Universidade Federal Da Bahia Universidade Estadual De Feira De Santana Mestrado Em Ensino, Filosofia E História Das Ciências

Total Page:16

File Type:pdf, Size:1020Kb

Universidade Federal Da Bahia Universidade Estadual De Feira De Santana Mestrado Em Ensino, Filosofia E História Das Ciências UNIVERSIDADE FEDERAL DA BAHIA UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA MESTRADO EM ENSINO, FILOSOFIA E HISTÓRIA DAS CIÊNCIAS DIOGO FRANCO RIOS MEMÓRIA E HISTÓRIA DA MATEMÁTICA NO BRASIL: A SAÍDA DE LEOPOLDO NACHBIN DO IMPA Feira de Santana 2008 1 DIOGO FRANCO RIOS MEMÓRIA E HISTÓRIA DA MATEMÁTICA NO BRASIL: A SAÍDA DE LEOPOLDO NACHBIN DO IMPA Dissertação apresentada à Universidade Federal da Bahia e à Universidade Estadual de Feira de Santana, sob a orientação do Prof. Dr. André Luis Mattedi Dias, como requisito parcial para a obtenção do grau de Mestre em Ensino, Filosofia e História das Ciências. Feira de Santana 2008 2 DIOGO FRANCO RIOS MEMÓRIA E HISTÓRIA DA MATEMÁTICA NO BRASIL: A SAÍDA DE LEOPOLDO NACHBIN DO IMPA Dissertação apresentada à Universidade Federal da Bahia e à Unive rsidade Estadual de Feira de Santana, sob a orientação do Prof. Dr. André Luis Mattedi Dias, como requisito parcial para a obtenção do grau de Mestre em Ensino, Filosofia e História das Ciências. Feira de Santana, 28 de julho de 2008. BANCA EXAMINADORA ______________________________________________ Prof. Dr. André Luis Mattedi Dias Universidade Estadual de Feira de Santana Orientador ______________________________________________ Prof. Dr. Olival Freire Junior Universidade Federal da Bahia ______________________________________________ Prof. Dr. Carlos Roberto Vianna Universidade Federal do Paraná 3 À minha mãe, Ester, pela força do amor que nos dedica. 4 AGRADECIMENTOS É sempre muito importante saber reconhecer o valor daqueles que fazem parte de nossa vida, sem os quais certamente esta não seria repleta de tanta cor e alegria e nós também jamais poderíamos nos sentir plenamente realizados e felizes. Devo grande parte do que sou e consigo realizar àqueles que convivem comigo e me ajudam a suportar meus próprios defeitos e a enxergar em tudo aquilo que passo a presença de Deus e de sua misericórdia. Para a realização deste trabalho e do próprio mestrado em si, muitas pessoas foram importantes e contribuíram direta ou indiretamente para que eu conseguisse cumprir toda a trajetória até aqui. Muito obrigado a todos. Contudo, gostaria de registrar um agradecimento especial: • ao professor André Luis Mattedi Dias, pela amizade, confiança e orientação que me acompanham desde a iniciação científica, além das valiosas intervenções que foram imprescindíveis para o desenvolvimento deste e de outros trabalhos; • aos professores do PPGEFHC, em especial a Amilcar Baiardi, Charbel Niño El-Hani e Olival Freire Junior, pela dedicação, excelência e incentivo; • aos professores Tania Maria Dias Fernandes e Olival Freire Junior, que participando da qualificação ajudaram a definir os rumos deste trabalho; • ao Sr. Orlando e Edson pela colaboração para o funcionamento do Programa, na UFBA e na UEFS; • aos funcionários do Departamento de Ciências Exatas - DEXA e dos demais setores administrativos da UEFS pela constante disponibilidade em ajudar, especialmente às bibliotecárias e funcionários da Biblioteca Central Julieta Carteado; • a Roberto Ribeiro Baldino e Luiz Adauto da Justa Medeiros, que deram suas contribuições diretas para a pesquisa; • à FAPESB pelo auxílio através da bolsa; • aos colegas do PPGEFHC, pela amizade e solidariedade, especialmente a Adriana - 5 Cajuína, Carlos Patrocínio - Patrox, Cleidson - Professor Pardal, Inês - Tia Iná, Ivoneide, Izaura - Izaurita, Jan Carlos - Playmobil Adventure, Januária - Miseravona, Janúzia - Galega Foguenta, Marcelo, Marluce - Malu e Renata - Cavalo de Fogo. Conviver com vocês foi uma honra e um prazer. • às meninas do grupo de pesquisa “História das Ciências no Brasil com ênfase na