Overview of the Coagulation System

Total Page:16

File Type:pdf, Size:1020Kb

Overview of the Coagulation System Review Article Overview of the coagulation system Address for correspondence: Sanjeev Palta, Richa Saroa, Anshu Palta1 Dr. Sanjeev Palta, Departments of Anaesthesiology and Intensive Care and 1Pathology, Government Medical College and Department of Anaesthesiology Hospital, Chandigarh, India and Intensive Care, Government Medical College and Hospital, Chandigarh, India. ABSTRACT E-mail: sanjeev_palta@yahoo. com Coagulation is a dynamic process and the understanding of the blood coagulation system has evolved over the recent years in anaesthetic practice. Although the traditional classification of the coagulation system into extrinsic and intrinsic pathway is still valid, the newer insights into coagulation provide more authentic description of the same. Normal coagulation pathway represents a balance between the pro coagulant pathway that is responsible for clot formation and the Access this article online mechanisms that inhibit the same beyond the injury site. Imbalance of the coagulation system may Website: www.ijaweb.org occur in the perioperative period or during critical illness, which may be secondary to numerous factors leading to a tendency of either thrombosis or bleeding. A systematic search of literature on DOI: 10.4103/0019-5049.144643 PubMed with MeSH terms ‘coagulation system, haemostasis and anaesthesia revealed twenty Quick response code eight related clinical trials and review articles in last 10 years. Since the balance of the coagulation system may tilt towards bleeding and thrombosis in many situations, it is mandatory for the clinicians to understand physiologic basis of haemostasis in order to diagnose and manage the abnormalities of the coagulation process and to interpret the diagnostic tests done for the same. Key words: Anaesthesia, Coagulation system, haemostasis INTRODUCTION It is important for a perioperative physician to understand the intricacies of two systems (more so in The concept of blood coagulation dates back to 1960’s a preexisting haematological disorder) that go side by when Davie, Ratnoff and Macfarlane described the side in maintaining the circulating blood in a fluidic “waterfall” and “cascade” theories outlining the state. fundamental principle of cascade of proenzymes leading to activation of downstream enzymes.[1] Pathological situations requiring surgery or anaesthesia Haemostasis, defined as arrest of bleeding, comes from or any other invasive procedure trigger the haemostatic Greek, haeme meaning blood and stasis meaning system. This balance is also disturbed by trauma, to stop.[2] This thrombohaemmorhagic balance is cytokines or infectious agents. Thus, the perioperative maintained in the body by complicated interactions period is at high risk for both prohaemorrhagic and between coagulation and the fibrinolytic system as prothrombotic abnormalities. Hypoxia, hypothermia, well as platelets and vessel wall. metabolic acidosis and extracorporeal circulation may also further aggravate the situation.[4] Usually, the coagulation process is under the inhibitory control of several inhibitors that limit the clot Coagulopathy, may also be encountered by the formation, thus avoiding the thrombus propagation. intensivist due to physiological disturbances, This delicate balance is interrupted whenever the disturbances in the primary haemostasis, abnormalities procoagulant activity of the coagulation factors is of blood, plasma or due to disseminated intravascular increased, or the activity of naturally occurring coagulation (DIC).[5] inhibitors is decreased.