Biodiversity Assessment Report and Biodiversity Management Plan

Total Page:16

File Type:pdf, Size:1020Kb

Biodiversity Assessment Report and Biodiversity Management Plan Irrigation Development Support Project (IDSP) Ministry of Agriculture Government of the Republic of Zambia Biodiversity Assessment and Management Plan Irrigation Development Support Project (IDSP) Remedial Works Ngolongozya Dam 1st DRAFT 9 August, 2021 Prepared by UNOPS for the Government of the Republic of Zambia NAMES OF AUTHORS This Biodiversity Assessment and Management Plan was prepared by Mwelwa Musosha (Terrestrial Ecologist) and Bright Nyimbili (Aquatic Ecologist), with Pilila Chongo (Environmental Expert). i | P a g e Table of Contents Table of Contents .......................................................................................................................................... ii EXECUTIVE SUMMARY .................................................................................................................................. 6 1. INTRODUCTION ................................................................................................................................... 10 1.1 Brief Background ....................................................................................................................... 10 1.2 Objectives of the BDA ................................................................................................................ 12 1.2.1 Overall Objective ........................................................................................................................ 12 1.2.2 Specific Objectives for Terrestrial Assessment .......................................................................... 12 1.2.3 Specific Objectives for Aquatic Assessment .............................................................................. 13 1.3 Project Brief ...................................................................................................................................... 13 2. RELEVANT LEGISLATION AND INSTITUTIONAL FRAMEWORK............................................................. 17 2.1 National Legislation ........................................................................................................................... 17 2.2 World Bank Safeguards Policies and Guidelines ............................................................................... 22 2.3 International Conventions ................................................................................................................ 25 2.4 Institutional Arrangements for Biodiversity Management of the Sub-Project................................. 25 3. METHODOLOGY .................................................................................................................................. 26 3.1 Assessment Methodology ................................................................................................................. 26 3.1.1 Spatial scale-procedures to determine project’s area of influence ........................................... 26 3.1.2 Value of ecological resources and vulnerability of receptors .................................................... 27 3.1.3 Evaluation of significance of Impacts ......................................................................................... 31 3.1.4 Approach to mitigation of impacts ............................................................................................ 33 3.2 Data collection methods ................................................................................................................... 34 3.2.1 Desk review ................................................................................................................................ 34 3.2.2 Completion of field surveys ....................................................................................................... 34 3.2.3 Data Analysis .............................................................................................................................. 43 4. Results and Discussion ........................................................................................................................ 45 4.1 Terrestrial Survey Results ................................................................................................................. 45 4.1.1 Habitats ...................................................................................................................................... 45 4.1.2 Flora ........................................................................................................................................... 46 4.1.3 Fauna .......................................................................................................................................... 53 4.2 Aquatic Survey Results ...................................................................................................................... 63 ii | P a g e 4.2.1 Habitats ...................................................................................................................................... 63 4.2.2 Water Quality ............................................................................................................................. 66 4.2.3 Fish Survey ................................................................................................................................. 67 4.2.4. Invertebrates ............................................................................................................................. 69 4.2.5 Aquatic flora ............................................................................................................................... 70 4.3 Evaluation of Impact Significance ..................................................................................................... 71 4.1.1 Impacts Summary .................................................................................................................. 82 5. BIODIVERSITY MANAGEMENT PLAN (BMP) ........................................................................................ 84 5.1 Objectives of the BMP ...................................................................................................................... 84 5.2 Scope of the BMP .............................................................................................................................. 84 5.3 Follow-up and Monitoring .............................................................................................................. 100 5.3.1 Evaluation of monitoring ..................................................................................................... 106 5.4 Implementation of the BMP .................................................................................................... 106 Key Role and Responsibility .................................................................................................................. 106 REFERENCES .............................................................................................................................................. 112 Appendix 1: Sample Plots Coordinates ..................................................................................................... 114 Appendix 2: Main Plot Data Collection Form ............................................................................................ 114 Appendix 3: Regeneration Plot Data Collection Form .............................................................................. 115 Appendix 4: Fauna Data Collection Form ................................................................................................. 117 Appendix 5: Coordinates for Dambos of Interest in the Area .................................................................. 118 Appendix 6: Data Collection Sheet ........................................................................................................... 120 Appendix 7 – Water Analysis Results for Water Samples Collected at Ngolongozya Dam. ..................... 124 Appendix 8 Habitat Management ............................................................................................................. 126 iii | P a g e List of Tables Table 1-1: Summary of Project Brief ........................................................................................................... 14 Table 2-1: Laws relevant to the sub-project ............................................................................................... 18 Table 2-2: Relevant World Bank Operational Policies ............................................................................... 23 Table 3-1: Criteria for habitat integrity (William Latimer, 2009) ................................................................ 27 Table 3-2: Criteria for vegetation integrity ................................................................................................. 28 Table 3-3: Criteria for aquatic habitat integrity (Kleynhans, 1996) ............................................................ 28 Table 3-4: Descriptive classes for the assessment of modifications to habitat integrity (Kleynhans, 1996). .................................................................................................................................................................... 29 Table 3-5: Criteria and weights used for the assessment of habitat integrity (Kleynhans, 1996). ........... 30 Table 3-6: Intermediate habitat integrity assessment categories (Kleynhans, 1996) ................................ 31 Table 3-7: Terminology used to describe environmental and social impacts ...........................................
