Relations Between Rotary Power and Structure in the Sugar Group. Part I

Total Page:16

File Type:pdf, Size:1020Kb

Relations Between Rotary Power and Structure in the Sugar Group. Part I S533 RELATIONS BETWEEN ROTATORY POWER AND STRUCTURE IN THE SUGAR GROUP PART I INTRODUCTORY ARTICLE AND ARTICLES 1 TO 10 By C. S. Hudson ABSTRACT In 1909 a beginning was made in correlating the structures of sugars with their rotatory powers by the author's appUcation of Van't Hoff's hypothesis of optical superposition to the sugars and various of their derivatives. This method of correlation was extended in numerous subsequent articles to the lactones, the amides and phenylhydrazides, the compound sugars and glycosides, and many other opticall}' active substances. The method and its results and the new experimental data obtained in the course of these researches have come intO' extensive use in the fields of organic and stereochemistry. In the present work the author's various articles have been systematically arranged and republished^ either in full or with some condensations. It is hoped that the orderly presenta- tion of the subject mil assist research workers in the use of this new method of investigation in stereochemistry. CONTENTS Fafir« I. Introduction 244 II. A summary of the author's earlier researches on relations between rotatory power and structure in the sugar group 245 1. Two rules of rotation in the sugar group (the isorotation rules) derived from Van't Hoff's hypothesis of optical superposition 245 2. An empirical relation among the equilibrium constants of the mutarotating sugars 249 3. A systematic nomenclature of the alpha and beta forms of the sugars and their derivatives 250 4. The rotatory powers of the glucosides 252 6. The rotations of acetyl derivatives of the sugars 254 (a) The rotations of the glucose penta-acetates and the methyl glucoside tetra-acetates 254 (6) The zinc-chloride method for transforming sugar acetates to isomeric forms 257 (c) New ring forms of sugar derivatives. The four isomeric penta-acetates of galactose 260 (d) A correlation of the reactions for acetylating sugars- 261 (e) The rotations of the acetates of the alpha and beta forms of methyl xyloside, glucoside, and galacto- Bide 262. 241 242 Scientific Papers the Bureau Standards of of i voi. ti II. A summary, etc. —Continued. 5. The rotations of acetyl dcrivativcrs of the sugars—Continued. Page (J) Optical superposition among the acetylatcd deriva- tives of xylose 263 {g) The rotations of the beta hepta-acetates of methyl maltoside and methyl cellobioside 263 (Ji) The rotations of the beta hepta-acetates of maltose, cellobiose and lactose 265 {i) The rotations of the alpha and beta methyl gentio- biosides and their hepta-acetates 266 6. Indirect measurements of the rotatory powers of some alpha and beta forms of the sugars by means of solubility experi- ments 267 (a) Description of the method 268 (6) Experimental results 269 7. Some numerical relations among the rotatory powers of the compound sugars 272 (a) Sugars of the sucrose group 272 (6) Sugars of the trehalose group 277 (c) The related rotations of lactose and cellobiose 279 8. A relation between the chemical constitution and the optical rotatory power of the lactones of the sugar group. The lactone rule of rotation 280 (a) The hypothesis 280 (6) Test of the hypothesis 282 (c) Application of the theory to determine the con- figurations of the sugars 284 {d) Proof of the position of the lactonic ring 286 (c) The stereochemical configurations of the sugars fucose and rhodeose 289 9. The phenylhydrazide rule of rotation (Levene (1915), Hud- son (1916)) 292 10. The amide rule of rotation 297 (a) The rotatory powers of tartaric and tartraminic acids and tartramide 299 (6) The configurations of the active mahc acids 299 (c) The configurations of the active mandelic acids 301 id) The rotatory powers of the amides of several alpha hydroxy acids of the sugar group 301 (e) The lactone and the amide of methj'l tetronic acid_ 305 (/) The amide of a-mannoheptonic acid 308 III. Relations between rotatory power and structure in the sugar group__ 309 1. The halogeno-acyl and nitro-acyl derivatives of the aldose sugars 309 (a) Classification of the halogeno-acetyl and nitro-acetyl derivatives of the aldose sugars as alpha or beta forms on the basis of their rotatory powers 314 (6) Classification of various acyl and halogeno-acyl derivatives of the aldoses 316 (c) The calculated rotation of i3-chloro-acetyl glucose.. 