Spermatophore Size Variation in the Bush-Cricket Genus Poecilimon
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sorghum Edited.Cdr
Agricultural Productivity Program for Southern Africa (APPSA) Agricultural Productivity Program for Southern Sorghum Production Guide Africa (APPSA) Agricultural Productivity Program for Southern Africa (APPSA) Agricultural Productivity Program for Southern Africa (APPSA) Table of Contents Foreword ii Acknowledgements iii 1. Introduction 1 2. Climatic and Soil Requirements 1 3. Recommended Varieties 1 4. Recommendation Management Practices 3 5. Crop Protection 4 6. Harvesting 8 7.. Post-Harvest Handling and Processing 8 i Table of Contents Foreword ii Acknowledgements iii 1. Introduction 1 2. Climatic and Soil Requirements 1 3. Recommended Varieties 1 4. Recommendation Management Practices 3 5. Crop Protection 4 6. Harvesting 8 7.. Post-Harvest Handling and Processing 8 i Foreword Acknowledgements Zambia has the potential to produce sufficient food The Editorial Committee wishes to express its gratitude to the for its citizens and for export. Sorghum Research Team of Zambia Agriculture Research Institute for providing the technical information and invaluable advice. In order to ensure that good agricultural practices are employed by farmers, crop specific production The Zambia Agriculture Research Institute wishes to recognize the information should be made available to them. support provided by World Bank through the Agricultural Productivity Programme for Southern Africa- Zambia Project (APPSA-Zambia) Due to technological advances and the changing environmental and for financing the publication of this production guide. socio-economic conditions it became necessary to revise the first edition of the Sorghum Production Guide, which was published in 2002. This revised edition is meant to provide farmers and other stakeholders crop specific information in order to promote good agricultural practices and enhance productivity and production. -
Catalogue of the Type Specimens Deposited in the Department of Entomology, National Museum, Prague, Czech Republic*
ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 30.iv.2014 Volume 54(1), pp. 399–450 ISSN 0374-1036 http://zoobank.org/urn:lsid:zoobank.org:pub:7479D174-4F1D-4465-9EEA-2BBB5E1FC2A2 Catalogue of the type specimens deposited in the Department of Entomology, National Museum, Prague, Czech Republic* Polyneoptera Lenka MACHÁýKOVÁ & Martin FIKÁýEK Department of Entomology, National Museum in Prague, Kunratice 1, CZ-148 00 Praha 4-Kunratice, Czech Republic & Department of Zoology, Faculty of Sciences, Charles University in Prague, Viniþná 7, CZ-128 43, Praha 2, Czech Republic; e-mails: [email protected]; m¿ [email protected] Abstract. Type specimens from the collection of the polyneopteran insect orders (Dermaptera, Blattodea, Orthoptera, Phasmatodea) deposited in the Department of Entomology, National Museum, Prague are catalogued. We provide precise infor- mation about types of 100 taxa (5 species of Dermaptera, 3 species of Blattodea, 4 species of Phasmatodea, 55 species of Caelifera, and 33 species of Ensifera), including holotypes of 38 taxa. The year of publication of Calliptamus tenuicer- cis anatolicus MaĜan, 1952 and Calliptamus tenuicercis iracus MaĜan, 1952 are corrected. The authorship of the names traditionally ascribed to J. Obenberger is discussed in detail. Only the name Podisma alpinum carinthiacum Obenberger, 1926 is available since the publication by OBENBERGER (1926a). ‘Stenobothrus (Stauroderus) biguttulus ssp. bicolor Charp. 1825’ and ‘Stenobothrus (Stau- roderus) ssp. collinus Karny’ sensu OBENBERGER (1926a,b) refer to Gryllus bicolor Charpentier, 1825 and Stauroderus biguttulus var. collina Karny, 1907, respectively, which both have to be considered available already since their original descriptions by CHARPENTIER (1825) and KARNY (1907). Key words. -
<I>Poecilimon Ornatus</I>