Bahia”, especialmente Januária e Mariana, que, com muita boa vontade, fizeram leituras e deram sugestões contribuindo para a escrita deste trabalho; • a Gilmário e Janúzia, carinho e cumplicidade definem essas pessoas tão importantes para mim; • à minha família, pela carinho, generosidade e compreensão nas minhas freqüentes ausências física e mental. A vocês, devo muito – o que tenho de melhor. Registrar agradecimentos é uma prática de memória; é celebrar o que vivemos e que gostaríamos que se mantivesse preservado de algum modo. Intimamente serei sempre muito grato pela oportunidade de compartilhar minha vida e desafios com vocês, mas precisava tentar, mesmo que timidamente, reter nessas páginas o meu muito obrigado a cada um. 6 RESUMO Esta pesquisa teve por objetivo analisar o processo de construção da memória da matemática no Brasil com base na identificação das lembranças, dos silêncios, das disputas e dos conflitos entre as memórias de seus personagens. Para tanto, foi escolhido o processo de afastamento de Leopoldo Nachbin e do grupo que liderava no Instituto Nacional de Matemática Pura e Aplicada no início da década de 1970. Inicialmente, realizamos um estudo aprofundado e sistematizado sobre as relações entre história e memória, já bastante trabalhadas no âmbito da teoria da história, das quais se estabelecem aspectos fundamentais para a realização dessa pesquisa, a exemplo dos mecanismos sociais de manipulação da memória, como as celebrações e outras práticas utilizadas pelos grupos para interferir na consolidação da memória coletiva. Em seguida, apresentamos a implantação e consolidação das atividades científicas realizadas no IMPA a partir de 1952 como parte de um projeto maior de institucionalização de novos padrões científicos no Brasil, iniciado em 1930 com a fundação da Faculdade de Filosofia, Ciências e Letras da USP. Nessa seção, percorremos ainda os vinte primeiros anos de atividades do Instituto, culminando com a saída de Leopoldo Nachbin em 1971. A partir daí, buscamos identificar, de um lado, a memória do grupo que se manteve no IMPA, assumindo o controle institucional nos últimos trinta anos e, de outro, as memórias dos dissidentes, que não encontram tribuna nos espaços institucionalmente constituídos pelo IMPA para suas práticas de memória e a apresentação de suas versões alternativas acerca do referido processo. Apontar a heterogeneidade dessas memórias teve como objetivo questionar a cristalização com que a versão oficial tenta se estruturar, assumindo status de representação da memória coletiva organizada e estável, ocultando a existência de versões opostas e contraditórias na narrativa do passado da corporação. Palavras-chave: Memória/História; História da matemática no Brasil; IMPA. 7 ABSTRACT This survey aimed to examine the process of building the memory of mathematics in Brazil, based on the identification of memories, of silences, of disputes and conflicts between the memories of their characters. For both, was chosen the process of removal of Leopold Nachbin and group leader at the National Institute of Pure and Applied Mathematics at the beginning of the decade of 1970. Initially we conducted a thorough and systematic study on the relationship between history and memory, already worked under the theory of history, of which establishes the fundamental aspects for the purposes of research, such as the social mechanisms of handling memory, as the celebrations and other practices used by groups to interfere in the consolidation of collective memory. Then present the implantation and consolidation of scientific activities carried out at IMPA from 1952 as part of a larger project of institucionalization of new scientific standards in Brazil, started in 1930 with the foundation of Faculty Philosophy, Science and Letters of USP. In this section, we go along the twenty first years of activities of the Institute, culminating with the departure of Leopoldo Nachbin in 1971. From