[3] Some of the thrombogenic and antithrombogenic components are listed in This review aims to simplify the understanding of Table 1. the coagulation system as a whole as well as discuss How to cite this article: Palta S, Saroa R, Palta A. Overview of the coagulation system. Indian J Anaesth 2014;58:515-23. Indian Journal of Anaesthesia | Vol. 58 | Issue 5 | Sep-Oct 2014 515 Palta, et al.: Overview: Coagulation system Table 1: Thrombogenic and antithrombogenic Normally platelets do not adhere to intact vascular components in the body endothelium. Subsequent to the vascular injury, Site Thrombogenic Antithrombogenic platelets adhere to collagen and vWF in the Vessel wall Exposed endothelium Heparin subendothelial tissue and undergo a morphological TF Thrombomodulin change by assuming irregular surface, forming Collagen Tissue plasminogen activator Circulating Platelets Antithrombin numerous pseudopods thus drastically increasing [10] elements Platelet activating factor Protein C and S their surface area. The formation of the platelet plug Clotting factor Plasminogen involves a series of steps: Prothrombin Fibrinogen Platelet adhesion vWF After vascular injury vWf acts as a bridge between vWF – Von Willebrand factor; TF – Tissue factor endothelial collagen and platelet surface receptors GpIb and promotes platelet adhesion.[9] The platelet various abnormalities of the same, which may have an glycoprotein complex I (GP-Ib) is the principal receptor impact in the perioperative period and ICU.They can be for vWF. classified as those that affect the primary haemostasis, the coagulation pathways and the fibrinolytic system. Platelet secretion After adhesion, degranulation from both types of PRIMARY HAEMOSTASIS granules takes place with the release of various factors. Release of calcium occurs here. Calcium binds to the Primary haemostasis results from complex interactions phospholipids that appear secondary to the platelet between platelets, vessel wall and adhesive proteins activation and provides a surface for assembly of leading to the formation of initial ‘platelet plug’. The various coagulation factors. endothelial cells lining the vascular wall exhibit the antithrombotic properties due to multiple factors viz: Platelet aggregation negatively charged heparin-like glycosaaminoglycans, Thromboxane A2 produced by activated platelets neutral phospholipids, synthesis and secretion provide stimulus for further platelet aggregation. of platelet inhibitors, coagulation inhibitors and TxA2 along with ADP enlarge this platelet aggregate fibrinolysis activators. In contrast, subendothelial leading to the formation of the platelet plug, which layer is highly thrombogenic and contains collagen, seals off vascular injury temporarily. ADP binding also Von Willebrand factor (vWF) and other proteins like causes a conformational change in GpIIb/IIIa receptors laminin, thrombospondin and vitronectin that are presents on the platelet surface causing deposition of involved in platelet adhesion. Any vascular insult fibrinogen. Thrombin generation also catalyses the results in arteriolar vasospasm, mediated by reflex conversion of this fibrinogen to fibrin which adds to neurogenic mechanisms and release of local mediators the stability of the platelet plug and is now known as like endothelin and platelet-derived thromboxane secondary haemostasis.[9] A2 (TxA2).[6-8] Prostacyclin inhibits platelet aggregation (platelet anti Platelets are disc shaped, anucleate cellular fragments aggregating effect) and the balance between TxA2 and derived from megakaryocytes. They have a pivotal role prostacyclin leads to localized platelet aggregation thus in haemostasis by forming the initial haemostatic plug preventing extension of the clot thereby maintaining that provides a surface for the assembly of activated the vessel lumen patency.[6,11] coagulation factors leading to the formation of fibrin stabilized platelet aggregates and subsequent clot COAGULATION DISORDERS INVOLVING PRIMARY retraction. Platelets have two types of granules: HEMOSTASIS • α granules-contain P-selectin, fibrinogen, fibronectin, factor V, factor VIII, platelet factor Defects of primary haemostasis may be due to IV, platelet-derived growth factor and tumour abnormalities of the vessel wall or qualitative/ growth factor-α (TGF-α)[9] quantitative defects of platelets that may cause • δ granules or Dense granules-contain adenosine bleeding in varying severity. triphosphate (ATP), adenosine diphosphate (ADP), calcium (Ca), serotonin, histamine and Thrombocytopenia may be observed secondary to epinephrine.