Legoos: a Disseminated, Distributed OS for Hardware Resource
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Crypto Ransomware Analysis and Detection Using
CRYPTO RANSOMWARE ANALYSIS AND DETECTION USING PROCESS MONITOR by ASHWINI BALKRUSHNA KARDILE Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN COMPUTER SCIENCE THE UNIVERSITY OF TEXAS AT ARLINGTON December 2017 Copyright © by Ashwini Balkrushna Kardile 2017 All Rights Reserved ii Acknowledgements I would like to thank Dr. Ming for his timely guidance and motivation. His insights for this research were valuable. I would also like to thank my committee members Dr. David Levine and Dr. David Kung for taking out time from their schedule and attending my dissertation. I am grateful to John Podolanko; it would not have been possible without his help and support. Thank you, John, for helping me and foster my confidence. I would like to thank my colleagues for supporting me directly or indirectly. Last but not the least; I would like to thank my parents, my family and my friends for encouraging me and supporting me throughout my research. November 16, 2017 iii Abstract CRYPTO RANSOMWARE ANALYSIS AND DETECTION USING PROCESS MONITOR Ashwini Balkrushna Kardile, MS The University of Texas at Arlington, 2017 Supervising Professor: Jiang Ming Ransomware is a faster growing threat that encrypts user’s files and locks the computer and holds the key required to decrypt the files for ransom. Over the past few years, the impact of ransomware has increased exponentially. There have been several reported high profile ransomware attacks, such as CryptoLocker, CryptoWall, WannaCry, Petya and Bad Rabbit which have collectively cost individuals and companies well over a billion dollars according to FBI. -
Clustering with Openmosix
Clustering with openMosix Maurizio Davini (Department of Physics and INFN Pisa) Presented by Enrico Mazzoni (INFN Pisa) Introduction • What is openMosix? – Single-System Image – Preemptive Process Migration – The openMosix File System (MFS) • Application Fields • openMosix vs Beowulf • The people behind openMosix • The openMosix GNU project • Fork of openMosix code 12/06/2003 HTASC 2 The openMosix Project MileStones • Born early 80s on PDP-11/70. One full PDP and disk-less PDP, therefore process migration idea. • First implementation on BSD/pdp as MS.c thesis. • VAX 11/780 implementation (different word size, different memory architecture) • Motorola / VME bus implementation as Ph.D. thesis in 1993 for under contract from IDF (Israeli Defence Forces) • 1994 BSDi version • GNU and Linux since 1997 • Contributed dozens of patches to the standard Linux kernel • Split Mosix / openMosix November 2001 • Mosix standard in Linux 2.5? 12/06/2003 HTASC 3 What is openMOSIX • Linux kernel extension (2.4.20) for clustering • Single System Image - like an SMP, for: – No need to modify applications – Adaptive resource management to dynamic load characteristics (CPU intensive, RAM intensive, I/O etc.) – Linear scalability (unlike SMP) 12/06/2003 HTASC 4 A two tier technology 1. Information gathering and dissemination – Support scalable configurations by probabilistic dissemination algorithms – Same overhead for 16 nodes or 2056 nodes 2. Pre-emptive process migration that can migrate any process, anywhere, anytime - transparently – Supervised by adaptive -
Development Environment
BLUESPAWN BLUESPAWN Dev Team Apr 28, 2021 CONTENTS 1 Our Mission 3 2 What is BLUESPAWN 5 3 Get Involved & Contribute to the project7 4 Why we made BLUESPAWN9 4.1 Contact Us................................................9 4.2 Sponsoring................................................9 4.3 Licensing.................................................9 4.4 Project Authors.............................................. 10 4.5 Publications............................................... 11 4.6 Hunts................................................... 11 4.7 Scan Mode................................................ 11 4.8 Mitigations................................................ 11 4.9 Reactions................................................. 11 4.10 Logging and Output........................................... 11 4.11 Agent7 Integration............................................ 11 4.12 Getting Started.............................................. 11 4.13 Examples of BLUESPWAN in Action.................................. 13 4.14 Using Mitigations............................................ 14 4.15 Getting Involved............................................. 18 4.16 Setting up your Development Environment............................... 18 4.17 Software Architecture Info........................................ 19 4.18 Project Roadmap............................................. 21 i ii BLUESPAWN CONTENTS 1 BLUESPAWN 2 CONTENTS CHAPTER ONE OUR MISSION BLUESPAWN helps blue teams monitor systems in real-time against active attackers by detecting -
Multiband Plasma-Process Monitor C10346-01
