45th Lunar and Planetary Science Conference (2014) 1464.pdf LUNAR FLOOR-FRACTURED CRATERS: INTRUSION EMPLACEMENT AND ASSOCIATED GRAVITY ANOMALIES. L. M. Jozwiak1, J. W. Head1, R. J. Phillips2, M. T. Zuber3, D. E. Smith3, G. A. Neu- mann4, D. M. H. Baker1, L. Wilson5, and C. Thomason2. 1Department of Geological Sciences, Brown University, Providence, RI 02912. 2Southwest Research Institute, Boulder, Colorado 80302. 3Department of Earth, Atmospher- ic, and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA 02142. 4Solar System Explora- tion Division, NASA Goddard Space Flight Center, Greenbelt, MD 20768. 5Environmental Science Department, Lancaster University, Lancaster LA1 4YQ UK. Corresponding Author:
[email protected] Introduction: Floor-fractured craters (FFCs) are a solidify (that is, reach the solidus, not necessarily equi- class of lunar crater characterized by anomalously shal- librium with the country rock). low, fractured floors, with additional characteristics Coincident with the intrusion emplacement, is the including moats, dark halo deposits, and patches of process of magma degassing, involving both initial mare material [1,2]. The two proposed formation mech- magma volatiles, such as H2O [8], and the in situ pro- anisms for floor-fractured craters include viscous re- duction of CO [9,10]. How these volatiles evolve during laxation [e.g. 3] and magmatic intrusion and sill em- intrusion emplacement, and particularly how they inter- placement [1]. Recent morphologic analysis using Lu- act with fractures formed during intrusion emplacement nar Orbiter Laser Altimeter (LOLA) data and Lunar has important bearing on what (if any) volcanic surface Reconnaissance Orbiter Camera (LROC) images sup- features are formed. ports magmatic intrusion and sill formation as the for- Volcanic Features: The surface volcanic features mation mechanism of floor-fractured craters [2].