Bioprotacs As Versatile Modulators of Intracellular Therapeutic Targets Including Proliferating Cell Nuclear Antigen (PCNA)

Total Page:16

File Type:pdf, Size:1020Kb

Bioprotacs As Versatile Modulators of Intracellular Therapeutic Targets Including Proliferating Cell Nuclear Antigen (PCNA) bioPROTACs as versatile modulators of intracellular therapeutic targets including proliferating cell nuclear antigen (PCNA) Shuhui Lima, Regina Khooa, Khong Ming Peha, Jinkai Teob, Shih Chieh Changa, Simon Nga, Greg L. Beilhartzc, Roman A. Melnykc,d, Charles W. Johannese, Christopher J. Browne, David P. Lanee, Brian Henrya, and Anthony W. Partridgea,1 aQuantitative Biosciences, MSD International, Singapore 138665; bPacific Translational Biomarkers, MSD International, Singapore 138665; cMolecular Medicine, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4; dDepartment of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8; and ep53Lab, Agency for Science, Technology and Research (A*STAR), Singapore 138648 Edited by Vishva M. Dixit, Genentech, San Francisco, CA, and approved February 7, 2020 (received for review November 22, 2019) Targeted degradation approaches such as proteolysis targeting localization, cell-cycle dependent regulation or tissue- or disease- chimeras (PROTACs) offer new ways to address disease through specific expression adds an additional layer of selectivity that can tackling challenging targets and with greater potency, efficacy, be leveraged with targeted degradation strategies. and specificity over traditional approaches. However, identifica- While small molecule targeted degradation approaches offer tion of high-affinity ligands to serve as PROTAC starting points compelling advantages, the discovery of corresponding clinical remains challenging. As a complementary approach, we describe a candidates is not without its challenges. For molecular glues, class of molecules termed biological PROTACs (bioPROTACs)— limited examples exist and PROTACs have thus far been only engineered intracellular proteins consisting of a target-binding applied to targets with available small molecules inhibitors (10). domain directly fused to an E3 ubiquitin ligase. Using GFP-tagged Classically “undruggable” proteins remain challenging although proteins as model substrates, we show that there is considerable opportunities exist to repurpose previously identified small flexibility in both the choice of substrate binders (binding positions, molecule ligands that did not block protein function for a deg- scaffold-class) and the E3 ligases. We then identified a highly ef- radation strategy. Also, of more than 600 E3 ligases encoded BIOCHEMISTRY fective bioPROTAC against an oncology target, proliferating cell by the human genome, only 4 are routinely used in PROTAC nuclear antigen (PCNA) to elicit rapid and robust PCNA degrada- design—CRBN, VHL, MDM2, and cIAP (11). The choice of the tion and associated effects on DNA synthesis and cell cycle pro- E3 determines degradation efficiencies and the current selection gression. Overall, bioPROTACs are powerful tools for interrogating lacks the diversity needed to harness the full potential of the degradation approaches, target biology, and potentially for mak- ubiquitin-proteasome system (UPS). Even if small molecule li- ing therapeutic impacts. gands to the POI were available, considerable time and effort (without assurance of success) have to be invested for testing bioPROTAC | targeted degradation | PCNA various combinations of linker lengths and E3s recruited. There is currently a poor understanding of the rules that govern stable argeted degradation approaches function by inducing the Tassembly of the ubiquitination complex in close proximity to Significance a protein of interest (POI) to catalyze its selective ubiquitin- tagging and subsequent proteasome-mediated