treball també portarà associada una presentació obligatoria del mateix (d’uns 10’) i forma part de la nota NS tal com es va indicar a principi de curs. Aquest treball es pot fer en grups d’1, 2 o 3 persones. Cada grup serà responsable de supervisar l’adequació de la presentació d’un altre grup. El fet de lliurar aquest treball implica l´acceptació de fer-ne una presentació d’un màxim de 10’ a classe a partir de les transparències powerpoint que podran ser distribuïdes com a documentació docent als alumnes de CASO i formar part dels coneixements evaluables de l´assignatura . ELECCIÓ TREBALL: Cal que envieu un mail (amb el format especificat a l´avís del Racó) amb títol de la presentació, els noms, preferència matí/tardai breu descripció a [email protected] . Tot això abans del dimarts 18 de Maig 2004. Després d´aquesta data ja no s'acceptaran. LLIURAMENT: El termini de lliurament dels treballs és fins diumenge 23 de Maig 2004. Els treballs es lliuraran per correu elect rònic a l´adreça [email protected] preferiblement en format PDF. Tamb é es pot enviar en powerpoint usant la plantilla que podeu trobar a http://docencia.ac.upc.es/FIB/CASO/seminaris/TransSEMcaso.ppt o OpenOffice. Tot treball no lliurat dins del termini establert es considerarà no lliurat. PRESENTACIONS ANTERIORS: http://docencia.ac.upc.es/FIB/CASO/seminaris/SeminarisCASO.htm MEMBRES
    [Show full text]