Genetic and Epigenetic Determinants of Thrombin Generation Potential : an Epidemiological Approach Maria-Ares Rocanin-Arjo
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Haemostatic Effects of Recombinant Coagulation Factor Viia
Haemostatic effects of recombinant coagulation factor VIIa Ton Lisman Lay-out: Pre Press, Baarn Cover illustration by Janine Marie¨n Inside illustrations by Geert Donker ISBN: 90-393-3192-8 Haemostatic effects of recombinant coagulation factor VIIa Bloedstelping door recombinant stollingsfactor VIIa (Met een samenvatting in het Nederlands) PROEFSCHIFT Ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de Rector Magnificus, Prof. Dr. W.H. Gispen, in gevolge het besluit van het College voor Promoties in het openbaar te verdedigen op dinsdag 17 december 2002 des ochtends te 10.30 uur. door Johannes Antonius Lisman Geboren op 10 Maart 1976, te Arnhem Promotor: Prof. Dr. Ph.G. de Groot Faculteit geneeskunde, Universiteit Utrecht Co-Promotor: Dr. H.K. Nieuwenhuis Faculteit geneeskunde, Universiteit Utrecht The studies described in this thesis were supported in part by an unrestricted educational grant from Novo Nordisk. Financial support by Novo Nordisk for the publication of this thesis is gratefully acknowledged. I’ve got a pen in my pocket does that make me a writer Standing on the mountain doesn’t make me no higher Putting on gloves don’t make you a fighter And all the study in the world Doesn’t make it science Paul Weller Contents Chapter 1. General Introduction 9 Haemophilia Chapter 2. Inhibition of fibrinolysis by recombinant factor VIIa in plasma from patients with severe haemophilia A 41 Appendix to chapter 2. Enhanced procoagulant and antifibrinolytic potential of superactive variants of recombinant factor VIIa in plasma from patients with severe haemophilia A 55 Cirrhosis and liver transplantation Chapter 3. -
Supplementary Table 4
Li et al. mir-30d in human cancer Table S4. The probe list down-regulated in MDA-MB-231 cells by mir-30d mimic transfection Gene Probe Gene symbol Description Row set 27758 8119801 ABCC10 ATP-binding cassette, sub-family C (CFTR/MRP), member 10 15497 8101675 ABCG2 ATP-binding cassette, sub-family G (WHITE), member 2 18536 8158725 ABL1 c-abl oncogene 1, receptor tyrosine kinase 21232 8058591 ACADL acyl-Coenzyme A dehydrogenase, long chain 12466 7936028 ACTR1A ARP1 actin-related protein 1 homolog A, centractin alpha (yeast) 18102 8056005 ACVR1 activin A receptor, type I 20790 8115490 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 15688 7979904 ADAM21 ADAM metallopeptidase domain 21 14937 8054254 AFF3 AF4/FMR2 family, member 3 23560 8121277 AIM1 absent in melanoma 1 20209 7921434 AIM2 absent in melanoma 2 19272 8136336 AKR1B10 aldo-keto reductase family 1, member B10 (aldose reductase) 18013 7954777 ALG10 asparagine-linked glycosylation 10, alpha-1,2-glucosyltransferase homolog (S. pombe) 30049 7954789 ALG10B asparagine-linked glycosylation 10, alpha-1,2-glucosyltransferase homolog B (yeast) 28807 7962579 AMIGO2 adhesion molecule with Ig-like domain 2 5576 8112596 ANKRA2 ankyrin repeat, family A (RFXANK-like), 2 23414 7922121 ANKRD36BL1 ankyrin repeat domain 36B-like 1 (pseudogene) 29782 8098246 ANXA10 annexin A10 22609 8030470 AP2A1 adaptor-related protein complex 2, alpha 1 subunit 14426 8107421 AP3S1 adaptor-related protein complex 3, sigma 1 subunit 12042 8099760 ARAP2 ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 2 30227 8059854 ARL4C ADP-ribosylation factor-like 4C 32785 8143766 ARP11 actin-related Arp11 6497 8052125 ASB3 ankyrin repeat and SOCS box-containing 3 24269 8128592 ATG5 ATG5 autophagy related 5 homolog (S. -
UK National Haemophilia Database Bleeding Disorder