[9] numerous causes listed in Table 2. The inherited platelet 516 Indian Journal of Anaesthesia | Vol. 58 | Issue 5 | Sep-Oct 2014 Palta, et al.: Overview: Coagulation system Table 2: Disorders of primary haemostasis COAGULATION PATHWAYS Bleeding disorders due to vessel wall abnormalities Septicaemia The coagulation proteins are the core components of Drug reactions the coagulation system that lead to a complex interplay Scurvy and the Ehlers-Danlos syndrome of reactions resulting in the conversion of soluble Henoch-Schönlein purpura fibrinogen to insoluble fibrin strands. Perivascular amyloidosis Bleeding disorders due to reduced platelet number (thrombocytopenia) CLOTTING FACTORS (COAGULATION PROTEINS) Leading to decreased production Vitamin B12 deficiency Majority of clotting factors are precursors of proteolytic Aplastic anaemia enzymes known as zymogens that circulate in an Leukaemia inactive form. The activation of each zymogen is Chromic immune thrombocytopenic purpura depicted by suffixing letter “a” to the Roman numeral Leading to decreased platelet survival identifying that particular zymogen. Most of the Acute immune thrombocytopenic purpura Systemic lupus erythematosus procoagulants and anticoagulants are produced by Drug-associated: Quinidine, heparin, sulpha compounds liver except factor III, IV and VIII. These proteins Infections: HIV, dengue fever undergo a post translational modification
Recommended publications
  • Genetic and Epigenetic Determinants of Thrombin Generation Potential : an Epidemiological Approach Maria-Ares Rocanin-Arjo
    Genetic and Epigenetic Determinants of Thrombin Generation Potential : an epidemiological approach Maria-Ares Rocanin-Arjo To cite this version: Maria-Ares Rocanin-Arjo. Genetic and Epigenetic Determinants of Thrombin Generation Potential : an epidemiological approach. Génétique humaine. Université Paris Sud - Paris XI, 2014. Français. NNT : 2014PA11T067. tel-01231859 HAL Id: tel-01231859 https://tel.archives-ouvertes.fr/tel-01231859 Submitted on 21 Nov 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ PARIS-SUD ÉCOLE DOCTORALE 420 : SANTÉ PUBLIQUE PARIS SUD 11, PARIS DESCARTES Laboratoire : Equip 1 de Unité INSERM UMR_S1166 Genomics & Pathophysiology of Cardiovascular Diseases THÈSE DE DOCTORAT SANTÉ PUBLIQUE - GÉNÉTIQUE STATISTIQUE par Ares ROCAÑIN ARJO Genetic and Epigenetic Determinants of Thrombin Generation Potential: an epidemiological approach. Date de soutenance : 20/11/2014 Composition du jury : Directeur de thèse : David Alexandre TREGOUET DR, INSERM U1166, Université Paris 6, Jussieu Rapporteurs : Guy MEYER PU_PH, Service de pneumologie. Hôpital européen Georges Pompidou Richard REDON DR, Institut thorax, UMR 1087 / CNRS UMR 6291 , Université de Nantes Examinateurs : Laurent ABEL DR, INSERM U980, Institut Imagine Marie Aline CHARLES DR, INSERM U1018, CESP Al meu pare (to my father /à mon père) Your genetics load the gun.
    [Show full text]
  • Haemostatic Effects of Recombinant Coagulation Factor Viia
    Haemostatic effects of recombinant coagulation factor VIIa Ton Lisman Lay-out: Pre Press, Baarn Cover illustration by Janine Marie¨n Inside illustrations by Geert Donker ISBN: 90-393-3192-8 Haemostatic effects of recombinant coagulation factor VIIa Bloedstelping door recombinant stollingsfactor VIIa (Met een samenvatting in het Nederlands) PROEFSCHIFT Ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de Rector Magnificus, Prof. Dr. W.H. Gispen, in gevolge het besluit van het College voor Promoties in het openbaar te verdedigen op dinsdag 17 december 2002 des ochtends te 10.30 uur. door Johannes Antonius Lisman Geboren op 10 Maart 1976, te Arnhem Promotor: Prof. Dr. Ph.G. de Groot Faculteit geneeskunde, Universiteit Utrecht Co-Promotor: Dr. H.K. Nieuwenhuis Faculteit geneeskunde, Universiteit Utrecht The studies described in this thesis were supported in part by an unrestricted educational grant from Novo Nordisk. Financial support by Novo Nordisk for the publication of this thesis is gratefully acknowledged. I’ve got a pen in my pocket does that make me a writer Standing on the mountain doesn’t make me no higher Putting on gloves don’t make you a fighter And all the study in the world Doesn’t make it science Paul Weller Contents Chapter 1. General Introduction 9 Haemophilia Chapter 2. Inhibition of fibrinolysis by recombinant factor VIIa in plasma from patients with severe haemophilia A 41 Appendix to chapter 2. Enhanced procoagulant and antifibrinolytic potential of superactive variants of recombinant factor VIIa in plasma from patients with severe haemophilia A 55 Cirrhosis and liver transplantation Chapter 3.