e-ISSN 1734-9168 Folia Biologica (Kraków), vol. 68 (2020), No 1 http://www.isez.pan.krakow.pl/en/folia-biologica.html https://doi.org/10.3409/fb_68-1.02 The Relationships within the Poecilimon ornatus Group (Orthoptera: Phaneropterinae) Based on the Cytochrome C Oxidase I Gene Maciej KOCIÑSKI Accepted January 21, 2020 Published online March 19, 2020 Issue online March 31, 2020 Original article KOCIÑSKI M. 2020. The relationships within the Poecilimon ornatus group (Orthoptera: Phaneropterinae) based on the cytochrome c oxidase I gene. Folia Biologica (Kraków) 68: 7-13. The genus Poecilimon includes 142 species divided into 18 groups. It is distributed throughout the Palaearctic area. One of the groups is the Poecilimon ornatus group, in which many closely related taxa have been identified (13 species). Although several searches have been carried out, the phylogeny and systematics of P. ornatus are only partly resolved. The most dispersed taxon within the group is Poecilimon affinis, having numerous subspecies. Species from the P. ornatus group have been described mainly based on morphological characteristics, as well as type of song. The aim of this study is to clarify the relationships between species from the P. ornatus group by comparing partial sequences of the cytochrome c oxidase subunit I (COI) mitochondrial gene. The analyses were carried out on 84 specimens from 23 taxa. Bush-crickets from the P. ornatus group are monophyletic, in contrast to taxa within the P. affinis complex. Not all of the previously described divisions of the group based on morphology, bioacoustics, distribution, and ecology were confirmed. Key words: bush-crickets, phylogeny, polymorphism, mitochondrial DNA. -
Katydid (Orthoptera: Tettigoniidae) Bio-Ecology in Western Cape Vineyards
Katydid (Orthoptera: Tettigoniidae) bio-ecology in Western Cape vineyards by Marcé Doubell Thesis presented in partial fulfilment of the requirements for the degree of Master of Agricultural Sciences at Stellenbosch University Department of Conservation Ecology and Entomology, Faculty of AgriSciences Supervisor: Dr P. Addison Co-supervisors: Dr C. S. Bazelet and Prof J. S. Terblanche December 2017 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: December 2017 Copyright © 2017 Stellenbosch University All rights reserved Stellenbosch University https://scholar.sun.ac.za Summary Many orthopterans are associated with large scale destruction of crops, rangeland and pastures. Plangia graminea (Serville) (Orthoptera: Tettigoniidae) is considered a minor sporadic pest in vineyards of the Western Cape Province, South Africa, and was the focus of this study. In the past few seasons (since 2012) P. graminea appeared to have caused a substantial amount of damage leading to great concern among the wine farmers of the Western Cape Province. Very little was known about the biology and ecology of this species, and no monitoring method was available for this pest. The overall aim of the present study was, therefore, to investigate the biology and ecology of P. graminea in vineyards of the Western Cape to contribute knowledge towards the formulation of a sustainable integrated pest management program, as well as to establish an appropriate monitoring system. -
December 2020 Year Volume Issue
DECEMBER 2020 YEAR : 2020 VOLUME : 4 ISSUE : 4 eISSN : 26185946 doi : 10.31015/jaefs JAEFS International Journal of Agriculture, Environment and Food Sciences Int J Agric Environ Food Sci eISSN : 26185946 DOI: 10.31015/jaefs www.jaefs.com December Volume : 4 Issue : 4 Year : 2020 International Journal of Agriculture, Environment and Food Sciences JAEFS eISSN : 26185946 www.jaefs.com Int J Agric Environ Food Sci 4 (4) December 2020 DOI: 10.31015/jaefs EditorinChief Prof.Dr. Gultekin OZDEMIR Agricultural Sciences, Horticulture, Viticulture Dicle University, Faculty of Agriculture, Department of Horticulture, Diyarbakir, Turkey [email protected] [email protected] CoEditorinChief Prof.Dr. Zeynel CEBECI Agricultural Sciences, Biometry & Genetics Çukurova University, Faculty of Agriculture, Div. of Biometry & Genetics, Adana, Turkey [email protected] Statistical Editor Assoc.Prof.Dr. Şenol ÇELİK Agricultural Sciences, Zootechnics, Biometry & GeneticsBingöl University Faculty of Agriculture Department of Zootechnics Div. of Biometry and GeneticsBingöl, Turkey [email protected] Language Editor Dr. Akbar HOSSAIN Agricultural Sciences, Plant physiology, Weed management, Bangladesh Wheat and Maize Research Institute, Nashipur, Dinajpur5200, Bangladesh [email protected] Jiban SHRESTHA Agricultural Sciences, Field Crops Nepal Agricultural Research Council, National Commercial Agriculture Research Program, Pakhribas, Dhankuta, Nepal [email protected] I International Journal of Agriculture, Environment and Food Sciences JAEFS eISSN : 26185946 www.jaefs.com Int J Agric Environ Food Sci 4 (4) December 2020 DOI: 10.31015/jaefs Editorial Board Prof.Dr. Hakan AKTAS Agricultural Sciences, Horticulture Suleyman Demirel University, Faculty of Agriculture Department of Horticulture, Isparta, Turkey [email protected] Prof.Dr. -