then seek to identify on the one hand memory of the group which remained at IMPA, assuming the institutional control in the last thirty years and on the other hand, the memories of dissidents who didn’t find rostrum in the spaces institutionally formed by the IMPA for its practices of memory and presentation of their versions about alternatives to that process. Point the heterogeneity of these memories had aimed to question the crystallization that the official version tries to structure itself assuming status of the collective memory representation, organized and stable, concealing the existence of conflicting and contradictory versions in the narrative of the past’s corporation. Key-words: Memory/History; History of mathematics in Brazil; IMPA. 8 SIGLAS UTILIZADAS ABC – Associação Brasileira de Ciências CBPF – Centro Brasileiro de Pesquisas Físicas. CNPq – Conselho Nacional de Desenvolvimento Científico e Tecnológico COPPE – Instituto Alberto Luiz Coimbra de Pós-graduação e Pesquisas em Engenharia CTC – Conselho Técnico Científico ELAM – Escola Latino Americana de Matemática ENE – Escola Nacional de Engenharia FFCL – Faculdade de Filosofia, Ciências e Letras FNFi – Faculdade Nacional de Filosofia GrITEE – Grupo de pesquisa em Inovação Tecnológica para Educação em Engenharia ICM – Instituto Central de Matemática IMPA – Instituto Nacional de Matemática Pura e Aplicada MEC – Ministério da Educação e do Desporto OEA – Organização dos Estados Americanos PUC – Pontifícia Universidade Católica do Rio de Janeiro SNI – Serviço Nacional de Informação UB – Universidade do Brasil UFC – Universidade Federal do Ceará UFG – Universidade Federal de Goiás UFRGS – Universidade Federal do Rio Grande do Sul UFRJ – Universidade Federal do Rio de Janeiro UnB – Universidade de Brasília UNICAMP – Universidade Estadual de Campinas USP – Universidade de São Paulo 9 SUMÁRIO 1 INTRODUÇÃO ..........................................................................................................................10
Recommended publications
  • Arxiv:1006.1489V2 [Math.GT] 8 Aug 2010 Ril.Ias Rfie Rmraigtesre Rils[14 Articles Survey the Reading from Profited Also I Article
    Pure and Applied Mathematics Quarterly Volume 8, Number 1 (Special Issue: In honor of F. Thomas Farrell and Lowell E. Jones, Part 1 of 2 ) 1—14, 2012 The Work of Tom Farrell and Lowell Jones in Topology and Geometry James F. Davis∗ Tom Farrell and Lowell Jones caused a paradigm shift in high-dimensional topology, away from the view that high-dimensional topology was, at its core, an algebraic subject, to the current view that geometry, dynamics, and analysis, as well as algebra, are key for classifying manifolds whose fundamental group is infinite. Their collaboration produced about fifty papers over a twenty-five year period. In this tribute for the special issue of Pure and Applied Mathematics Quarterly in their honor, I will survey some of the impact of their joint work and mention briefly their individual contributions – they have written about one hundred non-joint papers. 1 Setting the stage arXiv:1006.1489v2 [math.GT] 8 Aug 2010 In order to indicate the Farrell–Jones shift, it is necessary to describe the situation before the onset of their collaboration. This is intimidating – during the period of twenty-five years starting in the early fifties, manifold theory was perhaps the most active and dynamic area of mathematics. Any narrative will have omissions and be non-linear. Manifold theory deals with the classification of ∗I thank Shmuel Weinberger and Tom Farrell for their helpful comments on a draft of this article. I also profited from reading the survey articles [14] and [4]. 2 James F. Davis manifolds. There is an existence question – when is there a closed manifold within a particular homotopy type, and a uniqueness question, what is the classification of manifolds within a homotopy type? The fifties were the foundational decade of manifold theory.
