ASLN Conditions 2021 Compared to ASLN Conditions 2020)

Total Page:16

File Type:pdf, Size:1020Kb

ASLN Conditions 2021 Compared to ASLN Conditions 2020) Back to table of contents Authorized Service Laboratories Naktuinbouw - Conditions 2021 Page 1 of 22 Revision 8.0 per 10 Dec 2020 Authorized Service Laboratories Naktuinbouw Conditions 2021 Table of contents Introduction ............................................................................................................................................ 3 NAKTUINBOUW MODULE QUALITY MANAGEMENT SYSTEM REQUIREMENTS .......................... 4 1. Identity ......................................................................................................................................... 4 2. Scope ........................................................................................................................................... 4 3. Quality management system (QMS) ........................................................................................... 4 4. Quality manual ............................................................................................................................. 4 5. Organization ................................................................................................................................ 4 6. Document control......................................................................................................................... 5 7. Control of records ........................................................................................................................ 5 8. Audits ........................................................................................................................................... 5 9. Complaints ................................................................................................................................... 6 10. Corrective (and / or Preventive) Action Requests (CARs) .......................................................... 6 11. Management responsibility .......................................................................................................... 6 12. Human resources management .................................................................................................. 7 13. Equipment, means, measuring devices and reference materials ............................................... 7 14. Purchasing ................................................................................................................................... 8 NAKTUINBOUW MODULE SAMPLING REQUIREMENTS ASLN ....................................................... 9 15. General ........................................................................................................................................ 9 16. Sampler ....................................................................................................................................... 9 17. Multi location module (MLM) ..................................................................................................... 10 18. Sampling of (parts of) plants ...................................................................................................... 10 19. Sampling of seeds ..................................................................................................................... 10 20. Sampling of soil ......................................................................................................................... 12 NAKTUINBOUW MODULE TESTING REQUIREMENTS ASLN ......................................................... 14 21. Facilities ..................................................................................................................................... 14 22. Applied protocols and testing .................................................................................................... 14 23. Subcontracting: .......................................................................................................................... 16 24. ASLN Laboratory reports ........................................................................................................... 16 25. Monitoring test quality ................................................................................................................ 17 MISCELLANEOUS ............................................................................................................................... 19 26. Definitions / references .............................................................................................................. 19 27. Revision history (ASLN Conditions 2021 compared to ASLN Conditions 2020) ...................... 20 Appendix I - Bulb crops as mentioned in 'Landbouwkwaliteitsbesluit bloembollen' from 6 September 1999 (10 pages) Back to table of contents Authorized Service Laboratories Naktuinbouw - Conditions 2021 Page 2 of 22 Revision 8.0 per 10 Dec 2020 Introduction Authorized Service Laboratories Naktuinbouw (ASLN) is an official authorization system of Naktuinbouw, based upon annual external audits by or on behalf of Bureau TIS Naktuinbouw and intended for service laboratories that carry out quality tests on seeds, soil and / or (parts of) plants. The test results of these ASLN authorized laboratories are accepted by Naktuinbouw, e.g. for inspections, Naktuinbouw Elite Ornamental Crops, Naktuinbouw Select Plant as well as Naktuinbouw Authorized Laboratories (NAL). The ASLN Conditions 2021 are an improved version of the EMT Conditions (2001) and the ASLN Conditions 2012, 2014, 2016, 2017, 2018, 2019 and 2020. When laboratories are working in compliance with the ASLN Conditions, it will give them the confidence that their clients will receive a reliable test