Crop Protection Programme
CROP PROTECTION PROGRAMME Forecasting movements and breeding of the Red-billed Quelea bird in southern Africa and improved control strategies R7967 (ZA0467) FINAL TECHNICAL REPORT 1 January 2001 – 31 March 2003 Robert A. Cheke Natural Resources Institute, University of Greenwich July 2003 This publication is an output from a research project funded by the United Kingdom Department for International Development for the benefit of developing countries. The views expressed are not necessarily those of DFID (R7967 Crop Protection Programme). CONTENTS Executive Summary 2 Background 2 Project Purpose 3 Research Activities 4 Activities for Output 1: A desk-based assessment of the environmental impacts of quelea control operations 4 Activities for Output 2: A preliminary analysis of the potential for developing a statistical medium term quelea seasonal forecasting model based on sea surface temperature (SST) data and atmospheric indicators 4 Activities for Output 3: Increased knowledge of the key relationships between environmental factors and quelea migrations and breeding activities 5 Activities for Output 4: An initial computer-based model for forecasting the timing and geographical distribution of quelea breeding activity in southern Africa developed in relation to control strategies of stakeholders 5 Outputs Report on Output 1 6 Report on Output 2 24 Report on Output 3 37 Report on Output 4 40 Conclusions and Impact 53 Outputs: supplementary comments 53 Contribution of Outputs to Developmental Impact 53 Dissemination Outputs 54 Acknowledgements 56 Biometrician’s letter 57 2 Executive Summary The project sought to improve the livelihoods of small-scale farmers in semi-arid areas of southern Africa, where their cereal crops are threatened by the Red-billed Quelea bird, and thus contribute to reductions in poverty. -
Indigenous Knowledge and Climate Change: Insights from Muzarabani, Zimbabwe
Indigenous Knowledge and Climate Change: Insights from Muzarabani, Zimbabwe by Nelson Chanza Submitted in Fulfilment of the Requirements for the Degree of Doctor of Philosophy in Environmental Geography Faculty of Science, Promoter: Dr Anton H. de Wit December, 2014 Dedication To my mother, Thokozile (Thokozayi). It was on one of the days in 2006 when we were busy weeding a dry maize field in the village. We had gone for three solid weeks without a single drop of rainfall, a situation that you described as peculiar. By that time, I did not figure it that you were referring to observable changes in the local climate system. Vividly, I can remember that on the same evening, you accurately predicted that the eastern-Mozambican current we experienced signalled the coming of rainfall in the next few hours. Amazingly, we received heavy downpours on the same night. My worry is that this knowledge will be lost as your generation vanishes. In recognition of your invaluable knowledge, I dedicate this thesis to you. ii Acknowledgements My two solid years of family detachment have proven beyond doubt that my prudent wife, Nyasha is a gift from God. She defied all the odds to make sure that our kids Tabitha, Angel and Prophecy received adequate parental care. In particular, she braved the demanding questions that our son incessantly pressed concerning his father’s whereabouts – Dadie varipi mama? Vanouya rini? Vanodii kuuya kumba? Her diligent support made this output possible. An expression of gratitude goes to Dr Anton de Wit for his thoughtful comments and guidance towards the successful production of this thesis. -
Biomass Power Project Invertebrates Scoping Level