    [Show full text]
  • Preface Issue 4-2014
    Jahresber Dtsch Math-Ver (2014) 116:199–200 DOI 10.1365/s13291-014-0108-4 PREFACE Preface Issue 4-2014 Hans-Christoph Grunau © Deutsche Mathematiker-Vereinigung and Springer-Verlag Berlin Heidelberg 2014 The last few years have been a good time for solving long standing geometrical- topological conjectures. This issue reports on the solution of the Willmore conject-√ ure—the “best” topological torus is a “real” torus with ratio of radii equal to 2— and one of Thurston’s conjectures—every hyperbolic 3-manifold can be fibered over a circle, up to passing to a finite cover. Starting in the 1960s, Thomas Willmore studied the integral of the squared mean curvature of surfaces in R3 as the simplest but most interesting frame invariant elas- tic bending energy. This energy had shown up already in the early 19th century—too early for a rigorous investigation. Willmore asked: What is the shape of a compact surface of fixed genus minimising the Willmore energy in this class? (In the 1990s, existence of minimisers was proved by Leon Simon, with a contribution by Matthias Bauer and Ernst Kuwert.) Willmore already knew that the genus-0-minimiser is a sphere. Assuming that symmetric surfaces require less energy than asymmetric ones (which has not been proved, yet) he studied families√ of geometric tori with the smaller radius 1 fixed and found that the larger radius 2 would yield the minimum in this very special family. He conjectured that this particular torus would be the genus- 1-minimiser. Almost 50 years later Fernando Marques and André Neves found and published a 100-page-proof.
    [Show full text]
  • Arxiv:2103.09350V1 [Math.DS] 16 Mar 2021 Nti Ae Esuytegopo Iainltransformatio Birational Vue
    BIRATIONAL KLEINIAN GROUPS SHENGYUAN ZHAO ABSTRACT. In this paper we initiate the study of birational Kleinian groups, i.e. groups of birational transformations of complex projective varieties acting in a free, properly dis- continuous and cocompact way on an open subset of the variety with respect to the usual topology. We obtain a classification in dimension two. CONTENTS 1. Introduction 1 2. Varietiesofnon-negativeKodairadimension 6 3. Complex projective Kleinian groups 8 4. Preliminaries on groups of birational transformations ofsurfaces 10 5. BirationalKleiniangroupsareelementary 13 6. Foliated surfaces 19 7. Invariant rational fibration I 22 8. InvariantrationalfibrationII:ellipticbase 29 9. InvariantrationalfibrationIII:rationalbase 31 10. Classification and proof 43 References 47 1. INTRODUCTION 1.1. Birational Kleinian groups. 1.1.1. Definitions. According to Klein’s 1872 Erlangen program a geometry is a space with a nice group of transformations. One of the implementations of this idea is Ehres- arXiv:2103.09350v1 [math.DS] 16 Mar 2021 mann’s notion of geometric structures ([Ehr36]) which models a space locally on a geom- etry in the sense of Klein. In his Erlangen program, Klein conceived a geometry modeled upon birational transformations: Of such a geometry of rational transformations as must result on the basis of the transformations of the first kind, only a beginning has so far been made... ([Kle72], [Kle93]8.1) In this paper we study the group of birational transformations of a variety from Klein and Ehresmann’s point of vue. Let Y be a smooth complex projective variety and U ⊂ Y a connected open set in the usual topology. Let Γ ⊂ Bir(Y ) be an infinite group of birational transformations.