Multiband plasma-process monitor C10346-01 C10346-01 is a multiband plasma process monitor designed for real-time, monitoring of wide spectrum. Monitoring Plasma (Emission Spectrum) in Real-Time C10346-01 is a monitoring system to detect wide spectrum plasma emission during the process of etching, spattering and CVD in semiconductor manufacturing . With the various analysis functions, it can be used for setting up end-point detection conditions and automatic detection of etching and cleaning, estimation of plasma species and monitoring (plasma) contamination and abnormal discharges. Features Simultaneous measurements of wide (plasma) spectrum Easy measurement using optical fibers Captures wide spectrum (emission) from (plasma) radicals or ions. The equipped optical fiber can be easily attached to plasma C10346-01 : 200 nm to 950 nm chambers through a SMA connector widely used. Real-time plasma (emission) measurement Operation with multiple chambers Continuously measures up to 15 000 spectra at an interval of 20 ms A single analysis unit can control up to four C10346-01 (50 ms with concurrent running of detection software) Multiband plasma-process monitor via a USB 2.0 interface. Highly accurate and reliable measurements Data acquisition software A high resolution spectrometer and a ultra-high sensitive photo The data acquisition software stores the spectrum data into detector are firmly locked in position to assure the acquisition of the database during plasma process. This stored data can accurate spectrum and precise spectrum responsivity data then be used for spectrum data calculations. through sharply focused plasma emission spectrum images. Optional software High-sensitivity detection in UV spectrum region High sensitive endpoint detection and real-time monitoring of Detects the UV spectrum region from 200 nm with high process abnormality are achieved by creating ''detection model''. -
Process Monitor
Моим коллегам — специалистам по устранению неполадок Windows. Никогда не отступайте и не сдавайтесь! – Марк Руссинович Элизе, благодаря ей сбываются самые прекрасные мечты! (И она гораздо круче меня!) – Аарон Маргозис SIN_Titul.indd I 29.12.2011 13:41:15 Mark Russinovich Aaron Margosis Windows® Sysinternals Administrator's Reference SIN_Titul.indd II 29.12.2011 13:41:15 Марк Руссинович Аарон Маргозис Предисловие Дэвида Соломона Утилиты Sysinternals Справочник администратора 2012 SIN_Titul.indd III 29.12.2011 13:41:15 УДК 004.738.5 ББК 32.973.202 P89 Руссинович Марк, Маргозис Аарон P89 Утилиты Sysinternals. Справочник администратора. / Пер. с англ. — М. : Издательство «Русская редакция» ; СПб. : БХВ-Петербург, 2012. — 480 стр. : ил. ISBN 978-5-7502-0411-3 («Русская редакция») ISBN 978-5-9775-0826-1 («БХВ-Петербург») Эта книга — исчерпывающее руководство по использованию утилит Sysin- ternals. Авторы книги — создатель утилит Sysinternals Марк Руссинович и при- знанный эксперт по Windows Аарон Маргозис — подробно разбирают многочис- ленные функции утилит для диагностики и управления файлами, дисками, си- стемой безопасности и встроенным инструментарием Windows. Рекомендации авторов проиллюстрированы многочисленными примерами из реальной жизни. Изучив их, вы сможете справиться с неполадками в ИТ-системах так, как это делают настоящие профессионалы. Книга состоит из 18 глав и предметного указателя. Она предназначена для ИТ-специалистов и опытных пользователей Windows, которые хотят применять утилиты Sysinternals с максимальной эффективностью. УДК 004.738.5 ББК 32.973.202 © 2011-2012, Translation Russian Edition Publishers. Authorized Russian translation of the English edition of Windows® Sysinternals Administrator’s Reference, ISBN 978- 0-7356-5672-7 © Aaron Margosis and Mark Russinovich. This translation is published and sold by permission of O’Reilly Media, Inc., which owns or controls all rights to publish and sell the same. -
JTB Process Monitor
JTB Process Monitor About JTB Process Monitor makes it possible to monitor usage of more applications than the core JTB FlexReport handles. There is a service part and a client part of Process Monitor. You need to first install the service and configure it and then install the client and configure it. The data is saved into the JTB FlexReport core database and reports on the usage can be done in the normal way. This means that JTB FlexReport Core and JTB FlexReport Chart Service/Client also need to be installed. The client computer to monitor does not need to be connected to the network all the time. It still can monitor the usage and when connected again it will send back the data to the server. The client-server solution is based on WCF (Windows Communication Foundation) and XML Web services. System requirements .NET Framework 4.0 or newer is needed for the service and client. Other than that most Windows operating systems are supported like Vista, Windows 7, Windows 8, Windows 8.1, Windows 10, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, Windows Server 2016. Both 32-bit and 64-bit systems are supported. One limitation is that processes that run in Windows compatibility mode cannot be monitored. Installation of Service The service needs to be installed on one location and it is recommended to be on the same computer where JTB FlexReport’s other services are installed as it needs to save the usage to the JTB FlexReport database. For a trial it can be installed on a workstation if that is easier for the evaluation. -
Windows Rootkit Analysis Report