322 (d) The calculated rotation of 1, 6-dibromotriacetyl glucose (aceto-1, 6-dibromo glucose) 322 (c) Calculation of the rotation of bromo-acetyl gentio- biose 323 — Hudson] Rotations and Structures of Sugars 243 III. Relations between rotatory power and structure in the sugar group Continued. Page 2. The halogeno-acetyl derivatives of a ketose sugar (ci-f ructose) — 324 (a) The rotations of beta-fructose and beta-methyl fructoside 324 (6) The rotations of the two chloro-acetyl fructoses 325 (c) The rotations of fluoro-acetyl and bromo-acetyl fructose 326 {(i) The rotation of beta-tetra-acetyl methyl fructoside. 327 (e) The rotations of the two isomeric penta-acetates of fructose 327 (/) Discussion of the conclusions 328 8. The biose of amygdalin (gentiobiose) and its configuration. _ 329 (a) The relationship of amygdalin to iso-amygdahn and prulaurasin 331 (6) The rotatory powers of the glucosides of the amyg- dalin group 332 (c) Calculation of the rotation of the biose of amyg- dalin 333 4. Two isomeric crystalline hexa-acetates of dextro-alpha- mannoheptose 335 (a) Experimental part 338 (6) Summary 339 5. The chloro- and bromo-acetjd derivatives of arabinose. The nomenclatm-e of alpha and beta forms in the sugar group. Some derivatives of 1, 6-dibromo-acetyl glucose, gentiobiose and maltose 339 (a) The nomenclature of alpha and beta fonns in the sugar group 341 (6) The calculated rotations of Fischer and Armstrong's dibromo-acetyl glucose, etc 345 (c) The rotation of alpha-bromo-acetyl gentiobiose observed by Zemplen 347 (d) The calculated rotations of some acyl derivatives of maltose and gentiobiose 348 (e) Postscript 348 (/) Experimental part 350 ig) Summary 351 6. The rotatory powers of the alpha and beta forms of methyl d-xyloside and of methyl Z-arabinoside 352 (a) Preparation of the alpha and beta forms of methyl d-xyloside 353 (6) Preparation of the alpha and beta forms of methyl Z-arabinoside 354 7. The methyl glycosidic derivatives of the sugars 355 (o) The rotation of the terminal asymmetric carbon atom in the methyl glucosides, galactosides, xylosides, and arabinosides 357 (6) Comparison of the rotations of various methyl gly- cosides with those of the respective sugars 358 (c) Methyl d-lyxoside 359 (d) Beta-methyl d-isorhamnoside 360 (e) Calculation of the rotations of the forms of d-isor- hamnose 362 — 244 Scientific Papers of the Burecm of Standards [ voi. ti III. Relations between rotatory power and structure in the sugar group Continued. 7. The methyl glycosidic derivatives of the sugars—Continued. Page (J) Methyl fucoside 362 (gr) Methyl maltoside and its hepta-acetate 363 (Ji) Ethyl maltoside, ethyl glucoside, and the value of aEt 364 (t) Methyl lactoside and its hepta-acetate 364 0) Methyl Z-sorboside 365 {k) Summary 366 8. Some terpene alcohol glycosides of glucose, glucuronic acid, maltose and lactose 367 (a) The menthyl and bornyl glucosides and the menthyl-glucuronic acids 369 (6) Menthyl maltoside and menthyl lactoside 371 (c) 6, rc-anhydro-Z-menthyl glucoside 372 {d) The crystalline lactone of c^-glucuronic acid 372 (e) Summary of results 373 9. The rotation of the alpha form of methyl gentiobioside recently synthesized by Helferich and Becker 373 10. The chloro-, bromo-, and iodo-acetyl derivatives of lactose- 374 (a) Experimental part 376 IV. Table of rotations of pure substances which have been measured in the course of these researches 378 V. Index 381 I. INTRODUCTION In this publication there are reprinted in Section III. pages 309 to 378 the first 10 articles of a series entitled '^Relations Between Rotatory- Power and Structure in the Sugar Group " which were originally pub- lished in the Journal of the American Chemical Society. As an intro- duction to them there has been prepared a summary (Sec. II, pp. 245 to 309) of the author's earher researches on this subject, given as far as possible in the form of quotations in order that the present publication may be used as an original source of reference. A table of the rotatory powers of those substances which have been purified and measured in the course of these investigations (Sec. IV, pp. 378 to 379) and a thorough subject and substance index '(Sec. V, pp. 381 to 384) have been prepared as reference aids. It is hoped that the orderly presentation of the work may assist research workers and advanced students of organic, physical, and biological chemistry who may be interested in carbohydrate chemistry. It is recommended to such students that they read E. F. Armstrong's ''The Simple Carbohydrates and the Glucosides" or H. Pringsheim's ''Zuckerchemie" before studying the present publication. Grateful acknowledgment is made of the painstaking assistance that has been rendered by a large number of coworkers whose names will be found in connection with the description of the substances, some old and some new, which they have carefully prepared and — Hudson] Rotations and Structures of Sugars 245 measured. The investigations have been carried out as projects of two Federal departments, those from the years 1909-1919 having been performed in the Bureau of Chemistry of the United States Depart- ment of Agriculture, and those subsequent to 1923 having come from the Bureau of Standards of the United States Department of Com- merce. II. A SUMMARY OF THE AUTHOR'S EARLIER RESEARCHES ON RELATIONS BETWEEN ROTATORY POWER AND STRUCTURE IN THE SUGAR GROUP This summary has been prepared in 1925 as an introduction to the 10 articles on this subject that are republished in Section III of this monograph.
Recommended publications
  • A) and Co-Fermentation (B
    Simultaneous Co-Fermentation of Mixed Sugars: A Promising Strategy for Producing Cellulosic Biofuels and Chemicals Na Wei PI: Yong-Su Jin Energy Biosciences Institute /Institute for Genomic Biology University of Illinois at Urbana-Champaign Corn ethanol vs. Cellulosic ethanol Corn starch Cellulosic biomass Gelatinization Pretreatment + Cellulases Amylases Glucose + Xylose + Acetate Glucose + Fermentation inhibitors yeast yeast Ethanol + CO2 Ethanol + CO2 • Single sugar fermentation • Mixed sugar fermentation • No fermentation inhibitors • Fermentation inhibitors • Easy high loading • Difficulties in high loading 2 Saccharomyces cerevisiae: a workhorse strain for industrial ethanol production The most widely used yeast since ancient times in baking and brewing Osmotolerant and ethanol-tolerant Numerous genetic/genomic tools are available Overexpression / Knockout Expression of heterologous enzymes Cannot utilize xylose Not suitable for producing cellulosic biofuels 3 Basic strategy in metabolic engineering of xylose fermentation in S. cerevisiae Scheffersomyces stipitis Saccharomyces cerevisiae Xylose Xylose XYL1 Xylitol Xylitol XYL2 Xylulose Xylulose XYL3 X-5-P X-5-P PPP and Glycolysis PPP and Glycolysis Ethanol Ethanol . Natural xylose fermenting . High ethanol tolerance . Low ethanol tolerance . Amenable to metabolic engineering 4 Laboratory evolution of an engineered S. cerevisiae strain for further improvement DA24 n 16 Enrichment Single colony by serial culture isolation in 80 g/L of xylose Evaluation 5 Comparison of xylose fermentation capability between engineered S. cerevisiae and S. stipitis Engineered S. cerevisiae S. stipitis The engineered S. cerevisiae strain consumed xylose almost as fast as S. stipitis, the fastest xylose-fermenting yeast 6 Ha et al. PNAS, 108:504-509 Why we want to co-ferment cellobiose and xylose? Typical fermentation profile of glucose and xylose mixture Glucose Glycolysis Ethanol Pentose Phosphate Pathway CO2 Xylose 7 Engineered S.