result, reflecting the true quality of the seeds, soil and / or parts of plants. The ASLN authorization of a laboratory is demonstrated through the ASLN certificate of authorization, with an appendix stating for which tests authorization has been granted by Bureau TIS Naktuinbouw. This is also displayed on the website of Naktuinbouw. On its turn, an ASLN authorized laboratory is allowed to issue ASLN Laboratory reports with test results from tests for which authorization has been granted. The laboratory must carry out the test according either the Naktuinbouw standard protocol or a by Bureau TIS Naktuinbouw approved in house company protocol. Only ASLN authorized laboratories are allowed to issue an ASLN Laboratory report with test results from tests for which authorization has been granted and if this is reflecting a test result on a sample from a crop that is under the supervision of Naktuinbouw inspections: all species of floricultural (except the bulb crops as mentioned in ‘Landbouwkwaliteitsbesluit bloembollen’ from 6 September 1999, appendix I), arboricultural and vegetable crops. In case the laboratory intends to issue an ASLN Laboratory report with a test result on a crop for which the above is not applicable, it is not allowed to make any reference to ASLN and / or authorization by Bureau TIS Naktuinbouw then. The ASLN Conditions 2021 are based upon for this purpose relevant criteria from: • Earlier revisions of the ASLN Conditions • Council directive 2000/29/EC • EPPO PM 7/84:2007 Basic requirements for quality management in plant pest diagnosis laboratories • EPPO PM 7/98:2014 Specific requirements for laboratories preparing accreditation for a plant pest diagnostic activity • ISO 9001:2015 QMS – requirements • ISO 17025:2005 General requirements for the competence of testing and calibration laboratories • ISTA Laboratory Accreditation Standard version 6.1 • Guidelines for the company version 2020 The ASLN Conditions 2021 are divided into the following standard modules: Quality management system requirements, Sampling requirements and Testing requirements. ASLN authorization can only be granted when a laboratory complies / deals with these three basic modules. The laboratory can exclude some of the paragraphs (only possible for: 5.20, 5.21, 17, 18, 19, 20 and / or 23); the laboratory must indicate and justify in the quality manual for which paragraphs this is the case. Determined by the Board of Naktuinbouw Roelofarendsveen, 20 December 2019, Last modified 10 December 2020, To be determined by the Board of Naktuinbouw in March 2021 Back to table of contents Authorized Service Laboratories Naktuinbouw - Conditions 2021 Page 3 of 22 Revision 8.0 per 10 Dec 2020 NAKTUINBOUW MODULE QUALITY MANAGEMENT SYSTEM REQUIREMENTS 1. Identity 1.1. The participant must be legally identifiable (e.g. registered in a national chamber of commerce) 2. Scope 2.1. The participant must mention its scope in the quality manual, and make clear what / which activities are carried out under authorization 2.2. The participant must keep this up to date 3. Quality management system (QMS) 3.1. The participant must develop, define, document and implement a QMS as a means of ensuring that all activities that are brought under authorization demonstrably satisfy specified requirements / conditions 3.2. The participant must improve this QMS continuously whenever there is a reason to, based upon the principle of the Deming circle: plan – do – check – act 4. Quality manual 4.1. The participant must have at least one quality manual 4.2. This quality manual can be either digital or a hard copy 4.3. This quality manual must contain at least: • Scope • QMS-documents (procedures, working instructions, protocols, format of forms), as 4.4. The quality manual and the QMS-documents must be written in Dutch or English: • If the participant wants to have some documents (like working instructions)
Recommended publications
  • The Vegetation of Robinson Crusoe Island (Isla Masatierra), Juan
    The Vegetation ofRobinson Crusoe Island (Isla Masatierra), Juan Fernandez Archipelago, Chile1 Josef Greimler,2,3 Patricio Lopez 5., 4 Tod F. Stuessy, 2and Thomas Dirnbiick5 Abstract: Robinson Crusoe Island of the Juan Fernandez Archipelago, as is the case with many oceanic islands, has experienced strong human disturbances through exploitation ofresources and introduction of alien biota. To understand these impacts and for purposes of diversity and resource management, an accu­ rate assessment of the composition and structure of plant communities was made. We analyzed the vegetation with 106 releves (vegetation records) and subsequent Twinspan ordination and produced a detailed colored map at 1: 30,000. The resultant map units are (1) endemic upper montane forest, (2) endemic lower montane forest, (3) Ugni molinae shrubland, (4) Rubus ulmifolius­ Aristotelia chilensis shrubland, (5) fern assemblages, (6) Libertia chilensis assem­ blage, (7) Acaena argentea assemblage, (8) native grassland, (9) weed assemblages, (10) tall ruderals, and (11) cultivated Eucalyptus, Cupressus, and Pinus. Mosaic patterns consisting of several communities are recognized as mixed units: (12) combined upper and lower montane endemic forest with aliens, (13) scattered native vegetation among rocks at higher elevations, (14) scattered grassland and weeds among rocks at lower elevations, and (15) grassland with Acaena argentea. Two categories are included that are not vegetation units: (16) rocks and eroded areas, and (17) settlement and airfield. Endemic forests at lower elevations and in drier zones of the island are under strong pressure from three woody species, Aristotelia chilensis, Rubus ulmifolius, and Ugni molinae. The latter invades native forests by ascending dry slopes and ridges.