degradation (1). Several such approaches exist including molecular glues, which Intracellular proteins interact with each other to perform — functions that are critical to normal and disease states. At- remodel the surface of an E3 ligase to induce binding to and – degradation of—neo-substrates (e.g., lenolidimide, an approved tempts at altering pathological protein protein interactions with traditional approaches have largely failed. Here, we ex- therapeutic). PROTACs (proteolysis targeting chimeras), the “ ”— other major targeted degradation class, are bispecific molecules plore an emerging approach we call bioPROTACs engi- that induce substrate degradation by simultaneously binding a neered fusion proteins that consist of a target binding domain POI and an E3 ligase (e.g., ARV-110, a degrader of the andro- and an E3 ligase, an arrangement that results in the specific gen receptor and the first-in-class PROTAC to enter clinical degradation of the therapeutic target. Our systematic study trials). Pharmacologically, small molecule degraders offer several shows bioPROTAC design requirements are highly flexible in advantages over traditional inhibitor-based therapeutics. First, terms of both the binding domain and E3 ligase components. degradation can be induced via interaction sites across the POI Resulting molecules can be used as powerful tools for uncov- surface, regardless of whether the binding site is of functional ering biology, informing on the design of small molecule target consequence (2), thus expanding the chemical space for tackling degraders (e.g. PROTACs), and, if delivery issues can be otherwise intractable targets (3). Second, molecules can be addressed, potential therapeutics. recycled for multiple rounds of degradation, a substoichiometric Author contributions: S.L., S.C.C., S.N., G.L.B., R.A.M., C.W.J., C.J.B., D.P.L., B.H., and A.W.P. property which is especially useful for high-abundance targets designed research; S.L., R.K., K.M.P., and J.T. performed research; S.L. contributed new compared to stoichiometric inhibitors may become limited by the reagents/analytic tools; S.L. and A.W.P. analyzed data; S.L. and A.W.P. wrote the paper; high systemic doses required and corresponding polypharmacology- and S.L., R.K., K.M.P., J.T., S.C.C., S.N., G.L.B., R.A.M., C.W.J., C.J.B., D.P.L., B.H., and A.W.P. based toxicities (4). Third, superior pharmacological inhibition contributed to discussion of the results and next steps. can be achieved as degradation attenuates all biological activities The authors declare no competing interest. (enzymatic, transactivation, scaffolding) and inhibition is sus- This article is a PNAS Direct Submission. tained pending protein resynthesis (5). Hence, reduced drug Published under the PNAS license. dosing frequencies can potentially be realized. Finally, enhanced 1To whom correspondence may be addressed. Email: [email protected]. specificity can be attained through differences in substrate This article contains supporting information online at https://www.pnas.org/lookup/suppl/ degradability, E3 suitability. and ternary complex stability (6–9). doi:10.1073/pnas.1920251117/-/DCSupplemental. Also, the ability to engage E3s with differences in subcellular First published March 2, 2020. www.pnas.org/cgi/doi/10.1073/pnas.1920251117 PNAS | March 17, 2020 | vol. 117 | no. 11 | 5791–5800 Downloaded by guest on September 28, 2021 ternary complex formation between substrate, PROTAC and E3, was reduced in cells expressing vhhGFP4-SPOP, as marked by making informed decisions on PROTAC design difficult. Lastly, the mCherry-positive signal. Interestingly, as vhhGFP4-SPOP ex- as PROTACs are typically composed of two ligands connected by pression increased, the degradation of H2B-GFP was attenuated. a linker, these molecules usually violate Lipinski’s