    [Show full text]
  • A Novel Detection Method of Cleaved Plasma High-Molecular-Weight Kininogen Reveals Its Correlation with Alzheimer’S Pathology and Cognitive Impairment
    Alzheimer’s& Dementia: Diagnosis, Assessment & Disease Monitoring 10 (2018) 480-489 Blood-Based Biomarkers A novel detection method of cleaved plasma high-molecular-weight kininogen reveals its correlation with Alzheimer’s pathology and cognitive impairment Hitomi Yamamoto-Imotoa,b, Daria Zamolodchikova, Zu-Lin Chena, S. Lloyd Bournec, Syeda Rizvic, Pradeep Singha, Erin H. Norrisa, Frances Weis-Garciac, Sidney Stricklanda,* aPatricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA bResearch fellow of Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan cAntibody and Bioresource Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA Abstract Introduction: Accumulation of b-amyloid is a pathological hallmark of Alzheimer’s disease (AD). b-Amyloid activates the plasma contact system leading to kallikrein-mediated cleavage of intact high-molecular-weight kininogen (HKi) to cleaved high-molecular-weight kininogen (HKc). Increased HKi cleavage is observed in plasma of AD patients and mouse models by Western blot. For potential diagnostic purposes, a more quantitative method that can measure HKc levels in plasma with high sensitivity and specificity is needed. Methods: HKi/c, HKi, and HKc monoclonal antibodies were screened from hybridomas using direct ELISA with a fluorescent substrate. Results: We generated monoclonal antibodies recognizing HKi or HKc specifically and developed sand- wich ELISAs that can quantitatively detect HKi and HKc levels in human. These new assays show that decreased HKi and increased HKc levels in AD plasma correlate with dementia and neuritic plaque scores. Discussion: High levels of plasma HKc could be used as an innovative biomarker for AD.
    [Show full text]
  • High Molecular Weight Kininogen Contributes to Early Mortality and Kidney Dysfunction in a Mouse Model of Sickle Cell Disease
    DR ERICA SPARKENBAUGH (Orcid ID : 0000-0002-5529-7847) DR NIGEL KEY (Orcid ID : 0000-0002-8930-4304) Article type : Original Article High molecular weight kininogen contributes to early mortality and kidney dysfunction in a mouse model of sickle cell disease. Erica M Sparkenbaugh1, Malgorzata Kasztan2, Michael W Henderson1, Patrick Ellsworth1, Parker Ross Davis2, Kathryn J Wilson1, Brandi Reeves1, Nigel S Key1,5, Sidney Strickland3, Keith McCrae4, David M. Pollock2, Rafal Pawlinski1* 1UNC Blood Research Center, Division of Hematology & Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC; 2Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; 3Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY; 4Taussig Cancer Institute, Department of Hematology Oncology, Cleveland Clinic, Cleveland, OH; and 5Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC. *Address for correspondence Rafal Pawlinski 8008B Mary Ellen Jones Bldg, CB 7035 This article has been accepted for publication and undergone full peer review but has not been throughAccepted Article the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/JTH.14972 This article is protected by copyright. All rights reserved 116 Manning Drive Chapel Hill, NC 27599-7025 Ph: 919-843-8387 Fax: 919-843-4896 Email: [email protected] Word Counts Abstract: 179 Main Text: 3691 Figures: Main manuscript has 6 figures, 2 tables; supplement has 4 tables and 3 figures.
    [Show full text]
  • T-Kininogen 1/2 (F-12): Sc-103886
    SANTA CRUZ BIOTECHNOLOGY, INC. T-kininogen 1/2 (F-12): sc-103886 The Power to Question BACKGROUND SOURCE In rats, four types of kininogens are produced, two of which are classical T-kininogen 1/2 (F-12) is an affinity purified goat polyclonal antibody raised high and low molecular weight kininogens and two of which are low molec- against a peptide mapping within an internal region of T-kininogen 2 of rat ular weight-like kininogens, designated T-kininogen 1 and T-kininogen 2. origin. T-kininogen 1 and T-kininogen 2 are 430 amino acid secreted rat proteins that each contain three cystatin domains and have nearly identical functions. PRODUCT Existing in plasma, both T-kininogen 1 and T-kininogen 2 are glycoproteins Each vial contains 200 µg IgG in 1.0 ml of PBS with < 0.1% sodium azide that act as thiol protease inhibitors and also play a role in blood coagulation, and 0.1% gelatin. specifically by helping to optimally position blood coagulation factors. Additionally, T-kininogen 1 and T-kininogen 2 act as precursors of the active Blocking peptide available for competition studies, sc-103886 P, (100 µg peptide Bradykinin and, as such, effect vascular permeability, hypotension peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA). and smooth muscle contraction. APPLICATIONS REFERENCES T-kininogen 1/2 (F-12) is recommended for detection of full length and heavy 1. Furuto-Kato, S., Matsumoto, A., Kitamura, N. and Nakanishi, S. 1985. chain of T-kininogen 1 and 2 of rat origin by Western Blotting (starting dilu- Primary structures of the mRNAs encoding the rat precursors for tion 1:200, dilution range 1:100-1:1000), immunofluorescence (starting dilu- bradykinin and T-kinin.