    [Show full text]
  • Boophone Disticha
    Micropropagation and pharmacological evaluation of Boophone disticha Lee Cheesman Submitted in fulfilment of the academic requirements for the degree of Doctor of Philosophy Research Centre for Plant Growth and Development School of Life Sciences University of KwaZulu-Natal, Pietermaritzburg April 2013 COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCES DECLARATION 1 – PLAGIARISM I, LEE CHEESMAN Student Number: 203502173 declare that: 1. The research contained in this thesis, except where otherwise indicated, is my original research. 2. This thesis has not been submitted for any degree or examination at any other University. 3. This thesis does not contain other persons’ data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons. 4. This thesis does not contain other persons’ writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then: a. Their words have been re-written but the general information attributed to them has been referenced. b. Where their exact words have been used, then their writing has been placed in italics and inside quotation marks, and referenced. 5. This thesis does not contain text, graphics or tables copied and pasted from the internet, unless specifically acknowledged, and the source being detailed in the thesis and in the reference section. Signed at………………………………....on the.....….. day of ……......……….2013 ______________________________ SIGNATURE i STUDENT DECLARATION Micropropagation and pharmacological evaluation of Boophone disticha I, LEE CHEESMAN Student Number: 203502173 declare that: 1. The research reported in this dissertation, except where otherwise indicated is the result of my own endeavours in the Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg.
    [Show full text]
  • (35-22) 1392( Generic Endemism in South-West Asia: an Overview
    رﺳﺘﻨﻴﻬﺎ Rostaniha 14(1): 22-35 (2013) (1392 22) 35- :( 14)1 Generic endemism in South-West Asia: an overview Received: 26.02.2013 / Accepted: 09.03.2013 F. Sales : Associate Prof., Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3001-456 Coimbra, Portugal ([email protected]) I.C. Hedge: Honorary Associate, Royal Botanic Garden Edinburgh, EH3 5LR, Scotland, U.K. ([email protected]) Abstract A provisional list of all the endemic vascular plant genera in SW Asia is presented. The area, here defined to include Turkey, the Caucasus, N Iraq, Iran, Afghanistan and adjacent parts of Pakistan and Central Asia, has 161 genera restricted to it. By far, the greatest numbers of the endemic genera are in Apiaceae , Brassicaceae and Asteraceae ; many are morphologically isolated and occur at random throughout the area. Non-endemic genera with relevant distributions in the area are also discussed, several having a major concentration in Central Asia/Afghanistan and radiate westwards from there reaching a limit in SE Turkey/N Iraq. Also in these and other non-endemic genera, there are many species confined to the west (Turkey) or the east (Afghanistan) but very few are distributed throughout. The paper attempts to provide a framework for future research. It draws attention to the need for a more precise terminology in discussing phytochoria and questions the validity of many currently widely used terms including Irano-Turanian. Keywords: Central Asia, endemism, Irano-Turanian, phytogeography Introduction “L’Orient” of Boissier covered: (1) Greece and its islands and European Turkey; (2) Crimea, Transcaucasus and Caucasus; (3) Egypt to the first cataracts and the Arabian Peninsula till the line of the tropics; (4) Asia Minor, Armenia, Syria and Mesopotamia; (5) Persia, Afghanistan and Baluchistan and (6) S Turkestan to the line cutting the Aral Sea in two.