rule of five and, This is consistent with the well documented “hook effect” seen thus, often suffer from permeability and metabolic liabilities (12). with small molecule-based PROTACS. Specifically, beyond a As a complementary approach to small molecule-based de- threshold concentration of a PROTAC molecule, reduced deg- graders, we sought to develop a biologic equivalent to serve both radation occurs, due to the decreased likelihood of forming the as a biological tool and as a potential therapeutic approach. prerequisite substrate:PROTAC:E3 ternary complexes in favor of Specifically, instead of using small molecules to bridge the sub- substrate:PROTAC and PROTAC:E3 binary complexes (28). strate and the E3 ligase, we have reengineered the E3 ligase by Control constructs were engineered where either one or both directly replacing its natural substrate recognition domain with a modular components were mutated. Specifically, vhhGFP4mut peptide or a miniprotein that binds a POI. These fusion proteins, lacks the complementarity determining region 3 (CDR3) and no which we term bioPROTACs (biological PROTACs), were longer recognizes GFP, whereas SPOPmut lacks the three-box expressed in cells to drive targeted degradation of POIs. Al- motif responsible for recruiting CUL3 and, thus, cannot assem- though bioPROTACs are not novel entities, the work described ble the ubiquitination machinery. In all controls, H2B-GFP levels herein represent a systematic exploration of this approach. were maintained (Fig. 1B). The selective depletion of H2B-GFP Historically, effective degraders have been described for the in mCherry-positive cells expressing vhhGFP4-SPOP but not its classically “undruggable” proteins such as β-catenin (13–15), controls was also recapitulated with confocal imaging (Fig. 1C) KRAS (16), and c-Myc (17) using domains engrafted from their and Western blot analysis of cells sorted into mCherry-positive endogenous interacting partners on to E3 ligases beyond those and mCherry-negative populations (Fig. 1D). Finally, to dem- that can be recruited by small-molecule PROTAC (e.g., βTrCP onstrate that H2B-GFP down-regulation
Recommended publications
  • Genomic Analysis of the TRIM Family Reveals Two Groups of Genes with Distinct Evolutionary Properties
    BMC Evolutionary Biology BioMed Central Research article Open Access Genomic analysis of the TRIM family reveals two groups of genes with distinct evolutionary properties Marco Sardiello1, Stefano Cairo1,3, Bianca Fontanella1,4, Andrea Ballabio1,2 and Germana Meroni*1 Address: 1Telethon Institute of Genetics and Medicine (TIGEM), Via P. Castellino 111, 80131 Naples, Italy, 2Department of Pediatrics, Federico II University, Via Sergio Pansini 5, 80131 Naples, Italy, 3Unite d'Oncogenèse et Virologie Moléculaire, Batiment Lwoff, Institut Pasteur, 28 rue de Dr. Roux, 75724 Paris Cedex 15, France and 4Department of Pharmaceutical Sciences, University of Salerno, 84084 Fisciano (SA), Italy Email: Marco Sardiello - [email protected]; Stefano Cairo - [email protected]; Bianca Fontanella - [email protected]; Andrea Ballabio - [email protected]; Germana Meroni* - [email protected] * Corresponding author Published: 1 August 2008 Received: 11 September 2007 Accepted: 1 August 2008 BMC Evolutionary Biology 2008, 8:225 doi:10.1186/1471-2148-8-225 This article is available from: http://www.biomedcentral.com/1471-2148/8/225 © 2008 Sardiello et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The TRIM family is composed of multi-domain proteins that display the Tripartite Motif (RING, B-box and Coiled-coil) that can be associated with a C-terminal domain. TRIM genes are involved in ubiquitylation and are implicated in a variety of human pathologies, from Mendelian inherited disorders to cancer, and are also involved in cellular response to viral infection.