Biomass Power Project Invertebrates Scoping level John Irish 21 June 2017 Biodata Consultancy cc P.O. Box 30061, Windhoek, Namibia [email protected] 2 Table of Contents 1 Introduction........................................................................................................................3 2 Approach to study..............................................................................................................3 2.1 Terms of reference..........................................................................................................3 2.2 Methodology...................................................................................................................3 2.2.1 Literature survey..........................................................................................................3 2.2.2 Site visits......................................................................................................................5 3 Limitations and Assumptions.............................................................................................5 4 Legislative context..............................................................................................................6 4.1 Applicable laws and policies...........................................................................................6 5 Results...............................................................................................................................7 5.1 Raw diversity...................................................................................................................7 -
Re-Evaluation of the Genus Phonochorion (Orthoptera: Tettigoniidae: Phaneropterinae)
Eur. J. Entomol. 107: 631–645, 2010 http://www.eje.cz/scripts/viewabstract.php?abstract=1574 ISSN 1210-5759 (print), 1802-8829 (online) Re-evaluation of the genus Phonochorion (Orthoptera: Tettigoniidae: Phaneropterinae) HASAN SEVGøLø1, SELIM S. CAöLAR2 and øSMAIL K. SAöLAM 2* 1Ordu University, Faculty of Art and Science, Department of Biology, Cumhuriyet Campus, Ordu, Turkey; e-mail: [email protected] 2Hacettepe University, Faculty of Science, Department of Biology, Ecological Sciences Research Laboratories, 06800, Beytepe, Ankara, Turkey; e-mail: [email protected] Key words. Orthoptera, Tettigoniidae, Phaneropterinae, Phonochorion, morphology, systematics, bioacoustics, distribution, bush-crickets, Caucasus, East Black Sea Mountains, Lesser Caucasus Mountains Abstract. Phonochorion Uvarov (Orthoptera: Tettigoniidae: Phaneropterinae) is a little known genus consisting of three species: Ph. satunini, Ph. artvinensis and Ph. uvarovi. The objective of this study is to conduct a thorough distributional, taxonomic and system- atic revision of the genus Phonochorion using both bioacustic and external morphological characters. Field surveys indicate that the genus is distributed from the Trabzon region of Turkey to the Khulo province of Georgia however the exact limit of the eastern dis- tribution of the genus remains unknown. Phonochorion species occur only on the northern slopes of the East Black Sea and Lesser Caucasus Mountains. The Coruh Valley, which seprates the East Black Sea and Lesser Caucasus Mountain ranges, seems to be an effective physical and climatic barrier and determines the distribution of these species. Ph. uvarovi can clearly be distinguished from Ph. satunini and Ph. artvinensis by the calling songs of males and external morphological characters. Ph. artvinensis and Ph. satunini differ in several taxonomic characters but the males have virtually identical calling songs. -
Important Bird and Biodiversity Areas of South Africa
IMPORTANT BIRD AND BIODIVERSITY AREAS of South Africa INTRODUCTION 101 Recommended citation: Marnewick MD, Retief EF, Theron NT, Wright DR, Anderson TA. 2015. Important Bird and Biodiversity Areas of South Africa. Johannesburg: BirdLife South Africa. First published 1998 Second edition 2015 BirdLife South Africa’s Important Bird and Biodiversity Areas Programme acknowledges the huge contribution that the first IBA directory (1998) made to this revision of the South African IBA network. The editor and co-author Keith Barnes and the co-authors of the various chapters – David Johnson, Rick Nuttall, Warwick Tarboton, Barry Taylor, Brian Colahan and Mark Anderson – are acknowledged for their work in laying the foundation for this revision. The Animal Demography Unit is also acknowledged for championing the publication of the monumental first edition. Copyright: © 2015 BirdLife South Africa The intellectual property rights of this publication belong to BirdLife South Africa. All rights reserved. BirdLife South Africa is a registered non-profit, non-governmental