    [Show full text]
  • Homologies of Floral Structures in Velloziaceae with Particular Reference to the Corona Author(S): Maria Das Graças Sajo, Renato De Mello‐Silva, and Paula J
    Homologies of Floral Structures in Velloziaceae with Particular Reference to the Corona Author(s): Maria das Graças Sajo, Renato de Mello‐Silva, and Paula J. Rudall Source: International Journal of Plant Sciences, Vol. 171, No. 6 (July/August 2010), pp. 595- 606 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/10.1086/653132 . Accessed: 07/02/2014 10:53 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to International Journal of Plant Sciences. http://www.jstor.org This content downloaded from 186.217.234.18 on Fri, 7 Feb 2014 10:53:04 AM All use subject to JSTOR Terms and Conditions Int. J. Plant Sci. 171(6):595–606. 2010. Ó 2010 by The University of Chicago. All rights reserved. 1058-5893/2010/17106-0003$15.00 DOI: 10.1086/653132 HOMOLOGIES OF FLORAL STRUCTURES IN VELLOZIACEAE WITH PARTICULAR REFERENCE TO THE CORONA Maria das Grac¸as Sajo,* Renato de Mello-Silva,y and Paula J. Rudall1,z *Departamento de Botaˆnica, Instituto de Biocieˆncias, Universidade
    [Show full text]
  • Phylogenetic Reconstruction of the Evolution of Stylar Polymorphisms in Narcissus (Amaryllidaceae)1
    American Journal of Botany 91(7): 1007±1021. 2004. INVITED SPECIAL PAPER PHYLOGENETIC RECONSTRUCTION OF THE EVOLUTION OF STYLAR POLYMORPHISMS IN NARCISSUS (AMARYLLIDACEAE)1 SEAN W. G RAHAM2,4 AND SPENCER C. H. BARRETT3 2UBC Botanical Garden and Centre for Plant Research, 6804 SW Marine Drive, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; and 3Department of Botany, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2 We investigated the origin of stylar polymorphisms in Narcissus, which possesses a remarkable range of stylar conditions and diverse types of ¯oral morphology and pollination biology. Reconstruction of evolutionary change was complicated by incomplete resolution of trees inferred from two rapidly evolving chloroplast regions, but we bracketed reconstructions expected on the fully resolved plastid- based tree by considering all possible resolutions of polytomies on the shortest trees. Stigma-height dimorphism likely arose on several occasions in Narcissus and persisted across multiple speciation events. As proposed in published models, this rare type of stylar polymorphism is ancestral to distyly. While there is no evidence in Narcissus that dimorphism preceded tristyly, a rapid transition between them may explain the lack of a phylogenetic footprint for this evolutionary sequence. The single instances of distyly and tristyly in Narcissus albimarginatus and N. triandrus, respectively, are clearly not homologous, an evolutionary convergence unique to Amaryllidaceae. Floral morphology was likely an important trigger for the evolution of stylar polymorphisms: Concentrated-changes tests indicate that a long, narrow ¯oral tube may have been associated with the emergence of stigma-height dimorphism and that this type of tube, in combination with a deep corona, likely promoted, or at least was associated with, the parallel origins of heterostyly.