    [Show full text]
  • The Human Dcn1-Like Protein DCNL3 Promotes Cul3 Neddylation at Membranes
    The human Dcn1-like protein DCNL3 promotes Cul3 neddylation at membranes Nathalie Meyer-Schallera, Yang-Chieh Choub,c, Izabela Sumaraa, Dale D. O. Martind, Thimo Kurza, Nadja Kathedera, Kay Hofmanne, Luc G. Berthiaumed, Frank Sicherib,c, and Matthias Petera,1 aInstitute of Biochemistry, Eidgeno¨ssiche Technische Hochschule, 8093 Zurich, Switzerland; bCenter for Systems Biology, Samuel Lunenfeld Research Institute, Toronto, ON, Canada M5G 1X5; cDepartment of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8; dDepartment of Cell Biology, University of Alberta, Edmonton, AB, Canada T6G 2H7; and eBioinformatics Group, Miltenyi Biotec, 51429 Bergisch-Gladbach, Germany Edited by Michael Rape, University of California, Berkeley, CA, and accepted by the Editorial Board June 9, 2009 (received for review December 9, 2008) Cullin (Cul)-based E3 ubiquitin ligases are activated through the enzyme and promotes Nedd8 conjugation through formation of attachment of Nedd8 to the Cul protein. In yeast, Dcn1 (defective this complex (14, 15). Human cells harbor 5 Dcn1-like proteins in Cul neddylation 1 protein) functions as a scaffold-like Nedd8 termed DCNL1–DCNL5 (also named DCUN1D 1–5 for defec- E3-ligase by interacting with its Cul substrates and the Nedd8 E2 tive in Cul neddylation 1 domain-containing protein 1–5) (Fig. Ubc12. Human cells express 5 Dcn1-like (DCNL) proteins each S1). These DCNLs have distinct amino-terminal domains, but containing a C-terminal potentiating neddylation domain but dis- share a conserved C-terminal potentiating neddylation (PONY) tinct amino-terminal extensions. Although the UBA-containing domain, which in yeast Dcn1 is necessary and sufficient for Cul DCNL1 and DCNL2 are likely functional homologues of yeast Dcn1, neddylation in vivo and in vitro (14).
    [Show full text]
  • Mutational Landscape Differences Between Young-Onset and Older-Onset Breast Cancer Patients Nicole E
    Mealey et al. BMC Cancer (2020) 20:212 https://doi.org/10.1186/s12885-020-6684-z RESEARCH ARTICLE Open Access Mutational landscape differences between young-onset and older-onset breast cancer patients Nicole E. Mealey1 , Dylan E. O’Sullivan2 , Joy Pader3 , Yibing Ruan3 , Edwin Wang4 , May Lynn Quan1,5,6 and Darren R. Brenner1,3,5* Abstract Background: The incidence of breast cancer among young women (aged ≤40 years) has increased in North America and Europe. Fewer than 10% of cases among young women are attributable to inherited BRCA1 or BRCA2 mutations, suggesting an important role for somatic mutations. This study investigated genomic differences between young- and older-onset breast tumours. Methods: In this study we characterized the mutational landscape of 89 young-onset breast tumours (≤40 years) and examined differences with 949 older-onset tumours (> 40 years) using data from The Cancer Genome Atlas. We examined mutated genes, mutational load, and types of mutations. We used complementary R packages “deconstructSigs” and “SomaticSignatures” to extract mutational signatures. A recursively partitioned mixture model was used to identify whether combinations of mutational signatures were related to age of onset. Results: Older patients had a higher proportion of mutations in PIK3CA, CDH1, and MAP3K1 genes, while young- onset patients had a higher proportion of mutations in GATA3 and CTNNB1. Mutational load was lower for young- onset tumours, and a higher proportion of these mutations were C > A mutations, but a lower proportion were C > T mutations compared to older-onset tumours. The most common mutational signatures identified in both age groups were signatures 1 and 3 from the COSMIC database.
    [Show full text]
  • Elimination Pathways of Fusion Protein and Peptide Drugs
    Review Volume 11, Issue 2, 2021, 9139 - 9147 https://doi.org/10.33263/BRIAC112.91399147 Elimination Pathways of Fusion Protein and Peptide Drugs Ali Khodadoust 1 , Hossein Aghamollaei 2 , Ali Mohammad Latifi 1 , Kazem Hasanpour 3 , Mahdi Kamali 4 , Hamid Tebyanian 5 , Gholamreza Farnoosh 1,* 1 Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran 2 Chemical Injuries Research Center, Systems biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran 3 Sabzevar University of Medical Sciences, School of Medicine, Sabzevar, Iran 4 Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran 5 Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran * Correspondence: [email protected]; Scopus Author ID 55855454400 Received: 28.07.2020; Revised: 25.08.2020; Accepted: 27.08.2020; Published: 1.09.2020 Abstract: Fusion proteins have been known as an interesting subject for scientific researches in improving properties or making a new function by synergistically incorporating two protein domains into one complex. Fusion proteins are created by ligation of two or more protein domains in a single polypeptide with functional properties. Improvement of therapeutic function is one of the main goals for developing these products. Elimination from the body is one of the most important points that should be considered in the design and production of fusion proteins. This review describes some of the most important excretion/elimination pathways of fusion peptide and protein drugs as well as serious elimination challenges in the development and manufacturing of fusion proteins. Keywords: Fusion proteins; Therapy; Pharmacokinetics; Serum half-life; Peptide.