    [Show full text]
  • Bioresources.Com
    PEER-REVIEWED ARTICLE bioresources.com ADSORPTION OF CELLOBIOSE-PENDANT POLYMERS TO A CELLULOSE MATRIX DETERMINED BY QUARTZ CRYSTAL MICROBALANCE ANALYSIS Shingo Yokota,† Takefumi Ohta, Takuya Kitaoka,* and Hiroyuki Wariishi Cellobiose-pendant polymers were synthesized by radical polymerization and their affinity for a cellulose matrix was investigated by quartz crystal microbalance (QCM). A 2-(methacryloyloxy)ethylureido cellobiose (MOU-Cel) macromer was synthesized by coupling cellobiosylamine with 2-(methacryloyloxy)ethyl isocyanate followed by polymerization in an aqueous radical reaction system. The interaction of the resulting poly(MOU-Cel) with a pure cellulose matrix in water was evaluated by QCM analysis. Poly(MOU-Cel) was strongly adsorbed to the cellulose substrate, whereas neither cellobiose nor MOU-Cel macromer exhibited an attractive interaction with cellulose. This specific interaction was not inhibited by the presence of ionic contaminants, suggesting that multiple cellobiopyranose moieties in each polymer molecule might cooperatively enhance its affinity for cellulose. Moderate insertion of acrylamide units into the polymer backbone improved the affinity for cellulose, possibly due to an increased mobility of sugar side chains. Polymers such as these, with a high affinity for cellulose, have potential applications for the surface functionalization of cellulose-based materials, including paper products. Keywords: Cellobiose; Cellulose; Sugar-pendant polymer; Non-electrostatic interaction; Quartz crystal microbalance Contact information: Department of Forest and Forest Products Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan; †Present address: Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan; *Corresponding author: [email protected] INTRODUCTION Cellulose is the most abundant, renewable carbohydrate resource and has been widely used as a raw material in a variety of applications (Klemm et al.
    [Show full text]
  • Traditional Medicine
    MINISTRY OF HEALTH DEPARTMENT OF MEDICAL RESEARCH (LOWER MYANMAR) -4 rf,"d .1, l,.ifr M '\t $.,iJ+j AI{I{OTATED BIBLIOGRAPHY OF TRADITIOI{AL MEDTCII\E RESEARCH CARRTED OUT AT DMR (LM) nURIf{G 196s-2011 f# #a# €€# 6rdffi t u 6 l6'6 ktibilicetidiT \ &, ft Ministry of Health Department of Medical Research (Lower Myanmar) Central Biomedical Library ANNOTATED BIBLIOGRAPHY OF TRADITIONAL MEDICINE RESEARCH CARRIED OUT AT DMR (LM) DURING 1965-2011 Compiled by Cho Mar Oo BA (Economics); DipLibSc Librarian, Central Biomedical Library Staff of Central Biomedical Library May Aye Than MBBS, MMedSc (Pharmacology) Deputy Director & Head Pharmacology Research Division Staff of Pharmacology Research Division Aung Myo Min BSc (Physics); DipLibSc; RL Librarian & Head (Retd.) Central Biomedical Library Ye Htut MBBS, MSc (Medical Parasitology) (London) DLSHTM, FRCP (Edin) Deputy Director-General Myo Khin MBBS, MD (New South Wales), DCH, FRCP (Edin) Acting Director General PREFACE Throughout recorded history, people of various cultures have relied on traditional medicine. Worldwide, only an estimated ten to thirty percent of human health care is delivered by conventional, biomedically oriented practitioners. The remaining seventy to ninety percent ranges from self-care according to folk principles, to care given in an organized health care system based on traditional medicine. Likewise, in Myanmar health care system, the existence of traditional medicine along with allopathic medicines is well recognized. Myanmar traditional medicine dates back 2,000 years and is well accepted and widely used by the people throughout history. Burma Medical Research Institute since it was established in 1963 had started a program of research on traditional medicinal plants including laboratory screening tests on animal models of herbs with reputed pharmacological properties-such as anti-dysentery, bronchodilator, hypoglycemic effects.