Windows Rootkit Analysis Report HBGary Contract No: NBCHC08004 SBIR Data Rights November 2008 Page 1 Table of Contents Introduction ................................................................................................................................... 4 Clean Monitoring Tool Logs......................................................................................................... 5 Clean System PSList ................................................................................................................. 5 Clean System Process Explorer ................................................................................................ 6 Vanquish......................................................................................................................................... 7 PSList Vanquish ........................................................................................................................ 7 Vanquish Process Monitor (Process Start – Exit) .................................................................. 8 Process Explorer Thread Stack Vanquish .............................................................................. 8 Process Monitor Events Vanquish ........................................................................................... 9 Vanquish Log File (Created by rootkit, placed in root directory “C:”) ............................. 21 Process Explorer Memory Strings Vanquish ........................................................................ 23 NTIllusion.................................................................................................................................... -
Application Help for SAP Business Planning and Consolidation, Version for SAP Netweaver Company
PUBLIC SAP Business Planning and Consolidation for SAP NetWeaver 10.1 Document Version: 1.0 – 2021-06-09 Application Help for SAP Business Planning and Consolidation, version for SAP NetWeaver company. All rights reserved. All rights company. affiliate THE BEST RUN 2021 SAP SE or an SAP SE or an SAP SAP 2021 © Content 1 SAP Business Planning and Consolidation, version for SAP NetWeaver...................4 1.1 Getting Started..............................................................10 Preferences..............................................................10 Grid....................................................................11 1.2 Home Page and Navigation......................................................11 1.3 Business Process Flows........................................................12 My Activities.............................................................13 1.4 Process Monitor.............................................................15 1.5 Library....................................................................16 1.6 Documents (Standard only).....................................................17 1.7 Run Consolidation (Standard only)................................................18 Consolidation Monitor (Standard only)...........................................19 Controls Monitor (Standard only)..............................................24 Journals (Standard only)....................................................30 Ownership Manager (Standard only)............................................41 1.8 Run -
Load Balancing Experiments in Openmosix”, Inter- National Conference on Computers and Their Appli- Cations , Seattle WA, March 2006 0 0 5 4 9
Machine Learning Approach to Tuning Distributed Operating System Load Balancing Algorithms Dr. J. Michael Meehan Alan Ritter Computer Science Department Computer Science Department Western Washington University Western Washington University Bellingham, Washington, 98225 USA Bellingham, Washington, 98225 USA [email protected] [email protected] Abstract 2.6 Linux kernel openMOSIX patch was in the process of being developed. This work concerns the use of machine learning techniques (genetic algorithms) to optimize load 2.1 Load Balancing in openMosix balancing policies in the openMosix distributed The standard load balancing policy for openMosix operating system. Parameters/alternative algorithms uses a probabilistic, decentralized approach to in the openMosix kernel were dynamically disseminate load balancing information to other altered/selected based on the results of a genetic nodes in the cluster. [4] This allows load information algorithm fitness function. In this fashion optimal to be distributed efficiently while providing excellent parameter settings and algorithms choices were scalability. The major components of the openMosix sought for the loading scenarios used as the test load balancing scheme are the information cases. dissemination and migration kernel daemons. The information dissemination daemon runs on each 1 Introduction node and is responsible for sending and receiving The objective of this work is to discover ways to load messages to/from other nodes. The migration improve the openMosix load balancing algorithm. daemon receives migration requests from other The approach we have taken is to create entries in nodes and, if willing, carries out the migration of the the /proc files which can be used to set parameter process. Thus, the system is sender initiated to values and select alternative algorithms used in the offload excess load. -
HPC with Openmosix