    [Show full text]
  • And CAND1-Dependent Remodelling of the Budding Yeast SCF Complex
    ARTICLE Received 31 Jan 2013 | Accepted 20 Feb 2013 | Published 27 Mar 2013 DOI: 10.1038/ncomms2628 OPEN CSN- and CAND1-dependent remodelling of the budding yeast SCF complex Aleksandra Zemla1, Yann Thomas1, Sylwia Kedziora1, Axel Knebel1, Nicola T Wood1, Gwenae¨l Rabut2 & Thimo Kurz1 Cullin–RING ligases (CRLs) are ubiquitin E3 enzymes with variable substrate-adaptor and -receptor subunits. All CRLs are activated by modification of the cullin subunit with the ubiquitin-like protein Nedd8 (neddylation). The protein CAND1 (Cullin-associated-Nedd8- dissociated-1) also promotes CRL activity, even though it only interacts with inactive ligase complexes. The molecular mechanism underlying this behaviour remains largely unclear. Here, we find that yeast SCF (Skp1–Cdc53–F-box) Cullin–RING complexes are remodelled in a CAND1-dependent manner, when cells are switched from growth in fermentable to non-fermentable carbon sources. Mechanistically, CAND1 promotes substrate adaptor release following SCF deneddylation by the COP9 signalosome (CSN). CSN- or CAND1- mutant cells fail to release substrate adaptors. This delays the formation of new complexes during SCF reactivation and results in substrate degradation defects. Our results shed light on how CAND1 regulates CRL activity and demonstrate that the cullin neddylation– deneddylation cycle is not only required to activate CRLs, but also to regulate substrate specificity through dynamic substrate adaptor exchange. 1 Scottish Institute for Cell Signalling, Protein Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK. 2 CNRS, Universite´ Rennes 1, Institut de Ge´ne´tique et De´veloppement de Rennes, 2 avenue du Professeur Le´on Bernard, CS 34317, Rennes Cedex 35043, France.
    [Show full text]
  • Multiple Ser/Thr-Rich Degrons Mediate the Degradation of Ci/Gli by the Cul3-HIB/SPOP E3 Ubiquitin Ligase
    Multiple Ser/Thr-rich degrons mediate the degradation of Ci/Gli by the Cul3-HIB/SPOP E3 ubiquitin ligase Qing Zhanga,1,2, Qing Shia,1, Yongbin Chena,1, Tao Yuea, Shuang Lia, Bing Wanga, and Jin Jianga,b,3 Departments of aDevelopmental Biology and bPharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390 Communicated by Gary Struhl, Columbia University College of Physicians and Surgeons, New York, NY, October 19, 2009 (received for review September 8, 2009) The Cul3-based E3 ubiquitin ligases regulate many cellular pro- morphogenetic furrow (MF), where HIB acts together with Cul3 cesses using a large family of BTB domain–containing proteins as to degrade Ci, thereby limiting the duration of Hh signaling (11, their target recognition components, but how they recognize 12, 14). The Cul3-HIB regulatory circuit appears to be con- targets remains unknown. Here we identify and characterize served, because Gli proteins such as Gli2 and Gli3 can be degrons that mediate the degradation of the Hedgehog pathway degraded by HIB when expressed in Drosophila, and the mam- transcription factor cubitus interruptus (Ci)/Gli by Cul3-Hedghog– malian homolog of HIB, SPOP, can functionally replace HIB in induced MATH and BTB domain–containing protein (HIB)/SPOP. Ci degrading Ci (11). uses multiple Ser/Thr (S/T)-rich motifs that bind HIB cooperatively How Cul3-based E3 ligases recognize their substrates is to mediate its degradation. We provide evidence that both HIB and unknown, and the specific degrons in their target proteins Ci form dimers/oligomers and engage in multivalent interactions, remain to be identified for individual BTB proteins that function which underlies the in vivo cooperativity among individual HIB- as target-recognition components.