UKHCDO Annual Report 2016 & Bleeding Disorder Statistics for 2015/2016 Published by United Kingdom Haemophilia Centre Doctors’ Organisation 2016 © UKHCDO 2016 Copyright of the United Kingdom Haemophilia Centre Doctors’ Organisation. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any other form by any means, electronic, mechanical, photocopying or otherwise without the prior permission in writing of the Chairman, c/o Secretariat, UKHCDO, City View House, Union Street, Ardwick, Manchester, M12 4JD. ISBN: 978-1-901787-20-7 UKHCDO Annual Report 2016 & Bleeding Disorder Statistics for 2015/2016 Contents 1. Chairman’s Report 1 2. Bleeding Disorder Statistics for 2015 / 2016 Contents 4 2.0. Comments on the Bleeding Disorder Statistics for 2015 / 2016 7 2.1 Haemophilia A 10 2.2 Haemophilia B 39 2.3 Von Willebrand Disease 56 2.4 Inhibitors Congenital and Acquired 61 2.5 Rarer Bleeding Disorders 67 2.6 Adverse Events 71 2.7 Morbidity and Mortality 74 3. Data Management Working Party 81 4. Haemtrack Group Report 84 5. Genetics Working Party 86 6. Genetic Laboratory Network 87 7. Inhibitor Working Party 89 8. Musculoskeletal Working Party 91 9. Paediatric Working Party 92 10. von Willebrand Disease Working Party 94 11. Obstetric Task Force 95 12. Therapeutic Task Force on Enhanced Half-Life Products 96 13. UK Haemophilia Data Managers’ Forum Group 97 14. Haemophilia Nurses’ Association 98 15. Haemophilia Chartered Physiotherapists’ Association 99 16. BCSH Haemostasis and Thrombosis Task Force 100 17. Haemophilia Society 102 18. The Macfarlane Trust 110 UKHCDO Annual Report 2016 & Bleeding Disorder Statistics for 2015/2016 1. -
Acquired Bleeding Disorders Tiede, Andreas; Zieger, Barbara; Lisman, Ton
University of Groningen Acquired bleeding disorders Tiede, Andreas; Zieger, Barbara; Lisman, Ton Published in: Haemophilia DOI: 10.1111/hae.14033 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2021 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Tiede, A., Zieger, B., & Lisman, T. (2021). Acquired bleeding disorders. Haemophilia, 27(S3), 5-13. https://doi.org/10.1111/hae.14033 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 30-09-2021 Received: 24 February 2020 | Accepted: 23 April 2020 DOI: 10.1111/hae.14033 SUPPLEMENT ARTICLE Acquired bleeding disorders Andreas Tiede1 | Barbara Zieger2 | Ton Lisman3 1Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Abstract Medical School, Hannover, Germany Acquired bleeding disorders can accompany hematological, neoplastic, autoimmune, 2 Division of Pediatric Hematology and cardiovascular or liver diseases, but can sometimes also arise spontaneously. -
Haemostasis & Thrombosis Laboratory User Guide
Haemostasis and Thrombosis Laboratory User Guide HAEMOSTASIS & THROMBOSIS LABORATORY USER GUIDE Document number: HPA-FO-002 WARNING: This is a controlled Page: 1 of 38 Author: Sarah Clarke document Date issued: 08/06/2020 Approved by: Head BMS Revision: 13.0 Haemostasis and Thrombosis Laboratory User Guide CONTENTS 1 INTRODUCTION ....................................................................................................... 4 2 LOCATION ................................................................................................................ 4 3 OPENING HOURS .................................................................................................... 5 3.1 Routine Coagulation Screening Service ................................................................ 5 3.2 Specialist Coagulation Service: ............................................................................. 5 4 CONTACT NUMBERS AND KEY PERSONNEL ...................................................... 6 5 CONFIDENTIALITY AND THE PROTECTION OF PERSONAL INFORMATION ..... 6 6 COMPLAINTS AND COMPLIMENTS……………………………………………………..7 7 CLINICAL INFORMATION ........................................................................................ 8 8 CLINICAL ADVICE AND INTERPRETATION ........................................................... 8 9 LABELLING OF REQUEST FORMS ........................................................................ 8 10 LABELLING OF SPECIMENS .................................................................................. 9 11 SAMPLE REQUIREMENTS -