    [Show full text]
  • Mostow and Artin Awarded 2013 Wolf Prize
    Mostow and Artin Awarded 2013 Wolf Prize rigidity methods and techniques opened a flood- gate of investigations and results in many related areas of mathematics. Mostow’s emphasis on the “action at infinity” has been developed by many mathematicians in a variety of directions. It had a huge impact in geometric group theory, in the study of Kleinian groups and of low-dimensional topology, and in work connecting ergodic theory and Lie groups. Mostow’s contribution to math- ematics is not limited to strong rigidity theorems. His work on Lie groups and their discrete sub- groups, which was done during 1948–1965, was very influential. Mostow’s work on examples of nonarithmetic lattices in two- and three-dimen- sional complex hyperbolic spaces (partially in Photo: Donna Coveney. Photo: Michael Marsland/Yale. collaboration with P. Deligne) is brilliant and led George D. Mostow Michael Artin to many important developments in mathematics. In Mostow’s work one finds a stunning display of The 2013 Wolf Prize in Mathematics has been a variety of mathematical disciplines. Few math- awarded to: ematicians can compete with the breadth, depth, George D. Mostow, Yale University, “for his and originality of his works. fundamental and pioneering contribution to ge- Michael Artin is one of the main architects ometry and Lie group theory.” of modern algebraic geometry. His fundamental Michael Artin, Massachusetts Institute of contributions encompass a bewildering number Technology, “for his fundamental contributions of areas in this field. to algebraic geometry, both commutative and To begin with, the theory of étale cohomology noncommutative.” was introduced by Michael Artin jointly with Al- The prize of US$100,000 will be divided equally exander Grothendieck.
    [Show full text]
  • Abraham Robinson 1918–1974
    NATIONAL ACADEMY OF SCIENCES ABRAHAM ROBINSON 1918–1974 A Biographical Memoir by JOSEPH W. DAUBEN Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoirs, VOLUME 82 PUBLISHED 2003 BY THE NATIONAL ACADEMY PRESS WASHINGTON, D.C. Courtesy of Yale University News Bureau ABRAHAM ROBINSON October 6, 1918–April 11, 1974 BY JOSEPH W. DAUBEN Playfulness is an important element in the makeup of a good mathematician. —Abraham Robinson BRAHAM ROBINSON WAS BORN on October 6, 1918, in the A Prussian mining town of Waldenburg (now Walbrzych), Poland.1 His father, Abraham Robinsohn (1878-1918), af- ter a traditional Jewish Talmudic education as a boy went on to study philosophy and literature in Switzerland, where he earned his Ph.D. from the University of Bern in 1909. Following an early career as a journalist and with growing Zionist sympathies, Robinsohn accepted a position in 1912 as secretary to David Wolfson, former president and a lead- ing figure of the World Zionist Organization. When Wolfson died in 1915, Robinsohn became responsible for both the Herzl and Wolfson archives. He also had become increas- ingly involved with the affairs of the Jewish National Fund. In 1916 he married Hedwig Charlotte (Lotte) Bähr (1888- 1949), daughter of a Jewish teacher and herself a teacher. 1Born Abraham Robinsohn, he later changed the spelling of his name to Robinson shortly after his arrival in London at the beginning of World War II. This spelling of his name is used throughout to distinguish Abby Robinson the mathematician from his father of the same name, the senior Robinsohn.