    [Show full text]
  • Fair Use of This PDF File of Herbaceous
    Fair Use of this PDF file of Herbaceous Perennials Production: A Guide from Propagation to Marketing, NRAES-93 By Leonard P. Perry Published by NRAES, July 1998 This PDF file is for viewing only. If a paper copy is needed, we encourage you to purchase a copy as described below. Be aware that practices, recommendations, and economic data may have changed since this book was published. Text can be copied. The book, authors, and NRAES should be acknowledged. Here is a sample acknowledgement: ----From Herbaceous Perennials Production: A Guide from Propagation to Marketing, NRAES- 93, by Leonard P. Perry, and published by NRAES (1998).---- No use of the PDF should diminish the marketability of the printed version. This PDF should not be used to make copies of the book for sale or distribution. If you have questions about fair use of this PDF, contact NRAES. Purchasing the Book You can purchase printed copies on NRAES’ secure web site, www.nraes.org, or by calling (607) 255-7654. Quantity discounts are available. NRAES PO Box 4557 Ithaca, NY 14852-4557 Phone: (607) 255-7654 Fax: (607) 254-8770 Email: [email protected] Web: www.nraes.org More information on NRAES is included at the end of this PDF. Acknowledgments This publication is an update and expansion of the 1987 Cornell Guidelines on Perennial Production. Informa- tion in chapter 3 was adapted from a presentation given in March 1996 by John Bartok, professor emeritus of agricultural engineering at the University of Connecticut, at the Connecticut Perennials Shortcourse, and from articles in the Connecticut Greenhouse Newsletter, a publication put out by the Department of Plant Science at the University of Connecticut.
    [Show full text]
  • Scanning Electron Microscopy of the Leaf Epicuticular Waxes of the Genus Gethyllis L
    Soulh Afnc.1n Journal 01 Bol811Y 2001 67 333-343 Copynghl €I NISC Ply LId Pnmed In South Alnca - All ngills leserved SOUTH AFRICAN JOURNAL OF BOTANY ISSN 0254- 5299 Scanning electron microscopy of the leaf epicuticular waxes of the genus Gethyllis L. (Amaryllidaceae) and prospects for a further subdivision C Weiglin Technische Universitat Berlin, Herbarium BTU, Sekr. FR I- I, Franklinstrasse 28-29, 0-10587 Berlin, Germany e-mail: [email protected] Recei ved 23 August 2000, accepled in revised form 19 January 2001 The leaf epicuticular wax ultrastructure of 32 species of ridged rodlets is conspicuous and is interpreted as the genus Gethyllis are for the first time investigated being convergent. In three species wax dimorphism was and discussed. Non-entire platelets were observed in discovered, six species show a somewhat rosette-like 12 species, entire platelets with transitions to granules orientation of non-entire or entire platelets and in four in seven species, membranous platelets in nine species a tendency to parallel orientation of non-entire species and smooth layers in eight species, Only or entire platelets was evident. It seems that Gethyllis, GethyJlis transkarooica is distinguished by its trans­ from its wax morphology, is highly diverse and versely ridged rodlets. The occurrence of transversely deserves further subdivision. Introduction The outer epidermal cell walls of nearly all land plants are gle species among larger taxa, cu ltivated plants , varieties covered by a cuticle cons isting mainly of cutin, an insoluble and mutants (Juniper 1960, Leigh and Matthews 1963, Hall lipid pOlyester of substituted aliphatic acids and long chain et al.
    [Show full text]
  • Memorias Del IV Congreso Boliviano De Botánica (Santa Cruz De La Sierra, 2-4 De Octubre 2019)
    Memorias del IV Congreso IV Congreso Boliviano de Botánica Ciencia para el Desarrollo y la Conservación Memorias del Congreso Editores: Marisol Toledo & Moises Mendoza Santa Cruz, Bolivia Octubre - 2019 RESUMENES DEL CONGRESO ©Universidad Autónoma Gabriel René Moreno - Facultad de Ciencias Agrícolas Cita sugerida: Toledo, M. & M. Mendoza (Eds.). 2019. Memorias del IV Congreso Boliviano de Botánica (Santa Cruz de la Sierra, 2-4 de octubre 2019). Facultad de Ciencias Agrícolas - UAGRM. Santa Cruz, Bolivia. 230 p. Crédito de fotos: Moises Mendoza Mayor información de los congresos en Bolivia y esta versión digital de las memorias del IV Congreso estarán disponibles en la página web de la Sociedad Boliviana de Botánica (http://boliviabotanica.org). ÍNDICE Presentación ............................................................................................................................... 1 INSTITUCIONES ORGANIZADORAS ........................................................................................ 2 INSTITUCIONES COLABORADORAS ....................................................................................... 2 COMITÉ ORGANIZADOR ........................................................................................................... 3 COMITÉ CIENTÍFICO .................................................................................................................. 4 LOGO DEL IV CONGRESO ........................................................................................................ 5 PREMIO MARTÍN CÁRDENAS ..................................................................................................