    [Show full text]
  • UK National Haemophilia Database Bleeding Disorder
    UKHCDO Annual Report 2016 & Bleeding Disorder Statistics for 2015/2016 Published by United Kingdom Haemophilia Centre Doctors’ Organisation 2016 © UKHCDO 2016 Copyright of the United Kingdom Haemophilia Centre Doctors’ Organisation. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any other form by any means, electronic, mechanical, photocopying or otherwise without the prior permission in writing of the Chairman, c/o Secretariat, UKHCDO, City View House, Union Street, Ardwick, Manchester, M12 4JD. ISBN: 978-1-901787-20-7 UKHCDO Annual Report 2016 & Bleeding Disorder Statistics for 2015/2016 Contents 1. Chairman’s Report 1 2. Bleeding Disorder Statistics for 2015 / 2016 Contents 4 2.0. Comments on the Bleeding Disorder Statistics for 2015 / 2016 7 2.1 Haemophilia A 10 2.2 Haemophilia B 39 2.3 Von Willebrand Disease 56 2.4 Inhibitors Congenital and Acquired 61 2.5 Rarer Bleeding Disorders 67 2.6 Adverse Events 71 2.7 Morbidity and Mortality 74 3. Data Management Working Party 81 4. Haemtrack Group Report 84 5. Genetics Working Party 86 6. Genetic Laboratory Network 87 7. Inhibitor Working Party 89 8. Musculoskeletal Working Party 91 9. Paediatric Working Party 92 10. von Willebrand Disease Working Party 94 11. Obstetric Task Force 95 12. Therapeutic Task Force on Enhanced Half-Life Products 96 13. UK Haemophilia Data Managers’ Forum Group 97 14. Haemophilia Nurses’ Association 98 15. Haemophilia Chartered Physiotherapists’ Association 99 16. BCSH Haemostasis and Thrombosis Task Force 100 17. Haemophilia Society 102 18. The Macfarlane Trust 110 UKHCDO Annual Report 2016 & Bleeding Disorder Statistics for 2015/2016 1.
    [Show full text]
  • Acquired Bleeding Disorders Tiede, Andreas; Zieger, Barbara; Lisman, Ton
    University of Groningen Acquired bleeding disorders Tiede, Andreas; Zieger, Barbara; Lisman, Ton Published in: Haemophilia DOI: 10.1111/hae.14033 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2021 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Tiede, A., Zieger, B., & Lisman, T. (2021). Acquired bleeding disorders. Haemophilia, 27(S3), 5-13. https://doi.org/10.1111/hae.14033 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 30-09-2021 Received: 24 February 2020 | Accepted: 23 April 2020 DOI: 10.1111/hae.14033 SUPPLEMENT ARTICLE Acquired bleeding disorders Andreas Tiede1 | Barbara Zieger2 | Ton Lisman3 1Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Abstract Medical School, Hannover, Germany Acquired bleeding disorders can accompany hematological, neoplastic, autoimmune, 2 Division of Pediatric Hematology and cardiovascular or liver diseases, but can sometimes also arise spontaneously.