    [Show full text]
  • Cellobiose 2-Epimerase, Process for Producing
    (19) TZZ ¥ZZ_T (11) EP 2 395 080 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 15/00 (2006.01) C12N 1/15 (2006.01) 06.08.2014 Bulletin 2014/32 C12N 1/19 (2006.01) C12N 1/21 (2006.01) C12N 5/10 (2006.01) C12N 9/90 (2006.01) (2006.01) (2006.01) (21) Application number: 10738433.1 C12N 15/09 C12P 19/00 (22) Date of filing: 25.01.2010 (86) International application number: PCT/JP2010/050928 (87) International publication number: WO 2010/090095 (12.08.2010 Gazette 2010/32) (54) CELLOBIOSE 2-EPIMERASE, PROCESS FOR PRODUCING SAME, AND USE OF SAME CELLOBIOSE 2-EPIMERASE, HERSTELLUNGSVERFAHREN DAFÜR UND VERWENDUNG CELLOBIOSE 2-ÉPIMÉRASE, PROCÉDÉ DE PRODUCTION DE CELLE-CI ET UTILISATION DE CELLE-CI (84) Designated Contracting States: (74) Representative: Daniels, Jeffrey Nicholas AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Page White & Farrer HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL Bedford House PT RO SE SI SK SM TR John Street London WC1N 2BF (GB) (30) Priority: 05.02.2009 JP 2009025070 (56) References cited: (43) Date of publication of application: WO-A1-2008/062555 14.12.2011 Bulletin 2011/50 • PARK CHANG-SU ET AL: "Characterization of a (73) Proprietor: Hayashibara Co., Ltd. recombinant cellobiose 2-epimerase from Okayama-shi, Okayama (JP) Caldicellulosiruptor saccharolyticus and its application in the production of mannose from (72) Inventors: glucose.", APPLIED MICROBIOLOGY AND • WATANABE Hikaru BIOTECHNOLOGY DEC 2011 LNKD- PUBMED: Okayama-shi 21691788,vol.
    [Show full text]
  • Uvic Thesis Template
    Insight into the Functionality of an Unusual Glycoside Hydrolase from Family 50 by Kaleigh Giles BSc, Brock University, 2011 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in the Department of Biochemistry and Microbiology Kaleigh Giles, 2014 University of Victoria All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. ii Supervisory Committee Insight into the Functionality of an Unusual Glycoside Hydrolase from Family 50 by Kaleigh Giles BSc, Brock University, 2011 Supervisory Committee Dr. Alisdair B. Boraston, Department of Biochemistry and Microbiology Supervisor Dr. Martin J. Boulanger (Department of Biochemistry and Microbiology) Departmental Member Dr. Fraser Hof (Department of Chemistry) Outside Member iii Abstract Supervisory Committee Dr. Alisdair B. Boraston, Department of Biochemistry and Microbiology Supervisor Dr. Martin J. Boulanger, Department of Biochemistry and Microbiology Departmental Member Dr. Fraser Hof, Department of Chemistry O utside Member Agarose and porphyran are related galactans that are only found within red marine algae. As such, marine microorganisms have adapted to using these polysaccharides as carbon sources through the acquisition of unique Carbohydrate Active enZymes (CAZymes). A recent metagenome study of the microbiomes from a Japanese human population identified putative CAZymes in several bacterial species, including Bacteroides plebeius that have significant amino acid sequence similarity with those from marine bacteria. Analysis of one potential CAZyme from B. plebeius (BpGH50) is described here. While displaying up to 30% sequence identity with β-agarases, BpGH50 has no detectable agarase activity. Its crystal structure reveals that the topology of the active site is much different than previously characterized agarases, while containing the same core catalytic machinery.