Hemostasis: Definition
Bleeding disorders in children prof. Mariusz Wysocki, Katedra i Klinika Pediatrii, Hematologii i Onkologii Collegium Medicum Bydgoszcz UMK Toruń Hemostasis: definition • the sum total of those specialized functions within the circulating blood and its vessels that are intended to stop hemorrhage Hemostasis: players and phases • plasma factors • Vascular phase • inhibitors • Platelet phase • fibrinolisis • Plasma phase • platelets • vessels The coagulation system Bleeding disorders: clinical approach • history • physical examination • laboratory tests Bleeding diosrders: signs and symptoms Site Within normal May be abnormal Usually due to a limits and due to a bleeding disorder number of causes Nose Finger – induced Unilateral Recurrent, requiring medical intervention or causing anemia Oral Blood on brush Gum ooze < 30 min Gum ooze > 30 min Gut Rectal fissure, blood Haematemesis, in nappy Melaena Bleeding diorders: signs and symptoms Site Within normal May be abnormal Usually due to a limits and due to a bleeding disorder number of causes Menstrual loss 4 – 7 days „same as Mum” Loss leading to anemia or transfusion Skin Shins don’t count Bony prominences Spontaneous bruising over soft areas, laceration bleeding > 30 min Joints and muscles Trauma induced Spontaneous Intracranial Neonatal , trauma Spontaneous induced History: neonates (Sharathkumar A, 2008, Bowman M, 2009) • prolonged bleeding at the circumcision site, • cephalohematomas, • prolonged umbilical stump bleeding Warning signgs and symptoms: Epistaxis: (Sharathkumar A, 2008, -
Spontaneous Intraocular Bleeding As an Initial Presentation of Factor XI Deficiency
Hematocase Spontaneous intraocular bleeding as an initial presentation of Factor XI deficiency L. Duquenne, MD1, V. Schlesser, PhD2, Z. Jedidi, MD3, L. Plawny, MD4 Haemophilia C, also known as Rosenthal syndrome, is a rare disorder affecting essentially persons of Ashkenazi Jewish ascendancy. We report the case of a 79 year old patient without previous bleeding history, except for slight bruising, who presented with a severe retinal bleeding in the absence of trauma. Biology showed elevated activated partial thromboplastin time (77,7 seconds vs. normal range 30-36 seconds). Factor analysis showed isolated decreased Factor XI of 1%. No Factor XI inhibitor could be found. The patient was subsequently treated with Factor XI infusions which allowed a reduction of the bleeding and normal eyesight within four days. Spontaneous bleeding in old age is a rare inaugural sign of Factor XI deficiency, such episodes mostly occur after haemostatic challenge such as surgery or trauma leading to blood analysis and coagulation tests. Intraocular haemorrhage is an uncommon presentation of mild bleeding disorders.1-5 (Belg J Hematol 2014;5(1):22-24) Introduction most prevalent genetic defects among the Ashkenazy Haemophilia C is defined by a dysfunction of the Factor Jewish population, eight to nine percent of them presents XI activity. It can result from an impairment of secre- a heterozygous mutation while homozygosity varies tion, dimerisation or by a mechanism of heterodimer from 0.22% - 0.53%.1-3 trapping in heterozygous subjects. A bleeding score has been computed by the Interna- Factor XI (FXI) is a plasma glycoprotein that partici- tional Multicentre Study initially described for von pates in the intrinsic phase of blood coagulation.6,7 Un- Willebrand disease, defining grades of bleeding severity like other contact factors, FXI plays an important role in coagulation disorders. -