    [Show full text]
  • Armand Borel 1923–2003
    Armand Borel 1923–2003 A Biographical Memoir by Mark Goresky ©2019 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. ARMAND BOREL May 21, 1923–August 11, 2003 Elected to the NAS, 1987 Armand Borel was a leading mathematician of the twen- tieth century. A native of Switzerland, he spent most of his professional life in Princeton, New Jersey, where he passed away after a short illness in 2003. Although he is primarily known as one of the chief archi- tects of the modern theory of linear algebraic groups and of arithmetic groups, Borel had an extraordinarily wide range of mathematical interests and influence. Perhaps more than any other mathematician in modern times, Borel elucidated and disseminated the work of others. family the Borel of Photo courtesy His books, conference proceedings, and journal publica- tions provide the document of record for many important mathematical developments during his lifetime. By Mark Goresky Mathematical objects and results bearing Borel’s name include Borel subgroups, Borel regulator, Borel construction, Borel equivariant cohomology, Borel-Serre compactification, Bailey- Borel compactification, Borel fixed point theorem, Borel-Moore homology, Borel-Weil theorem, Borel-de Siebenthal theorem, and Borel conjecture.1 Borel was awarded the Brouwer Medal (Dutch Mathematical Society), the Steele Prize (American Mathematical Society) and the Balzan Prize (Italian-Swiss International Balzan Foundation). He was a member of the National Academy of Sciences (USA), the American Academy of Arts and Sciences, the American Philosophical Society, the Finnish Academy of Sciences and Letters, the Academia Europa, and the French Academy of Sciences.1 1 Borel enjoyed pointing out, with some amusement, that he was not related to the famous Borel of “Borel sets." 2 ARMAND BOREL Switzerland and France Armand Borel was born in 1923 in the French-speaking city of La Chaux-de-Fonds in Switzerland.
    [Show full text]
  • IMPA's Coming of Age in a Context of International Reconfiguration Of
    P. I. C. M. – 2018 Rio de Janeiro, Vol. 4 (4093–4112) IMPA’S COMING OF AGE IN A CONTEXT OF INTERNATIONAL RECONFIGURATION OF MATHEMATICS T R Abstract In the middle of the 20th century, the intimate link between science, industry and the state was stimulated, in its technical-scientific dimension, by the Cold War. Ques- tions of a similar strategic nature were involved in the Brazilian political scene, when the CNPq was created. This presentation investigates the nature of the connection be- tween this scientific policy and the presumed need for an advanced research institute in mathematics, that gave birth to IMPA. By retracing the scientific choices of the few mathematicians working at the institute in its first twenty years, we demonstrate how they paralleled the ongoing reconfiguration of scientific research. The development of dynamical systems theory provides a telling example of internationalization strate- gies which situated IMPA within a research network full of resources, that furnished, moreover, a modernizing drive adapted to the air of that time. On October 19, 1952, O Jornal do Comércio, a newspaper published in Brazil’s then capital city of Rio de Janeiro, reported that the National Research Council (CNP, Conselho Nacional de Pesquisas) had created an associated research arm called the Institute for Pure and Applied Mathematics (IMPA, Instituto de Matemática Pura e Aplicada). The National Research Council, later known as CNPq, had been created just a year beforehand and was directly connected to the country’s government. On the same day, the first pages of the newspaper reported: • The Soviet delegate presented a proposal for peace at the General Assembly of the United Nations.
    [Show full text]
  • Dave Kehr When Movies Mattered Reviews from a Transformative Decade
    The University of Chicago Press 1427 East 60th Street Chicago, IL 60637 Chicago SPRING BOOKS 2011 FOREIGN RIGHTS EDITION Spring 2011 Guide to Subjects African American Latin American Studies 39 Studies 67 African Studies 39–40 Law 44–47, 64, 67 American History 7, Literary Criticism 21, 15, 26, 28–29, 32, 65 32, 34–38 Anthropology 39–41 Literature 27 Architecture 20, 22 Mathematics 63 Art 19–21, 35, 56, 60 Medicine 5, 31, 60 Asian Studies 58 Music 16, 38, 59 Biography 16 Nature 49 Philosophy 2, 20, Classics 23–24 23–24, 44, 51, 56–57 Cultural Studies 46 Photography 19 Current Events 8 Poetry 17, 47 Dance 67 Political Science 42–45 Economics 47, 64–67 Psychology 10 Education 6, 11, 41, 62 Reference 9, 11, 12 European History 27, Religion 7, 24, 30, 33, 36 57–58 Film Studies 13–14 Science 1, 3, 4–5, 28, Gay and Lesbian 31, 48–56 Studies 32 Self-Help 10 History 25, 30–33, 36, Sociology 20, 38, 40, 46, 48, 55 59–62 Cover and catalog design by Mary Shanahan Jewish Studies 59 Women’s Studies 58 Carl Zimmer A Planet of Viruses iruses are the smallest living things known to science, and yet they hold the entire planet in their sway. We’re most familiar V with the viruses that give us colds or the flu, but viruses also cause a vast range of other diseases, including one disorder that makes people sprout branch-like growths as if they were trees. Viruses have been a part of our lives for so long, in fact, that we are actually part virus: the human genome contains more DNA from viruses than our own genes.