Recommended publications
  • Determination of Nutritional Composition of Encosternum Delegorguei Caught in Nerumedzo Community of Bikita, Zimbabwe
    International Journal of Biology; Vol. 7, No. 4; 2015 ISSN 1916-9671 E-ISSN 1916-968X Published by Canadian Center of Science and Education Determination of Nutritional Composition of Encosternum delegorguei Caught in Nerumedzo Community of Bikita, Zimbabwe Tendai A. Makore1, Penina Garamumhango1, Tinofirei Chirikure1 & Sherpherd D. Chikambi2 1 Department of BTECH Food Science and Technology, Masvingo Polytechnic, Masvingo, Zimbabwe 2 Department of Animal Science, University of Zimbabwe, Harare, Zimbabwe Correspondence: Tendai A. Makore, Department of BTECH Food Science and Technology, Masvingo Polytechnic, P.O.Box 800, Masvingo, Zimbabwe. Tel: 263-252-305. E-mail: [email protected] Received: July 20, 2015 Accepted: August 10, 2015 Online Published: August 14, 2015 doi:10.5539/ijb.v7n4p13 URL: http://dx.doi.org/10.5539/ijb.v7n4p13 Abstract Three forms of Encosternum delegorguei consumed in Nerumedzo community, Bikita, Zimbabwe were analysed for their nutritional composition. Protein, fat, ash and mineral content were determined for the preprocessed, well prepared and spoiled bugs. The proximate composition and minerals of the insects were determined using standard methods. One Way Analysis of Variance (ANOVA) was used in analyzing data. They were found to contain 30-36% protein; 51-53% fat and 1-1.5% ash respectively. Spoiled bugs contained the lowest protein content of 30.76±0.98% and highest amount of magnesium of 120±2.2 mg/100g while the preprocessed and well processed contained 110±2.5 mg/100g and 112±2.4 mg/100g respectively. Phosphorous was the most abundant in all forms with a value of 570-575 mg/100g. Calcium levels for all the three forms showed an overall mean of 85-89 mg/100g.
    [Show full text]
  • Sorghum Edited.Cdr
    Agricultural Productivity Program for Southern Africa (APPSA) Agricultural Productivity Program for Southern Sorghum Production Guide Africa (APPSA) Agricultural Productivity Program for Southern Africa (APPSA) Agricultural Productivity Program for Southern Africa (APPSA) Table of Contents Foreword ii Acknowledgements iii 1. Introduction 1 2. Climatic and Soil Requirements 1 3. Recommended Varieties 1 4. Recommendation Management Practices 3 5. Crop Protection 4 6. Harvesting 8 7.. Post-Harvest Handling and Processing 8 i Table of Contents Foreword ii Acknowledgements iii 1. Introduction 1 2. Climatic and Soil Requirements 1 3. Recommended Varieties 1 4. Recommendation Management Practices 3 5. Crop Protection 4 6. Harvesting 8 7.. Post-Harvest Handling and Processing 8 i Foreword Acknowledgements Zambia has the potential to produce sufficient food The Editorial Committee wishes to express its gratitude to the for its citizens and for export. Sorghum Research Team of Zambia Agriculture Research Institute for providing the technical information and invaluable advice. In order to ensure that good agricultural practices are employed by farmers, crop specific production The Zambia Agriculture Research Institute wishes to recognize the information should be made available to them. support provided by World Bank through the Agricultural Productivity Programme for Southern Africa- Zambia Project (APPSA-Zambia) Due to technological advances and the changing environmental and for financing the publication of this production guide. socio-economic conditions it became necessary to revise the first edition of the Sorghum Production Guide, which was published in 2002. This revised edition is meant to provide farmers and other stakeholders crop specific information in order to promote good agricultural practices and enhance productivity and production.