A Potential Role for the STXBP5-AS1 Gene in Adult ADHD Symptoms the EAGLE-ADHD Consortium
VU Research Portal A Potential Role for the STXBP5-AS1 Gene in Adult ADHD Symptoms The EAGLE-ADHD Consortium published in Behavior Genetics 2019 DOI (link to publisher) 10.1007/s10519-018-09947-2 document version Publisher's PDF, also known as Version of record document license Article 25fa Dutch Copyright Act Link to publication in VU Research Portal citation for published version (APA) The EAGLE-ADHD Consortium (2019). A Potential Role for the STXBP5-AS1 Gene in Adult ADHD Symptoms. Behavior Genetics, 49(3), 1-16. https://doi.org/10.1007/s10519-018-09947-2 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 30. Sep. 2021 Behavior Genetics (2019) 49:270–285 https://doi.org/10.1007/s10519-018-09947-2 ORIGINAL RESEARCH A Potential Role for the STXBP5-AS1 Gene in Adult ADHD Symptoms A. -
National Bloood Authority Annual Report 2010–11
NATIONAL BLOOD AUTHORITY BLOOD NATIONAL NATIONAL BLOOD AUTHORITY AUSTRALIA ANNUAL REPORT 2010–2011 AUSTRALIA ANNUAL REPORT ANNUAL 2010–2011 NATIONAL BLOOD AUTHORITY AUSTRALIA ANNUAL REPORT 2010–2011 Our mission is to secure a quality blood supply through world leading contractual arrangements; promote safe, high quality management and use of blood and blood products in Australia; and drive continual performance improvement across the sector. NBA 38977 Annual Report 2010-11_Text_AW4.indd i 14/10/11 5:23 PM ii 2010–11 With the exception of any logos and registered trademarks, and where otherwise noted, all material presented in this document is provided under a Creative Commons Attribution 3.0 Australia (http://creativecommons.org/licenses/by/3.0/au/) licence. ANNUAL REPORT The details of the relevant licence conditions are available on the Creative Commons NBA website (accessible using the links provided) as is the full legal code for the CC BY 3.0 AU licence (http://creativecommons.org/licenses/by/3.0/au/legalcode). The content obtained from this document or derivative of this work must be attributed as the National Blood Authority annual report 2010–11. ISSN 1832–1909 This report is available online at: www.nba.gov.au/pubs/annual-report.html Printed by: Paragon Printers Australasia Designed by: Swell Design Group Contact offi cer: Stephanie Gunn Acting CEO and General Manager Locked Bag 8430 Canberra ACT 2601 Telephone: 02 6211 8300 Facsimile: 02 6211 8330 Email: [email protected] Website: www.nba.gov.au Images of blood and blood products contained in graphics are courtesy of NBA’s suppliers. -
The Life Cycle of Platelet Granules
The life cycle of platelet granules The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Sharda, Anish, and Robert Flaumenhaft. 2018. “The life cycle of platelet granules.” F1000Research 7 (1): 236. doi:10.12688/f1000research.13283.1. http://dx.doi.org/10.12688/ f1000research.13283.1. Published Version doi:10.12688/f1000research.13283.1 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:35981871 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA F1000Research 2018, 7(F1000 Faculty Rev):236 Last updated: 28 FEB 2018 REVIEW The life cycle of platelet granules [version 1; referees: 2 approved] Anish Sharda, Robert Flaumenhaft Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA First published: 28 Feb 2018, 7(F1000 Faculty Rev):236 (doi: Open Peer Review v1 10.12688/f1000research.13283.1) Latest published: 28 Feb 2018, 7(F1000 Faculty Rev):236 (doi: 10.12688/f1000research.13283.1) Referee Status: Abstract Invited Referees Platelet granules are unique among secretory vesicles in both their content and 1 2 their life cycle. Platelets contain three major granule types—dense granules, α-granules, and lysosomes—although other granule types have been reported. version 1 Dense granules and α-granules are the most well-studied and the most published physiologically important. -