HPC with openMosix Ninan Sajeeth Philip St. Thomas College Kozhencheri IMSc -Jan 2005 [email protected] Acknowledgements ● This document uses slides and image clippings available on the web and in books on HPC. Credit is due to their original designers! IMSc -Jan 2005 [email protected] Overview ● Mosix to openMosix ● Why openMosix? ● Design Concepts ● Advantages ● Limitations IMSc -Jan 2005 [email protected] The Scenario ● We have MPI and it's pretty cool, then why we need another solution? ● Well, MPI is a specification for cluster communication and is not a solution. ● Two types of bottlenecks exists in HPC - hardware and software (OS) level. IMSc -Jan 2005 [email protected] Hardware limitations for HPC IMSc -Jan 2005 [email protected] The Scenario ● We are approaching the speed and size limits of the electronics ● Major share of possible optimization remains with software part - OS level IMSc -Jan 2005 [email protected] Hardware limitations for HPC IMSc -Jan 2005 [email protected] How Clusters Work? Conventional supe rcomputers achieve their speed using extremely optimized hardware that operates at very high speed. Then, how do the clusters out-perform them? Simple, they cheat. While the supercomputer is optimized in hardware, the cluster is so in software. The cluster breaks down a problem in a special way so that it can distribute all the little pieces to its constituents. That way the overall problem gets solved very efficiently. - A Brief Introduction To Commodity Clustering Ryan Kaulakis IMSc -Jan 2005 [email protected] What is MOSIX? ● MOSIX is a software solution to minimise OS level bottlenecks - originally designed to improve performance of MPI and PVM on cluster systems http://www.mosix.org Not open source Free for personal and academic use IMSc -Jan 2005 [email protected] MOSIX More Technically speaking: ● MOSIX is a Single System Image (SSI) cluster that allows Automated Load Balancing across nodes through preemptive process migrations. -
Introduction Course Outline Why Does This Fail? Lectures Tutorials
Course Outline • Prerequisites – COMP2011 Data Organisation • Stacks, queues, hash tables, lists, trees, heaps,…. Introduction – COMP2021 Digital Systems Structure • Assembly programming • Mapping of high-level procedural language to assembly COMP3231/9201/3891/9283 language – or the postgraduate equivalent (Extended) Operating Systems – You are expected to be competent Kevin Elphinstone programmers!!!! • We will be using the C programming language – The dominant language for OS implementation. – Need to understand pointers, pointer arithmetic, explicit 2 memory allocation. Why does this fail? Lectures • Common for all courses (3231/3891/9201/9283) void func(int *x, int *y) • Wednesday, 2-4pm { • Thursday, 5-6pm *x = 1; *y = 2; – All lectures are here (EE LG03) – The lecture notes will be available on the course web site } • Available prior to lectures, when possible. void main() – The lecture notes and textbook are NOT a substitute for { attending lectures. int *a, *b; func(a,b); } 3 4 Tutorials Assignments • Assignments form a substantial component of • Start in week 2 your assessment. • A tutorial participation mark will • They are challenging!!!! – Because operating systems are challenging contribute to your final assessment. • We will be using OS/161, – Participation means participation, NOT – an educational operating system attendance. – developed by the Systems Group At Harvard – Comp9201/3891/9283 students excluded – It contains roughly 20,000 lines of code and comments • You will only get participation marks in your enrolled tutorial. 5 6 1 Assignments Assignments • Assignments are in pairs • Don’t under estimate the time needed to do the – Info on how to pair up available soon assignments. • We usually offer advanced versions of the – ProfQuotes: [About the midterm] "We can't keep you working assignments on it all night, it's not OS.“ Ragde, CS341 – Available bonus marks are small compared to amount of • If you start a couple days before they are due, you will be late. -
Prmon: Process Monitor
prmon: Process Monitor Serhan Mete (Argonne) and Graeme A Stewart (CERN) Grid Deployment Board Meeting September 9, 2020 What is Process Monitor (prmon)? ● “... a small stand alone program that can monitor the resource consumption of a process and its children.” ○ An open source HSF project, completely application agnostic and self-contained ■ The only external library dependency is nlohmann/json (and only for the build) ○ Tracks (process-level) CPU/GPU, memory, disk I/O, and (device-level) network I/O usage ■ Metrics are primarily collected from ProcFS (except for GPU which comes from nvidia-smi) ● Adding support for additional hardware is in the future plans ○ It produces two main outputs: ■ Time-series text file that contains the measurements at each capture ■ JSON file that contains averages and maxima along with some hardware information ○ It includes python-based software to visualize the time-series data https://github.com/HSF/prmon 2 Building/Distributing/Using prmon... ● prmon has been used in ATLAS distributed computing for many years ○ Predecessor was named MemoryMonitor, which was the starting point for prmon ● There are two main build/deployment options: ○ Integrating prmon as an external software and building it from scratch ■ Primarily requires C++11, Cmake 3.3+, and nlohmann/json ■ For GPU support, needs nvidia-smi installed ○ Using statically built prmon (published for each release, approx. 1 MB) ○ In either case, the binaries can be (are) distributed via CVMFS ○ More information can be found at https://github.com/HSF/prmon#build-and-deployment ● There are two main ways to execute: ○ Attach to an existing process w/ PID : prmon --pid PID ○ Start the program with prmon : prmon [prmon options] -- program [program options] ○ More information can be found at https://github.com/HSF/prmon#running Latest Release: v2.1.0 on Sep 8 3 Available options, monitors, and output formats..