    [Show full text]
  • Journal of Advances in Sports and Physical Education Edible Insects Consumption
    Journal of Advances in Sports and Physical Education Abbreviated key title: J. Adv. Sport. Phys. Edu. ISSN: 2616-8642 (Print) A Publication by “Scholars Middle East Publishers” ISSN: 2617-3905 (Online) Dubai, United Arab Emirates Edible Insects Consumption: A Veritable Option to Ameliorate the Deleterious Health Consequences of Kwashiorkor in Nigeria Adeleke Olasunkanmi R* Human Kinetics and Health Education Department, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria Abstract: All over the world particularly in the developing nations including Nigeria Original Research Article more than half of the population are suffering from a situation in which one problem causes another, this problems include ignorance, poverty, malnutrition, disease and early *Corresponding author death. Approximately, one third of a life is spent as a result of a struggle for food. A Adeleke Olasunkanmi R conservative estimate places the daily toll from kwashiorkor at 10,000. A figure indicates that between 800 million and one billion persons suffer from some degree of Protein- Article History Energy Malnutrition (PEM) alone. The resultant effect of protein deficiency kwashiorkor Received: 12.09.2018 which leads illness, stunted growth, among others. Kwashiorkor and its effect could be Accepted: 26.09.2018 mitigated in West African and Nigeria through insect’s consumption. Insects are the most Published: 30.09.2018 successful, biologically, of all the groups of arthropods, and they abound in great numbers in Nigeria because of the large forest and grass land areas, fresh water and wide coastal regions which supports the existence of insects. Insects supply high quality protein which are requiring in children nutrition and they are abundant, cheap, easy to harvest, and are available throughout the year.
    [Show full text]
  • Consumption of Insects As Food in Three Villages Of
    e- ISSN: 2394 -5532 p- ISSN: 2394 -823X Scientific Journal Impact Factor: 3.762 International Journal of Applied And Pure Science and Agriculture www.ijapsa.com CONSUMPTIO N OF INSECTS AS FOOD IN THREE VILLAGES OF NORTH WEST DISTRICT ,BOTSWANA John Cassius Moreki 1 and Sethunya Obatre 2 1Department of Animal Science and Production, Botswana University of Agriculture and Natural Resources , Private Ba g 0027, Gaborone, Botswana. 2Department of Agricultural Economics, Education and ExtensExtensionion , BotswanaUniversity of Agriculture and Natural Resources , Private Bag 0027, Gaborone, Botswana . Abstract This study investigated the consumption of ed ible insects in Nxaraga, Sehithwa and Shorobe villages of the North West district of Botswana. Information was gathered using a structured questionnaire which was administered to 60 respondents across the three villages and also through direct observation. A total of six insect species were identified belonging to six families and four orders (i.e., Coleoptera, Isoptera, Lepidoptera and Orthoptera) with t he two most consumed orders being Lepidoptera and Coleoptera. Carebara vidua F. Smith (33.3%) was the most consumed followed by Sternocera orissa Buq. (21.7%), Agrius convolvuli L. (15.0%), Oryctes boas Fabr.(13.3%), Imbrasia belina Westwood (10.0%) and Lo custa migratoria (6.7%). The study revealed that insects were abundant during and/or immediately after the rainy season. This implies that insects can be harvested and preserved during the time of abundan ce to maximize their utilization in meeting the human protein needs. The common methods of collecting insects were hand picking, trapping and digging. Insects were prepared for consumption by boiling, frying or roasting.