Bypassing Agents Review
National Essential Medicines List Tertiary/Quaternary Medication Review Process Bypassing Agents Date: September 2017 Medication: Haemophilia bypassing agents Recombinant Factor VIIa (rVIIa) Activated Prothrombin Complex Concentrate (aPCC) Indication: Haemophilia with inhibitors (on demand, when presenting with a significant bleed) Introduction Haemophilia refers to inherited bleeding disorders caused by deficiency of specific coagulation factors. Haemophilia A is caused by coagulation factor VIII (FVIII) deficiency, haemophilia B by deficiency of coagulation factor IX (FIX), and haemophilia C by deficiency of coagulation factor XI. These clotting factor deficiencies are caused by recessive mutations of the respective clotting factor genes. Both diseases have the same clinical presentation, so their specific diagnosis must be established by factor assay. Haemophilia A has a prevalence of about 1 in 10 000 males, while haemophilia B is less common, with a prevalence of about 1 in 35 000 males. Haemophilia A and B is treated using FVIII-replacement or Factor FIX therapy, but administration of the factor can lead to the development of anti-FVIII or FIX antibodies, commonly known as inhibitors. These inhibitors interfere with the factor function and prevent coagulation. Inhibitors are usually IgG antibodies that neutralise the procoagulant activity of FVIII or FIX. About 10 - 15% of haemophilia A patients and 1 - 3% of haemophilia B patients may develop persistent inhibitors, which make treatment with factor concentrates difficult.1 Haemophilia patients with inhibitors are at a higher risk of experiencing a bleeding episode and are more difficult to treat. Treatment of acute bleeding episodes in patients with high-responding inhibitors most often involves the use of bypassing haemostatic agents, such as plasma-derived activated prothrombin complex concentrates (aPCC) or recombinant activated Factor VII (rFVIIa). -
Spatial Sorting Enables Comprehensive Characterization of Liver Zonation
ARTICLES https://doi.org/10.1038/s42255-019-0109-9 Spatial sorting enables comprehensive characterization of liver zonation Shani Ben-Moshe1,3, Yonatan Shapira1,3, Andreas E. Moor 1,2, Rita Manco1, Tamar Veg1, Keren Bahar Halpern1 and Shalev Itzkovitz 1* The mammalian liver is composed of repeating hexagonal units termed lobules. Spatially resolved single-cell transcriptomics has revealed that about half of hepatocyte genes are differentially expressed across the lobule, yet technical limitations have impeded reconstructing similar global spatial maps of other hepatocyte features. Here, we show how zonated surface markers can be used to sort hepatocytes from defined lobule zones with high spatial resolution. We apply transcriptomics, microRNA (miRNA) array measurements and mass spectrometry proteomics to reconstruct spatial atlases of multiple zon- ated features. We demonstrate that protein zonation largely overlaps with messenger RNA zonation, with the periportal HNF4α as an exception. We identify zonation of miRNAs, such as miR-122, and inverse zonation of miRNAs and their hepa- tocyte target genes, highlighting potential regulation of gene expression levels through zonated mRNA degradation. Among the targets, we find the pericentral Wingless-related integration site (Wnt) receptors Fzd7 and Fzd8 and the periportal Wnt inhibitors Tcf7l1 and Ctnnbip1. Our approach facilitates reconstructing spatial atlases of multiple cellular features in the liver and other structured tissues. he mammalian liver is a structured organ, consisting of measurements would broaden our understanding of the regulation repeating hexagonally shaped units termed ‘lobules’ (Fig. 1a). of liver zonation and could be used to model liver metabolic func- In mice, each lobule consists of around 9–12 concentric lay- tion more precisely.