    [Show full text]
  • In Chemistry, Glycosides Are Certain Molecules in Which a Sugar Part Is
    GLYCOSIDES Glycosides may be defined as the organic compounds from plants or animal sources, which on enzymatic or acid hydrolysis give one or more sugar moieties along with non- sugar moiety. Glycosides play numerous important roles in living organisms. Many plants store important chemicals in the form of inactive glycosides; if these chemicals are needed, the glycosides are brought in contact with water and an enzyme, and the sugar part is broken off, making the chemical available for use. Many such plant glycosides are used as medications. In animals (including humans), poisons are often bound to sugar molecules in order to remove them from the body. Formally, a glycoside is any molecule in which a sugar group is bonded through its carbon atom to another group via an O-glycosidic bond or an S-glycosidic bond; glycosides involving the latter are also called thioglycosides. The sugar group is then known as the glycone and the non-sugar group as the aglycone or genin part of the glycoside. The glycone can consist of a single sugar group (monosaccharide) or several sugar groups (oligosaccharide). Classification Classification based on linkages Based on the linkage of sugar moiety to aglycone part 1. O-Glycoside:-Here the sugar is combined with alcoholic or phenolic hydroxyl function of aglycone.eg:-digitalis. 2. N-glycosides:-Here nitrogen of amino group is condensed with a sugar ,eg- Nucleoside 3. S-glycoside:-Here sugar is combined with sulphur of aglycone,eg- isothiocyanate glycosides. 4. C-glycosides:-By condensation of a sugar with a cabon atom, eg-Cascaroside, aloin. Glycosides can be classified by the glycone, by the type of glycosidic bond, and by the aglycone.
    [Show full text]
  • Rapid Method for the Estimation of Total Free Monosaccharide Content of Corn Stover Hydrolysate Using HPAE-PAD
    Application Note 225 Note Application Rapid Method for the Estimation of Total Free Monosaccharide Content of Corn Stover Hydrolysate Using HPAE-PAD Valoran Hanko and Jeff Rohrer Thermo Fisher Scientific, Sunnyvale, CA, USA Introduction The Thermo Scientific™ Dionex™ CarboPac™ PA1 Compositional carbohydrate analysis of biocrop feedstock anion-exchange column rapidly elutes corn stover is essential to the efficient production of cellulosic carbohydrates, resolving the monosacccharides from the ethanol.1 Corn stover is the leaf, husk, stalk, and cob unretained and undetected noncarbohydrate components remaining in the field after harvest and makes up about of acid-hydrolyzed corn stover. Under these conditions, half the yield of a crop of corn. It can also contain weeds disaccharides and trisaccharides are also resolved, with a and grasses collected during the harvest of corn stover. total elution time less than 10 min. Thus, the sum of all Along with other lignocellulosic biomass, corn stover the carbohydrate peaks is a useful measure of the energy provides 1.3 billion tons of raw material annually and is a production potential of acid-hydrolyzed corn stover. common feedstock for fermentation systems used in The carbohydrate content of acid-hydrolyzed corn stover biofuel production.2 can be very high, and for some carbohydrates can even Corn stover is acid-hydrolyzed to release a water-soluble approach their saturation concentration in an aqueous mixture of carbohydrates, typically consisting of arabi- solution. When used for saccharide determinations, PAD nose, glucose, galactose, mannose, xylose, fructose, and with a gold working electrode is a sensitive detection cellobiose among other noncarbohydrate substances in method, but like other detection techniques it does not 0.5 to 1.5% (w/w) sulfuric acid.3,4 The concentration of have an unlimited linear range.