    [Show full text]
  • Kelch-Like Protein 2 Mediates Angiotensin II–With No Lysine 3 Signaling in the Regulation of Vascular Tonus
    BASIC RESEARCH www.jasn.org Kelch-Like Protein 2 Mediates Angiotensin II–With No Lysine 3 Signaling in the Regulation of Vascular Tonus Moko Zeniya, Nobuhisa Morimoto, Daiei Takahashi, Yutaro Mori, Takayasu Mori, Fumiaki Ando, Yuya Araki, Yuki Yoshizaki, Yuichi Inoue, Kiyoshi Isobe, Naohiro Nomura, Katsuyuki Oi, Hidenori Nishida, Sei Sasaki, Eisei Sohara, Tatemitsu Rai, and Shinichi Uchida Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan ABSTRACT Recently, the kelch-like protein 3 (KLHL3)–Cullin3 complex was identified as an E3 ubiquitin ligase for with no lysine (WNK) kinases, and the impaired ubiquitination of WNK4 causes pseudohypoaldosteronism type II (PHAII), a hereditary hypertensive disease. However, the involvement of WNK kinase regulation by ubiquitination in situations other than PHAII has not been identified. Previously, we identified the WNK3–STE20/SPS1-related proline/alanine-rich kinase–Na/K/Cl cotransporter isoform 1 phosphoryla- tion cascade in vascular smooth muscle cells and found that it constitutes an important mechanism of vascular constriction by angiotensin II (AngII). In this study, we investigated the involvement of KLHL proteins in AngII-induced WNK3 activation of vascular smooth muscle cells. In the mouse aorta and mouse vascular smooth muscle (MOVAS) cells, KLHL3 was not expressed, but KLHL2, the closest homolog of KLHL3, was expressed. Salt depletion and acute infusion of AngII decreased KLHL2 and increased WNK3 levels in the mouse aorta. Notably, the AngII-induced changes in KLHL2 and WNK3 expression occurred within minutes in MOVAS cells. Results of KLHL2 overexpression and knockdown experiments in MOVAS cells confirmed that KLHL2 is the major regulator of WNK3 protein abundance.
    [Show full text]
  • Strategies and Challenges for the Next Generation of Therapeutic Antibodies
    FOCUS ON THERAPEUTIC ANTIBODIES PERSPECTIVES ‘validated targets’, either because prior anti- TIMELINE bodies have clearly shown proof of activity in humans (first-generation approved anti- Strategies and challenges for the bodies on the market for clinically validated targets) or because a vast literature exists next generation of therapeutic on the importance of these targets for the disease mechanism in both in vitro and in vivo pharmacological models (experi- antibodies mental validation; although this does not necessarily equate to clinical validation). Alain Beck, Thierry Wurch, Christian Bailly and Nathalie Corvaia Basically, the strategy consists of develop- ing new generations of antibodies specific Abstract | Antibodies and related products are the fastest growing class of for the same antigens but targeting other therapeutic agents. By analysing the regulatory approvals of IgG-based epitopes and/or triggering different mecha- biotherapeutic agents in the past 10 years, we can gain insights into the successful nisms of action (second- or third-generation strategies used by pharmaceutical companies so far to bring innovative drugs to antibodies, as discussed below) or even the market. Many challenges will have to be faced in the next decade to bring specific for the same epitopes but with only one improved property (‘me better’ antibod- more efficient and affordable antibody-based drugs to the clinic. Here, we ies). This validated approach has a high discuss strategies to select the best therapeutic antigen targets, to optimize the probability of success, but there are many structure of IgG antibodies and to design related or new structures with groups working on this class of target pro- additional functions.