    [Show full text]
  • Activation of the Plasma Kallikrein-Kinin System in Respiratory Distress Syndrome
    003 I-3998/92/3204-043 l$03.00/0 PEDIATRIC RESEARCH Vol. 32. No. 4. 1992 Copyright O 1992 International Pediatric Research Foundation. Inc. Printed in U.S.A. Activation of the Plasma Kallikrein-Kinin System in Respiratory Distress Syndrome OLA D. SAUGSTAD, LAILA BUP, HARALD T. JOHANSEN, OLAV RPISE, AND ANSGAR 0. AASEN Department of Pediatrics and Pediatric Research [O.D.S.].Institute for Surgical Research. University of Oslo [L.B.. A.O.A.], Rikshospitalet, N-0027 Oslo 1, Department of Surgery [O.R.],Oslo City Hospital Ullev~il University Hospital, N-0407 Oslo 4. Department of Pharmacology [H. T.J.],Institute of Pharmacy, University of Oslo. N-0316 Oslo 3, Norway ABSTRAm. Components of the plasma kallikrein-kinin proteins that interact in a complicated way. When activated, the and fibrinolytic systems together with antithrombin 111 contact factors plasma prekallikrein, FXII, and factor XI are were measured the first days postpartum in 13 premature converted to serine proteases that are capable of activating the babies with severe respiratory distress syndrome (RDS). complement, fibrinolytic, coagulation, and kallikrein-kinin sys- Seven of the patients received a single dose of porcine tems (7-9). Inhibitors regulate and control the activation of the surfactant (Curosurf) as rescue treatment. Nine premature cascades. C1-inhibitor is the most important inhibitor of the babies without lung disease or any other complicating contact system (10). It exerts its regulatory role by inhibiting disease served as controls. There were no differences in activated FXII, FXII fragment, and plasma kallikrein (10). In prekallikrein values between surfactant treated and non- addition, az-macroglobulin and a,-protease inhibitor inhibit treated RDS babies during the first 4 d postpartum.
    [Show full text]
  • High Molecular Weight Kininogen Is an Inhibitor of Platelet Calpain
    High molecular weight kininogen is an inhibitor of platelet calpain. A H Schmaier, … , D Schutsky, R W Colman J Clin Invest. 1986;77(5):1565-1573. https://doi.org/10.1172/JCI112472. Research Article Recent studies from our laboratory indicate that a high concentration of platelet-derived calcium-activated cysteine protease (calpain) can cleave high molecular weight kininogen (HMWK). On immunodiffusion and immunoblot, antiserum directed to the heavy chain of HMWK showed immunochemical identity with alpha-cysteine protease inhibitor--a major plasma inhibitor of tissue calpains. Studies were then initiated to determine whether purified or plasma HMWK was also an inhibitor of platelet calpain. Purified alpha-cysteine protease inhibitor, alpha-2-macroglobulin, as well as purified heavy chain of HMWK or HMWK itself inhibited purified platelet calpain. Kinetic analysis revealed that HMWK inhibited platelet calpain noncompetitively (Ki approximately equal to 5 nM). Incubation of platelet calpain with HMWK, alpha-2- macroglobulin, purified heavy chain of HMWK, or purified alpha-cysteine protease inhibitor under similar conditions resulted in an IC50 of 36, 500, 700, and 1,700 nM, respectively. The contribution of these proteins in plasma towards the inhibition of platelet calpain was investigated next. Normal plasma contained a protein that conferred a five to sixfold greater IC50 of purified platelet calpain than plasma deficient in either HMWK or total kininogen. Reconstitution of total kininogen deficient plasma with purified HMWK to normal levels (0.67 microM) completely corrected the subnormal inhibitory activity. However, reconstitution of HMWK deficient plasma to normal levels of low molecular weight kininogen (2.4 microM) did not fully correct the subnormal calpain inhibitory capacity […] Find the latest version: https://jci.me/112472/pdf High Molecular Weight Kininogen Is an Inhibitor of Platelet Calpain Alvin H.