    [Show full text]
  • Glycoconjugates
    Background Information on Glycoconjugates Richard D. Cummings, Ph.D. Director, National Center for Functional Glycomics Professor Department of Surgery Beth Israel Deaconess Medical Center Harvard Medical School Boston, MA 02114 Tel: (617) 735-4643 e-mail: [email protected] For General Reference On-Line See: Essentials of Glycobiology (2nd Edition) Varki, Cummings, Esko, Freeze, Stanley, Bertozzi, Hart and Etzler) http://www.ncbi.nlm.nih.gov/books/NBK1908/ Mammalian Cells are Covered with Glycoconjugates GLYCOSAMINOGLYCANS/ GLYCOPROTEINS PROTEOGLYCANS GLYCOLIPIDS NUCLEAR/CYTOPLASMIC GLYCOPROTEINS 2 Mammalian Glycoconjugates are Recognized by a Wide Variety of Specific Proteins GLYCAN-BINDING PROTEIN (GBP) GBP ANTIBODY TOXIN GBP GBP VIRUS 7 ANTIBODY GBP MICROBE TOXIN 3 Glycosylation Pathways 4 Glycosylation Pathways 5 Glycoconjugates, Which are Molecules Containing Sugars (Monosaccharides) Linked Within Them, are the Major Constituents of Animal Cell Membranes (Glycocalyx) and Secreted Material: See Different Classes of Glycoconjugates Below in Red Boxes PROTEOGLYCANS GLYCOSAMINOGLYCANS GLYCOSAMINOGLYCANS GLYCOPROTEINS GPI-ANCHORED GLYCOPROTEINS GLYCOLIPIDS outside Cell Membrane cytoplasm Essentials of Glycobiology, 3rd Edition CYTOPLASMIC GLYCOPROTEINS Chapter 1, Figure 6 Glycans are as Ubiquitous as DNA/RNA and Appear to Represent Greater Molecular Diversity 7 Big Picture: Nucleotide Sugars Connection of • UDP-Glc, • UDP-Gal, • UDP-GlcNAc, Glycoconjugate • UDPGalNAc, • UDP-GlcA, Biosynthesis • UDP-Xyl, • GDP-Man, • GDP-Fuc, to Intermediary • CMP-Neu5Ac used for synthesizing Metabolism glycoconjugates, e.g, glycoproteins & glycolipids 8 Important Topics to Consider 1. The different types of monosaccharides found in animal cell glycoconjugates 2. The different types of glycoconjugates and their differences, e.g. glycoproteins, glycolipids 3. The nucleotide sugars, glycosyltransferases, glycosidases, transporters, endoplasmic reticulum, and Golgi in terms of their roles in glycoconjugate biosynthesis and turnover 4.
    [Show full text]
  • Collagen-Based Matrix Matrix Auf Der Basis Von Kollagen Matrice À Base De Collagène
    Europäisches Patentamt *EP000693523B1* (19) European Patent Office Office européen des brevets (11) EP 0 693 523 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C08H 1/06, A61L 27/00, of the grant of the patent: A61L 31/00 20.11.2002 Bulletin 2002/47 (21) Application number: 95111260.6 (22) Date of filing: 18.07.1995 (54) Collagen-based matrix Matrix auf der Basis von Kollagen Matrice à base de collagène (84) Designated Contracting States: • Noff, Matityahu AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL Rehovot 76228 (IL) PT SE (74) Representative: Grünecker, Kinkeldey, (30) Priority: 19.07.1994 IL 11036794 Stockmair & Schwanhäusser Anwaltssozietät Maximilianstrasse 58 (43) Date of publication of application: 80538 München (DE) 24.01.1996 Bulletin 1996/04 (56) References cited: (73) Proprietor: COL-BAR R & D LTD. DE-A- 4 302 708 FR-A- 2 679 778 Ramat-Gan 52290 (IL) US-A- 4 971 954 (72) Inventors: Remarks: • Pitaru, Sandu The file contains technical information submitted Tel-Aviv 62300 (IL) after the application was filed and not included in this specification Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 0 693 523 B1 Printed by Jouve, 75001 PARIS (FR) EP 0 693 523 B1 Description [0001] The present invention concerns a collagen-based matrix and devices comprising this matrix.
    [Show full text]
  • Download PDF Flyer
    REVIEWS IN PHARMACEUTICAL & BIOMEDICAL ANALYSIS Editors: Constantinos K. Zacharis and Paraskevas D. Tzanavaras eBooks End User License Agreement Please read this license agreement carefully before using this eBook. Your use of this eBook/chapter constitutes your agreement to the terms and conditions set forth in this License Agreement. Bentham Science Publishers agrees to grant the user of this eBook/chapter, a non-exclusive, nontransferable license to download and use this eBook/chapter under the following terms and conditions: 1. This eBook/chapter may be downloaded and used by one user on one computer. The user may make one back-up copy of this publication to avoid losing it. The user may not give copies of this publication to others, or make it available for others to copy or download. For a multi-user license contact [email protected] 2. All rights reserved: All content in this publication is copyrighted and Bentham Science Publishers own the copyright. You may not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit any of this publication’s content, in any form by any means, in whole or in part, without the prior written permission from Bentham Science Publishers. 3. The user may print one or more copies/pages of this eBook/chapter for their personal use. The user may not print pages from this eBook/chapter or the entire printed eBook/chapter for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained from the publisher for such requirements.