    [Show full text]
  • Complete Chloroplast Genomes Shed Light on Phylogenetic
    www.nature.com/scientificreports OPEN Complete chloroplast genomes shed light on phylogenetic relationships, divergence time, and biogeography of Allioideae (Amaryllidaceae) Ju Namgung1,4, Hoang Dang Khoa Do1,2,4, Changkyun Kim1, Hyeok Jae Choi3 & Joo‑Hwan Kim1* Allioideae includes economically important bulb crops such as garlic, onion, leeks, and some ornamental plants in Amaryllidaceae. Here, we reported the complete chloroplast genome (cpDNA) sequences of 17 species of Allioideae, fve of Amaryllidoideae, and one of Agapanthoideae. These cpDNA sequences represent 80 protein‑coding, 30 tRNA, and four rRNA genes, and range from 151,808 to 159,998 bp in length. Loss and pseudogenization of multiple genes (i.e., rps2, infA, and rpl22) appear to have occurred multiple times during the evolution of Alloideae. Additionally, eight mutation hotspots, including rps15-ycf1, rps16-trnQ-UUG, petG-trnW-CCA , psbA upstream, rpl32- trnL-UAG , ycf1, rpl22, matK, and ndhF, were identifed in the studied Allium species. Additionally, we present the frst phylogenomic analysis among the four tribes of Allioideae based on 74 cpDNA coding regions of 21 species of Allioideae, fve species of Amaryllidoideae, one species of Agapanthoideae, and fve species representing selected members of Asparagales. Our molecular phylogenomic results strongly support the monophyly of Allioideae, which is sister to Amaryllioideae. Within Allioideae, Tulbaghieae was sister to Gilliesieae‑Leucocoryneae whereas Allieae was sister to the clade of Tulbaghieae‑ Gilliesieae‑Leucocoryneae. Molecular dating analyses revealed the crown age of Allioideae in the Eocene (40.1 mya) followed by diferentiation of Allieae in the early Miocene (21.3 mya). The split of Gilliesieae from Leucocoryneae was estimated at 16.5 mya.
    [Show full text]
  • Phylogenetic Perspectives on Biome Shifts in Leucocoryne (Alliaceae) In
    Journal of Biogeography (J. Biogeogr.) (2014) 41, 328–338 ORIGINAL Phylogenetic perspectives on biome ARTICLE shifts in Leucocoryne (Alliaceae) in relation to climatic niche evolution in western South America Paola Jara-Arancio1,2*, Mary T. K. Arroyo1,3, Pablo C. Guerrero1, Luis F. Hinojosa1,3, Gina Arancio1,4 and Marco A. Mendez3 1Instituto de Ecologıa y Biodiversidad (IEB), ABSTRACT Facultad de Ciencias, Universidad de Chile, Aim Shifts between the western South American sclerophyll and winter-rainfall Santiago, Chile, 2Departamento de Ciencias desert biomes and their relationship to climatic niche evolution and aridity Biologicas y Departamento de Ecologıa y Biodiversidad, Universidad Andres Bello, development were investigated in the South American endemic geophytic Leu- Santiago, Chile, 3Departamento de Ciencias cocoryne (Alliaceae) clade. ~ ~ Ecologicas, Universidad de Chile, Nunoa, Location Western South America. Santiago, Chile, 4Departamento de Biologıa, Facultad de Ciencias, Universidad de La Methods We constructed a molecular phylogeny (internal transcribed spacer, Serena, La Serena, Chile ITS), estimated lineage divergence times, and identified ancestral biomes and biome shifts. The multivariate climatic niche of present-day species was described using occurrence data and bioclimatic variables. Climatic niche simi- larity was evaluated using Mahalanobis and Fisher distances. Brownian motion (BM) and Ornstein–Uhlenbeck (OU) models of evolution were used to charac- terize temperature and precipitation niche evolution. Ancestral temperature and precipitation were estimated using the phylogenetic generalized least- squares method. Results Leucocoryne exhibits a low level of phylogenetic biome conservatism. The clade arose in the early Miocene in an ancestral sclerophyll biome and subsequently moved northwards into the arid winter-rainfall biome on two separate occasions, during the late Miocene and Pliocene, respectively, with very recent diversification of species in the winter-rainfall desert.