    [Show full text]
  • Chapter 13 SOUTHERN AFRICA
    Chapter 13 Zimbabwe Chapter 13 SOUTHERN AFRICA: ZIMBABWE Taxonomic Inventory Taxa and life stages consumed Coleoptera Buprestidae (metallic woodborers) Sternocera funebris (author?), adult Sternocera orissa Buquet, adult Scarabaeidae (scarab beetles) Lepidiota (= Eulepida) anatine (author?), adult Lepidiota (= Eulepida) masnona (author?), adult Lepidiota (= Eulepida)nitidicollis (author?), adult Miscellaneous Coleoptera Scientific name(s) unreported Hemiptera Pentatomidae (stink bugs) Euchosternum (= Haplosterna; = Encosternum) delegorguei (Spinola) (= delagorguei), adult Pentascelis remipes (author?), adult Pentascelis wahlbergi (author?), adult Miscellaneous Hemiptera Scientific name(s) unreported Homoptera Cicadidae (cicadas) Loba leopardina (author?) Hymenoptera Apidae (honey bees) Trigona spp., larvae Formicidae (ants) Carebara vidua Sm., winged adult Isoptera Termitidae Macrotermes falciger Gerstacker (= goliath), winged adult, soldier, queen Macrotermes natalensis Haviland Lepidoptera Lasiocampidae (eggar moths, lappets) Lasiocampid sp., larva Limacodidae (slug caterpillars) Limacodid sp. Notodontidae (prominents) Anaphe panda (Boisdv.), larva Saturniidae (giant silkworm moths) Bunaea (= Bunea) alcinoe (Stoll), larva Bunaea sp., larva Cirina forda (Westwood), larva 1 of 12 9/20/2012 2:02 PM Chapter 13 Zimbabwe Gonimbrasia belina Westwood, larva Goodia kuntzei Dewitz (?), larva Gynanisa sp. (?), larva Imbrasia epimethea Drury, larva Imbrasia ertli Rebel, larva Lobobunaea sp., larva Microgone sp., (?), larva Pseudobunaea sp. (?),
    [Show full text]
  • Downloadable from and Animals and Their Significance
    Volume 31(3): 1–380 METAMORPHOSIS ISSN 1018–6490 (PRINT) ISSN 2307–5031 (ONLINE) LEPIDOPTERISTS’ SOCIETY OF AFRICA An overview of Lepidoptera-host-parasitoid associations for southern Africa, including an illustrated report on 2 370 African Lepidoptera-host and 119 parasitoid-Lepidoptera associations Published online: 3 November 2020 Hermann S. Staude1*, Marion Maclean1, Silvia Mecenero1,2, Rudolph J. Pretorius3, Rolf G. Oberprieler4, Simon van Noort5, Allison Sharp1, Ian Sharp1, Julio Balona1, Suncana Bradley1, Magriet Brink1, Andrew S. Morton1, Magda J. Botha1, Steve C. Collins1,6, Quartus Grobler1, David A. Edge1, Mark C. Williams1 and Pasi Sihvonen7 1Caterpillar Rearing Group (CRG), LepSoc Africa. [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] 2Centre for Statistics in Ecology, Environment and Conservation, Department of Statistical Sciences, University of Cape Town, South Africa. [email protected] 3Department of Agriculture, Faculty of Health and Environmental Science. Central University of Technology, Free State, Bloemfontein, South Africa. [email protected] 4CSIRO National Insect Collection, G. P. O. Box 1700, Canberra, ACT 2701, Australia. [email protected] 5Research & Exhibitions Department, South African Museum, Iziko Museums of South Africa, Cape Town, South Africa and Department
    [Show full text]
  • Katydid (Orthoptera: Tettigoniidae) Bio-Ecology in Western Cape Vineyards
    Katydid (Orthoptera: Tettigoniidae) bio-ecology in Western Cape vineyards by Marcé Doubell Thesis presented in partial fulfilment of the requirements for the degree of Master of Agricultural Sciences at Stellenbosch University Department of Conservation Ecology and Entomology, Faculty of AgriSciences Supervisor: Dr P. Addison Co-supervisors: Dr C. S. Bazelet and Prof J. S. Terblanche December 2017 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: December 2017 Copyright © 2017 Stellenbosch University All rights reserved Stellenbosch University https://scholar.sun.ac.za Summary Many orthopterans are associated with large scale destruction of crops, rangeland and pastures. Plangia graminea (Serville) (Orthoptera: Tettigoniidae) is considered a minor sporadic pest in vineyards of the Western Cape Province, South Africa, and was the focus of this study. In the past few seasons (since 2012) P. graminea appeared to have caused a substantial amount of damage leading to great concern among the wine farmers of the Western Cape Province. Very little was known about the biology and ecology of this species, and no monitoring method was available for this pest. The overall aim of the present study was, therefore, to investigate the biology and ecology of P. graminea in vineyards of the Western Cape to contribute knowledge towards the formulation of a sustainable integrated pest management program, as well as to establish an appropriate monitoring system.