    [Show full text]
  • Haemostasis & Thrombosis Laboratory User Guide
    Haemostasis and Thrombosis Laboratory User Guide HAEMOSTASIS & THROMBOSIS LABORATORY USER GUIDE Document number: HPA-FO-002 WARNING: This is a controlled Page: 1 of 38 Author: Sarah Clarke document Date issued: 08/06/2020 Approved by: Head BMS Revision: 13.0 Haemostasis and Thrombosis Laboratory User Guide CONTENTS 1 INTRODUCTION ....................................................................................................... 4 2 LOCATION ................................................................................................................ 4 3 OPENING HOURS .................................................................................................... 5 3.1 Routine Coagulation Screening Service ................................................................ 5 3.2 Specialist Coagulation Service: ............................................................................. 5 4 CONTACT NUMBERS AND KEY PERSONNEL ...................................................... 6 5 CONFIDENTIALITY AND THE PROTECTION OF PERSONAL INFORMATION ..... 6 6 COMPLAINTS AND COMPLIMENTS……………………………………………………..7 7 CLINICAL INFORMATION ........................................................................................ 8 8 CLINICAL ADVICE AND INTERPRETATION ........................................................... 8 9 LABELLING OF REQUEST FORMS ........................................................................ 8 10 LABELLING OF SPECIMENS .................................................................................. 9 11 SAMPLE REQUIREMENTS
    [Show full text]
  • Hemostasis: Definition
    Bleeding disorders in children prof. Mariusz Wysocki, Katedra i Klinika Pediatrii, Hematologii i Onkologii Collegium Medicum Bydgoszcz UMK Toruń Hemostasis: definition • the sum total of those specialized functions within the circulating blood and its vessels that are intended to stop hemorrhage Hemostasis: players and phases • plasma factors • Vascular phase • inhibitors • Platelet phase • fibrinolisis • Plasma phase • platelets • vessels The coagulation system Bleeding disorders: clinical approach • history • physical examination • laboratory tests Bleeding diosrders: signs and symptoms Site Within normal May be abnormal Usually due to a limits and due to a bleeding disorder number of causes Nose Finger – induced Unilateral Recurrent, requiring medical intervention or causing anemia Oral Blood on brush Gum ooze < 30 min Gum ooze > 30 min Gut Rectal fissure, blood Haematemesis, in nappy Melaena Bleeding diorders: signs and symptoms Site Within normal May be abnormal Usually due to a limits and due to a bleeding disorder number of causes Menstrual loss 4 – 7 days „same as Mum” Loss leading to anemia or transfusion Skin Shins don’t count Bony prominences Spontaneous bruising over soft areas, laceration bleeding > 30 min Joints and muscles Trauma induced Spontaneous Intracranial Neonatal , trauma Spontaneous induced History: neonates (Sharathkumar A, 2008, Bowman M, 2009) • prolonged bleeding at the circumcision site, • cephalohematomas, • prolonged umbilical stump bleeding Warning signgs and symptoms: Epistaxis: (Sharathkumar A, 2008,
    [Show full text]
  • The Role of the Plasminogen Activation System in Angioedema: Novel Insights on the Pathogenesis
    Journal of Clinical Medicine Review The Role of the Plasminogen Activation System in Angioedema: Novel Insights on the Pathogenesis Filomena Napolitano and Nunzia Montuori * Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80135 Naples, Italy; fi[email protected] * Correspondence: [email protected]; Tel.: +39-0817463309 Abstract: The main physiological functions of plasmin, the active form of its proenzyme plasminogen, are blood clot fibrinolysis and restoration of normal blood flow. The plasminogen activation (PA) system includes urokinase-type plasminogen activator (uPA), tissue-type PA (tPA), and two types of plasminogen activator inhibitors (PAI-1 and PAI-2). In addition to the regulation of fibrinolysis, the PA system plays an important role in other biological processes, which include degradation of extracellular matrix such as embryogenesis, cell migration, tissue remodeling, wound healing, angiogenesis, inflammation, and immune response. Recently, the link between PA system and angioedema has been a subject of scientific debate. Angioedema is defined as localized and self- limiting edema of subcutaneous and submucosal tissues, mediated by bradykinin and mast cell mediators. Different forms of angioedema are linked to uncontrolled activation of coagulation and fibrinolysis systems. Moreover, plasmin itself can induce a potentiation of bradykinin production with consequent swelling episodes. The number of studies investigating the PA system involvement in angioedema has grown in recent years, highlighting its relevance in etiopathogenesis. In this review, we present the components and diverse functions of the PA system in physiology and its importance in angioedema pathogenesis. Citation: Napolitano, F.; Montuori, Keywords: angioedema; fibrinolysis; plasmin; uPAR; tPA N.
    [Show full text]