organisation (NGO) that works to conserve wild birds, their habitats and wider biodiversity in South Africa, through research, monitoring, lobbying, conservation and awareness-raising actions. It was formed in 1996 when the IMPORTANT South African Ornithological Society became a country partner of BirdLife International. BirdLife South Africa is the national Partner of BirdLife BIRD AND International, a global Partnership of nature conservation organisations working in more than 100 countries worldwide. BirdLife South Africa, Private Bag X5000, Parklands, 2121, South Africa BIODIVERSITY Website: www.birdlife.org.za • E-mail: [email protected] Tel.: +27 11 789 1122 • Fax: +27 11 789 5188 AREAS Publisher: BirdLife South Africa Texts: Daniel Marnewick, Ernst Retief, Nicholas Theron, Dale Wright and Tania Anderson of South Africa Mapping: Ernst Retief and Bryony van Wyk Copy editing: Leni Martin Design: Bryony van Wyk Print management: Loveprint (Pty) Ltd Mitsui & Co. -
The Trait As You Like It
bioRxiv preprint doi: https://doi.org/10.1101/751826; this version posted October 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Morphometry and feeding behaviour in two orthopteran species in the Kalahari (Namibia): The trait as you like it Erminia Conti,a,* Giovanni Costa,a and Christian Mulder,a a Animal Biology Unit, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy *Corresponding author (Email: [email protected]) EC, 0000-0002-8931-6284; CM, 0000-0001-5735-6989 High entomological trait variability is supposed to reflect a combination of intra- and inter-phenotype signals. These functional signals are mirroring different behaviours and feeding habits. Our main aim was to assess if the trait distribution of body measurements of two closely related Orthoptera species is further more significantly influenced by sex (intraspecific variance) or by species (interspecific variance). To achieve this, we collected in Namibia (Africa) tettigoniids belonging to the sympatric species Acanthoplus discoidalis and Acanthoplus longipes. We measured in the field the total body length, the maximal pronotal width and length, and the third pair of legs (femur and tibia) of 106 adults. We derived the body mass and volume from empirical length and width values of the sampled specimens and compared them with literature data on African tettigoniids. The discriminant analysis shows that at species level the locomotory traits as captured by tibia and femur lengths and the size traits as captured by body and pronotal lengths clearly separate the two species. -
Biology and Control of Armoured Bush Crickets in Southern Africa FINAL TECHNICAL REPORT
CROP PROTECTION PROGRAMME Biology and Control of Armoured Bush Crickets in Southern Africa NRInternational Contract No. ZA0309 NRRD Project No. R7428 FINAL TECHNICAL REPORT 1 October 1999 - 30 September 2002 S V Green Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK Executive Summary Armoured bush crickets (ABC) are destructive, sporadic pests of smallholder cereal crops in semi-arid areas of southern Africa. This project sought to develop and promote a sustainable IPM strategy against ABC, working in collaboration with smallholder farmers and the Botswana MoA. The two principal areas of research were: 1) Population dynamics of ABC, aiming to develop an ABC outbreak forecasting system; 2) Development and testing of a range of environmentally benign ABC control measures appropriate for resource-poor farmers. Ecological research filled in important gaps in our understanding of ABC population biology. ABC eggs were found very vulnerable to waterlogging, and soil moisture was needed only in the final stages of embryo development. High summer incubation temperatures are critical for egg development and hatching. Field studies revealed annual egg mortality of >50%, due primarily to predation by ants. Egg parasitism was rare. Ant predation was higher in fields than in Acacia scrub, the preferred habitat for oviposition. Females are selective in their choice of oviposition site, preferring to lay under shady bushes. These ecological insights contributed to the development of a population model. A key element in this model is that adult fecundity and subsequent egg survival are never both high in the same season, since late rains extend vegetation growth but increase egg mortality.