    [Show full text]
  • Abstract Book Conference “Insects to Feed the World” | the Netherlands 14-17 May 2014
    1st International Conference 14-17 May 2014, Wageningen (Ede), The Netherlands. Insects to feed the world SUMMARY REPORT Insects to Feed the World Conference SUMMARY REPORT Document compiled by Paul Vantomme Senior Forestry Officer [email protected] Christopher Münke FAO Consultant [email protected] Insects for Food and Feed Programme Non-Wood Forest Products Programme Forestry Department FAO 00153 Rome, Italy Insects for Food and Feed: http://www.fao.org/forestry/edibleinsects/en/ and Arnold van Huis Tropical entomologist Laboratory of Entomology [email protected] Joost van Itterbeeck PhD Student Laboratory of Entomology Anouk Hakman Student Laboratory of Entomology Wageningen University and Research Centre Wageningen, The Netherlands www.wageningenur.nl/ent Cover Photograph: Participants attending a Plenary session during the Conference (Photo Paul Vantomme) Table of Contents Objectives of the conference .................................................................................. III Executive summary..................................................................................................IV Summary notes from the sessions.........................................................................VI Conclusion .................................................................................................................X Recommendations ..................................................................................................XII Annex.......................................................................................................................XIII
    [Show full text]
  • Nutritive and Anti-Nutritive Composition of Locust Bean Tree
    Journal of Scientific Research & Reports 3(13): 1771-1779, 2014; Article no. JSRR.2014.13.005 SCIENCEDOMAIN international www.sciencedomain.org Nutritive and Anti-nutritive Composition of Locust Bean Tree Emperor Moth Larvae Bunaea alcinoe (Lepidoptera-saturniidae Stoll 1780) from Gurara Local Government Area, Niger State, Nigeria B. E. N. Dauda 1* , J. T. Mathew 1, Y. B. Paiko 1 and M. M. Ndamitso 1 1Department of Chemistry Federal University of Technology PMB 65, Minna, Niger State, Nigeria. Author’s contributions This work is carried out in collaboration between all authors. Author BEND designed the study, wrote the protocol, wrote the first draft of the manuscript and he carried out pretreatment of the sample. Author JTM managed the literature researches, analyses of the study performed the (GC/MS) spectroscopy analysis. Authors MMN and JTM managed the experimental process. Author YBP identified the species of insect and carried out mineral analysis. Received 26 th October 2013 th Original Research Article Accepted 29 April 2014 Published 27th May 2014 ABSTRACT The analysis of proximate, mineral, fatty acids and anti-nutritional composition of Bunaea alcinoe were carried out. Results showed that Bunaea alcinoe had moisture 5.03±0.12, crude protein 44.23±0.62, crude lipids 10.85±0.65, crude fibre 11.80±0.27, carbohydrate 22.16±1.09 g100g -1 and energy value of 1530.08±0.06 kJ/100 g. This insect contained reasonable amounts of sodium, potassium, calcium, phosphorus, magnesium, zinc and manganese. Anti-nutritional analysis revealed the presence of oxalate (15.47±1.88), phytate (18.21±2.14) and cyanide (1.68±0.20)mg/100g; which were within the permissible limits.