    [Show full text]
  • Variedades Diferenciáveis
    Variedades Diferenciáveis Publicações Matemáticas Variedades Diferenciáveis Elon Lages Lima impa Copyright © 2011 by Elon Lages Lima Impresso no Brasil / Printed in Brazil Capa: Noni Geiger / Sérgio R. Vaz Publicações Matemáticas • Introdução à Topologia Diferencial – Elon Lages Lima • Criptografia, Números Primos e Algoritmos – Manoel Lemos • Introdução à Economia Dinâmica e Mercados Incompletos – Aloísio Araújo • Conjuntos de Cantor, Dinâmica e Aritmética – Carlos Gustavo Moreira • Geometria Hiperbólica – João Lucas Marques Barbosa • Introdução à Economia Matemática – Aloísio Araújo • Superfícies Mínimas – Manfredo Perdigão do Carmo • The Index Formula for Dirac Operators: an Introduction – Levi Lopes de Lima • Introduction to Symplectic and Hamiltonian Geometry – Ana Cannas da Silva • Primos de Mersenne (e outros primos muito grandes) – Carlos Gustavo T. A. Moreira e Nicolau Saldanha • The Contact Process on Graphs – Márcia Salzano • Canonical Metrics on Compact almost Complex Manifolds – Santiago R. Simanca • Introduction to Toric Varieties – Jean-Paul Brasselet • Birational Geometry of Foliations – Marco Brunella • Introdução à Teoria das Probabilidades – Pedro J. Fernandez • Teoria dos Corpos – Otto Endler • Introdução à Dinâmica de Aplicações do Tipo Twist – Clodoaldo G. Ragazzo, Mário J. Dias Carneiro e Salvador Addas Zanata • Elementos de Estatística Computacional usando Plataformas de Software Livre/Gratuito – Alejandro C. Frery e Francisco Cribari-Neto • Uma Introdução a Soluções de Viscosidade para Equações de Hamilton-Jacobi
    [Show full text]
  • PI MU EPSILON JOURNAL the OFFICIAL Publicamokof the HONORARY MATHEMATICAL FRATERNITY
    PI MU EPSILON JOURNAL THE OFFICIAL PUBLICAmOKOF THE HONORARY MATHEMATICAL FRATERNITY VOLUME 1 CONTENTS Page Examples and Counterexamples ....... R. H: Bing 311 Curves and Points ...........C . Stanley Ogilvy Problem Department ................... Problems for Solution ................. Solutions ........................ Addition to Pi Mu Epsilon Journal Staff .......... Reports of the Chapters .................. Medals. Prizes and Scholarships ............. News and Notices ..................... Initiates. Academic Year 1951-1952 ........... Initiates. Academic Year 1952-1953 ........... APRIL 1953 - -- - . -- 9- ^ 'I '- I PI MU EPSILON JOURNAL PI MU EPSILON JOURNAL THE OFFICIAL PUBLIGAOTOKOF THE OFFICIAL PUBLICATION OF THE HONORARY MATHEMATICAL FRATERNITY THE HONORARY MATHEMATICAL FRATERNITY RUTH W. STOKES, Editor ASSOCIATE EDITORS VOLUME 1 NUMBER 8 igan State College, East Lansing, Michigan H. T. KARNES, L. S. U., Baton Rouge 3, Louisiana N. H. McCOY, Smith College, Northampton, Massachusetts LEO MOSER, University of Alberta, Edmonton, Alberta, Canada R. J. WALKER, Cornell University, Ithaca, New York CONTENTS HOWARD C. BENNETT, Business Manager Page OFFICERS OF THE FRATERNITY Examples and Counterexamples ....... R. H. Bing 311 Director General: C. C. MacDuffee, University of Wisconsin Curves and Points ...........C. Stanley Ogilvy 318 Vice-Director General: W. M. Whyburn, University of N. C. Problem Department ................... 322 Secretary-Treasurer General: J. S. Frame,Michigan State College Problems for Solution ................