    [Show full text]
  • Decreased Expression of the SPOP Gene Is Associated with Poor Prognosis in Glioma
    INTERNATIONAL JOURNAL OF ONCOLOGY 46: 333-341, 2015 Decreased expression of the SPOP gene is associated with poor prognosis in glioma DACHENG DING, tao SONG, WU JUN, ZEMING TAN and JIASHENG FANG Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China Received August 23, 2014; Accepted October 3, 2014 DOI: 10.3892/ijo.2014.2729 Abstract. This study suggests that speckle-type POZ protein survival rates of patients with high-grade gliomas are <10% (SPOP) may be a tumor suppressor gene and its prognostic value at 5 years (2). Since current treatment gained little benefit in in human glioma. Real-time quantitative RT-PCR (qRT-PCR), the setting of glioma, greater attention has been paid to the western blotting, and immunohistochemical staining were expression of specific molecular markers with the goal of used to examine SPOP expression in glioma tissues and understanding the main molecular mechanisms of this malig- normal brain (NB) tissues. The relationships between the nancy and determining their possible prognostic significance. SPOP expression levels, the clinicopathological factors, and The speckle-type POZ protein (SPOP) has been identified patient survival were investigated. The molecular mechanisms as an autoantigen in scleroderma patients and a constituent of SPOP expression and its effects on cell viability, migration of nuclear speckles in human cells. SPOP is a 374-amino and invasion were also explored by MTT assay, wound-healing acid protein that contains a C-terminal POZ (poxvirus and assays and Transwell assay. SPOP mRNA and protein levels zinc finger) domain (also known as a BTB domain) and were downregulated in glioma tissues compared to NB.
    [Show full text]
  • CUE-101, a Novel Fc Fusion Protein for Selective Targeting and Expansion of Anti-Tumor T Cells for Treatment of HPV-Driven Malignancies
    CUE-101, a novel Fc fusion protein for selective targeting and expansion of anti-tumor T cells for treatment of HPV-driven malignancies Natasha Girgis1, Steven N. Quayle1, Alyssa Nelson1, Dharma Raj Thapa1, Sandrine Hulot1, Lauren Kraemer1, Miguel Moreta1, Zohra Merazga1, Robert Ruidera1, Dominic Beal1, Mark Haydock1, Jonathan Soriano1, Luke Witt1, Jessica Ryabin1, Emily Spaulding1, John F. Ross1, Saso Cemerski1, Anish Suri1, Rodolfo Chaparro1, Ronald Seidel1, Kenneth J. Pienta2, Mary C. Simcox1 1Cue Biopharma, Cambridge, Massachusetts; 2The James Buchanan Brady Urological Institute and the Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland + + Background CUE-101 selectively expands E711-20-specific CD8 T mCUE-101 expands functional antigen-specific CD8 T • Human papilloma virus (HPV) is responsible for 72% of oropharyngeal, 90% of cervical, 90% cells from healthy human PBMCs cells in the tumor and the periphery of anal, and 71% of vulvar, vaginal, or penile cancers, causing significant morbidity and A. B. A. B. C. 9 mortality worldwide. Innovative therapies are urgently needed for these malignancies, Vehicle 100 nM CUE-101 107 15 Peripheral Blood particularly in the largely incurable metastatic setting. 106 10 5 • The E7 oncoprotein is constitutively expressed in HPV-associated cancers, is necessary for 105 ⍺PD-1 5 PE 4 Vehicle mCUE-101 Combo - 10 initiation and maintenance of malignant transformation, and is genetically conserved in 1 cancer (Mirabello 2017). 103 1 1 102 E7-Specific of CD8+ T cells % IFNg+,TNFa+