    [Show full text]
  • Ole Opt Era: Buprestidae)
    J. ent. Soc. sth. Afr. 1979 Vol. p, No. I, pp. 89-114 Revision of the genera of the tribe Julodini ole opt era: Buprestidae) E. HOLM Department of Entomology, University of Pretoria, Pretoria The validity of the six genera in the tribe is confirmed and one new subgenus, Protojulodis, is described. Generic characters are reviewed, and the relevant external morphology is illustrated. Distribution maps of the genera and a phylogram and key are provided. The zoogeography of the tribe is described and interpreted and a possible phylogeny is suggested. INTRODUCTION The problem of the relative age of the tribe Julodini and its genera is a traditional one for buprestologists, as the tribe has some primitive but also some highly specialized features as compared with other tribes in the family. The generic units are ill-defined and often include remnant species with hardly any variation near to highly variable species that are obviously in a state of flux. Probably on account of the contrast in biology between this tribe and the rest of the family, adult synapomorphic characters of the tribe are distinct, though they changed little along its lineages. In the Julodini neither dults nor larvae occur in wood: all known larvae are free-living root-feeders, while adults are apparently short-lived leaf- and flower-feeders. In this paper I have assembled existing information on the morphology and distribution of the tribe and tried to find more characters that help to clarify the phylogeny (sensu Mayr) and aid in interpreting the distribution of the group. Of the characters previously overlooked, the most useful proved to be the ovipositor, hind wing venation and metacoxal sculpture.
    [Show full text]
  • Crop Protection Programme
    CROP PROTECTION PROGRAMME Forecasting movements and breeding of the Red-billed Quelea bird in southern Africa and improved control strategies R7967 (ZA0467) FINAL TECHNICAL REPORT 1 January 2001 – 31 March 2003 Robert A. Cheke Natural Resources Institute, University of Greenwich July 2003 This publication is an output from a research project funded by the United Kingdom Department for International Development for the benefit of developing countries. The views expressed are not necessarily those of DFID (R7967 Crop Protection Programme). CONTENTS Executive Summary 2 Background 2 Project Purpose 3 Research Activities 4 Activities for Output 1: A desk-based assessment of the environmental impacts of quelea control operations 4 Activities for Output 2: A preliminary analysis of the potential for developing a statistical medium term quelea seasonal forecasting model based on sea surface temperature (SST) data and atmospheric indicators 4 Activities for Output 3: Increased knowledge of the key relationships between environmental factors and quelea migrations and breeding activities 5 Activities for Output 4: An initial computer-based model for forecasting the timing and geographical distribution of quelea breeding activity in southern Africa developed in relation to control strategies of stakeholders 5 Outputs Report on Output 1 6 Report on Output 2 24 Report on Output 3 37 Report on Output 4 40 Conclusions and Impact 53 Outputs: supplementary comments 53 Contribution of Outputs to Developmental Impact 53 Dissemination Outputs 54 Acknowledgements 56 Biometrician’s letter 57 2 Executive Summary The project sought to improve the livelihoods of small-scale farmers in semi-arid areas of southern Africa, where their cereal crops are threatened by the Red-billed Quelea bird, and thus contribute to reductions in poverty.
    [Show full text]
  • Indigenous Knowledge and Climate Change: Insights from Muzarabani, Zimbabwe
    Indigenous Knowledge and Climate Change: Insights from Muzarabani, Zimbabwe by Nelson Chanza Submitted in Fulfilment of the Requirements for the Degree of Doctor of Philosophy in Environmental Geography Faculty of Science, Promoter: Dr Anton H. de Wit December, 2014 Dedication To my mother, Thokozile (Thokozayi). It was on one of the days in 2006 when we were busy weeding a dry maize field in the village. We had gone for three solid weeks without a single drop of rainfall, a situation that you described as peculiar. By that time, I did not figure it that you were referring to observable changes in the local climate system. Vividly, I can remember that on the same evening, you accurately predicted that the eastern-Mozambican current we experienced signalled the coming of rainfall in the next few hours. Amazingly, we received heavy downpours on the same night. My worry is that this knowledge will be lost as your generation vanishes. In recognition of your invaluable knowledge, I dedicate this thesis to you. ii Acknowledgements My two solid years of family detachment have proven beyond doubt that my prudent wife, Nyasha is a gift from God. She defied all the odds to make sure that our kids Tabitha, Angel and Prophecy received adequate parental care. In particular, she braved the demanding questions that our son incessantly pressed concerning his father’s whereabouts – Dadie varipi mama? Vanouya rini? Vanodii kuuya kumba? Her diligent support made this output possible. An expression of gratitude goes to Dr Anton de Wit for his thoughtful comments and guidance towards the successful production of this thesis.
    [Show full text]