    [Show full text]
  • Clinanthus Microstephus, an Amaryllidaceae Species with Cholinesterase Inhibitor Alkaloids: Structure-Activity Analysis of Haemanthamine Skeleton Derivatives
    Title: Clinanthus microstephus, an Amaryllidaceae species with cholinesterase inhibitor alkaloids: structure-activity analysis of haemanthamine skeleton derivatives Authors: Tonino G. Adessi, José L. Borioni, Natalia B. Pigni, Jaume Bastida, Valeria Cavallaro, Ana P. Murray, Marcelo Puiatti, Juan C. Oberti, Segundo Leiva, Viviana E. Nicotra, and Manuela Emilia García This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article. To be cited as: Chem. Biodiversity 10.1002/cbdv.201800662 Link to VoR: http://dx.doi.org/10.1002/cbdv.201800662 Chemistry & Biodiversity 10.1002/cbdv.201800662 Clinanthus microstephus, an Amaryllidaceae species with cholinesterase inhibitor alkaloids: structure-activity analysis of haemanthamine skeleton derivatives Tonino G. Adessi,a,b José L. Borioni,a,c Natalia B. Pigni,a,d Jaume Bastida,e Valeria Cavallaro,f Ana P. Murray,f Marcelo Puiatti,g Juan C. Oberti,a,b Segundo Leiva,h Viviana E. Nicotra, a,b Manuela E. Garciaa,b* a Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba XUA5000, Argentina. b Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET, Córdoba, Argentina).
    [Show full text]
  • Generic Classification of Amaryllidaceae Tribe Hippeastreae Nicolás García,1 Alan W
    TAXON 2019 García & al. • Genera of Hippeastreae SYSTEMATICS AND PHYLOGENY Generic classification of Amaryllidaceae tribe Hippeastreae Nicolás García,1 Alan W. Meerow,2 Silvia Arroyo-Leuenberger,3 Renata S. Oliveira,4 Julie H. Dutilh,4 Pamela S. Soltis5 & Walter S. Judd5 1 Herbario EIF & Laboratorio de Sistemática y Evolución de Plantas, Facultad de Ciencias Forestales y de la Conservación de la Naturaleza, Universidad de Chile, Av. Santa Rosa 11315, La Pintana, Santiago, Chile 2 USDA-ARS-SHRS, National Germplasm Repository, 13601 Old Cutler Rd., Miami, Florida 33158, U.S.A. 3 Instituto de Botánica Darwinion, Labardén 200, CC 22, B1642HYD, San Isidro, Buenos Aires, Argentina 4 Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Postal Code 6109, 13083-970 Campinas, SP, Brazil 5 Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, U.S.A. Address for correspondence: Nicolás García, [email protected] DOI https://doi.org/10.1002/tax.12062 Abstract A robust generic classification for Amaryllidaceae has remained elusive mainly due to the lack of unequivocal diagnostic characters, a consequence of highly canalized variation and a deeply reticulated evolutionary history. A consensus classification is pro- posed here, based on recent molecular phylogenetic studies, morphological and cytogenetic variation, and accounting for secondary criteria of classification, such as nomenclatural stability. Using the latest sutribal classification of Hippeastreae (Hippeastrinae and Traubiinae) as a foundation, we propose the recognition of six genera, namely Eremolirion gen. nov., Hippeastrum, Phycella s.l., Rhodolirium s.str., Traubia, and Zephyranthes s.l. A subgeneric classification is suggested for Hippeastrum and Zephyranthes to denote putative subclades.
    [Show full text]