    [Show full text]
  • Baixar Baixar
    Revista Brasileira de História da Matemática - Vol. 4 no 7 (abril/2004 - setembro/2004 ) - pág. 37 - 67 A construção de um PublicaçãoInstituto de Oficial Pesquisas da Sociedade Matemáticas Brasileira denos História Trópicos da Matemática - O IMPA ISSN 1519-955X A CONSTRUÇÃO DE UM INSTITUTO DE PESQUISAS MATEMÁTICAS NOS TRÓPICOS – O IMPA1 Circe Mary Silva da Silva2 UFES - Brasil (aceito para publicação em janeiro de 2004) Resumo Descreve a criação do Instituto de Matemática Pura e Aplicada (IMPA), atualmente denominado Associação Instituto Nacional de Matemática Pura e Aplicada, no Rio de Janeiro, em 1952, como primeiro Instituto dedicado exclusivamente à pesquisa matemática no Brasil. Analisa as contribuições de brasileiros e estrangeiros para o desenvolvimento da pesquisa e da pós-graduação em matemática nos décadas de 50 e 60 do século XX, bem como as fontes de financiamento do referido Instituto. Palavras-chave: História da Matemática no Brasil; IMPA. Abstract This study tries to describe the creation of the IMPA (Instituto de Matemática Pura e Aplicada), in Rio de Janeiro, in 1952, which nowadays was renamed as Associação Instituto Nacional de Matemática Pura e Aplicada. The IMPA was the first Institute dedicated to mathematic research in Brazil. The contributions of Brazilians and foreigners mathematicians for the development of research and graduate studies in mathematics during the 50’ and 60’ of the 20 th century were analysed, as well as the founding system for that Institute. Keywords: History of Mathematics in Brazil; IMPA. Introdução O presente texto trata da institucionalização da matemática superior na segunda metade do século XX, no Rio de Janeiro.
    [Show full text]
  • Iasthe Institute Letter
    The Institute Letter InstituteIAS for Advanced Study Summer 2016 The Veil and the Political Unconscious Morton White of French Republicanism 1917-2016 Why have women become the object of so much concern? orton White, one of America’s Mmost distinguished philosophers BY JOAN WALLACH SCOTT and historians of ideas, died at the age of 99 on May 27 at Stonebridge he official French preoccupa- at Montgomery in Skillman, New Ttion with the veil exceeds that Jersey. He was Professor Emeritus in of most other countries in Western the School of Historical Studies at Europe. In the Anglo-American the Institute for Advanced Study, world, even post-9/11, the veil is where he served as Professor from not seen as the flag of an insurrec- 1970 until he retired in 1987. tion; nor is the suppression of White is credited with broaden- ethnic, racial, and religious differ- ARCHIVES AND LEONLEVY WHITE SHELBY HERMAN LANDSHOFF/IAS, ing the scope of topics traditionally ences a requirement for inclusion in Morton White, 1981 studied by philosophers, with inci- REUTERS the nation. A line from the Ameri- sive analysis in the realms of episte- Citizens demonstrate in favor of the Islamic headscarf can poet Walt Whitman captures mology and social and political philosophy. In his philosophy of holistic in a march in Strasbourg, Eastern France; the banner something of the way diversity is prag matism, he bridged the positivistic gulf between analytic and synthetic truth reads: “A law against the headscarf or against Islam.” celebrated here: “I am large, I as well as that between moral and scientific belief.
    [Show full text]