    [Show full text]
  • 2010.01) C07k 14/74 (2006.01
    ( (51) International Patent Classification: su 215 123 (CN). LIN, Yanni; F2, Building B20, Sangt- C07K 19/00 (2006.0 1) C12N 5/0783 (20 10.01) ian Street 218, Suzhou Industrial Park, Suzhou, Jiangsu C07K 14/74 (2006.01) A61K 35/1 7 (2015.01) 215123 (CN). ZHENG, Xiaocui; F2, Building B20, Sangt- C12N 15/62 (2006.01) A61P 35/00 (2006.01) ian Street 218, Suzhou Industrial Park, Suzhou, Jiangsu 215123 (CN). KONG, Hongmei; F2, Building B20, Sangt- (21) International Application Number: ian Street 218, Suzhou Industrial Park, Suzhou, Jiangsu PCT/ CN2020/ 1081 16 215123 (CN). WANG, Wenbo; F2, Building B20, Sangtian (22) International Filing Date: Street 218, Suzhou Industrial Park, Suzhou, Jiangsu 215 123 10 August 2020 (10.08.2020) (CN). FENG, Aihua; F2, Building B20, Sangtian Street 218, Suzhou Industrial Park, Suzhou, Jiangsu 215 123 (CN). (25) Filing Language: English (74) Agent: J. Z. M. C. PATENT AND TRADEMARK LAW (26) Publication Language: English OFFICE (GENERAL PARTNERSHIP); YU, Mingwei, (30) Priority Data: Room 5022, No. 335, Guo Ding Road, Yang Pu District, 201910746355.8 13 August 2019 (13.08.2019) CN Shanghai 200433 (CN). PCT/ CN20 19/124321 (81) Designated States (unless otherwise indicated, for every 10 December 2019 (10. 12.2019) CN kind of national protection av ailable) . AE, AG, AL, AM, (71) Applicant: CURE GENETICS CO., LTD. [CN/CN]; AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, Biobay A4-5 10, Xinghu Street 218, Suzhou Industrial Park, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, Suzhou, Jiangsu 215 123 (CN).
    [Show full text]
  • Interferon-Based Biopharmaceuticals: Overview on the Production, Purification, and Formulation
    Review Interferon-Based Biopharmaceuticals: Overview on the Production, Purification, and Formulation Leonor S. Castro 1,†, Guilherme S. Lobo 1,†, Patrícia Pereira 2 , Mara G. Freire 1 ,Márcia C. Neves 1,* and Augusto Q. Pedro 1,* 1 CICECO–Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; [email protected] (L.S.C.); [email protected] (G.S.L.); [email protected] (M.G.F.) 2 Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; [email protected] * Correspondence: [email protected] (M.C.N.); [email protected] (A.Q.P.) † These authors contributed equally to this work. Abstract: The advent of biopharmaceuticals in modern medicine brought enormous benefits to the treatment of numerous human diseases and improved the well-being of many people worldwide. First introduced in the market in the early 1980s, the number of approved biopharmaceutical products has been steadily increasing, with therapeutic proteins, antibodies, and their derivatives accounting for most of the generated revenues. The success of pharmaceutical biotechnology is closely linked with remarkable developments in DNA recombinant technology, which has enabled the production of proteins with high specificity. Among promising biopharmaceuticals are interferons, first described by Isaacs and Lindenmann in 1957 and approved for clinical use in humans nearly thirty years later. Interferons are secreted autocrine and paracrine proteins, which by regulating several biochemical Citation: Castro, L.S.; Lobo, G.S.; pathways have a spectrum of clinical effectiveness against viral infections, malignant diseases, Pereira, P.; Freire, M.G.; Neves, M.C.; and multiple sclerosis.
    [Show full text]