    [Show full text]
  • Intermediate Transfer Type Ink Jet Recording Method
    Europaisches Patentamt J European Patent Office © Publication number: 0 606 490 A1 Office europeen des brevets EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC © Application number: 93914949.8 int. ci.5: B41J 2/01 @ Date of filing: 02.07.93 © International application number: PCT/JP93/00914 © International publication number: WO 94/01283 (20.01.94 94/03) © Priority: 02.07.92 JP 175384/92 Inventor: HOSONO, Yoshie 02.07.92 JP 175385/92 Seiko Epson Corporation, 02.07.92 JP 175386/92 3-5, Owa 3-chome 02.07.92 JP 175387/92 Suwa-shi, Nagano 392(JP) 16.10.92 JP 278938/92 Inventor: NAKAMURA, Hiroto 05.11.92 JP 296109/92 Seiko Epson Corporation, 05.11.92 JP 296110/92 3-5, Owa 3-chome 05.11.92 JP 296111/92 Suwa-shi, Nagano 392(JP) 06.01.93 JP 665/93 Inventor: KOIKE, Yoshiyuki Seiko Epson Corporation, © Date of publication of application: 3-5, Owa 3-chome 20.07.94 Bulletin 94/29 Suwa-shi, Nagano 392(JP) Inventor: MATSUZAKI, Makoto @ Designated Contracting States: Seiko Epson Corporation, CH DE FR GB IT LI NL SE 3-5, Owa 3-chome Suwa-shi, Nagano 392(JP) © Applicant: SEIKO EPSON CORPORATION Inventor: UEHARA, Fumie 4-1, Nishishinjuku 2-chome Seiko Shinjuku-ku Tokyo 163(JP) Epson Corporation, 3-5, Owa 3-chome © Inventor: FUJINO, Makoto Suwa-shi, Nagano 392(JP) Seiko Epson Corporation, Inventor: ISHIBASHI, Osamu 3-5, Owa 3-chome Seiko Epson Corporation, Suwa-shi, Nagano 392(JP) 3-5, Owa 3-chome Inventor: KUMAGAI, Toshio Suwa-shi, Nagano 392(JP) Seiko Epson Corporation, 3-5, Owa 3-chome Suwa-shi, Nagano 392(JP) © Representative: Lewin, John Harvey Inventor: TSUKAHARA, Michinari Elkington and Fife Seiko Epson Corporation, Prospect House CO 8 Pembroke Road o 3-5, Owa 3-chome CO Suwa-shi, Nagano 392(JP) Sevenoaks, Kent TN13 1XR (GB) &) INTERMEDIATE TRANSFER TYPE INK JET RECORDING METHOD.
    [Show full text]
  • Converting Galactose Into the Rare Sugar Talose with Cellobiose 2-Epimerase As Biocatalyst
    molecules Article Converting Galactose into the Rare Sugar Talose with Cellobiose 2-Epimerase as Biocatalyst Stevie Van Overtveldt, Ophelia Gevaert, Martijn Cherlet, Koen Beerens and Tom Desmet * Centre for Synthetic Biology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium; [email protected] (S.V.O.); [email protected] (O.G.); [email protected] (M.C.); [email protected] (K.B.) * Correspondence: [email protected]; Tel.: +32-9264-9920 Academic Editors: Giorgia Oliviero and Nicola Borbone Received: 17 September 2018; Accepted: 29 September 2018; Published: 1 October 2018 Abstract: Cellobiose 2-epimerase from Rhodothermus marinus (RmCE) reversibly converts a glucose residue to a mannose residue at the reducing end of β-1,4-linked oligosaccharides. In this study, the monosaccharide specificity of RmCE has been mapped and the synthesis of D-talose from D-galactose was discovered, a reaction not yet known to occur in nature. Moreover, the conversion is industrially relevant, as talose and its derivatives have been reported to possess important antimicrobial and anti-inflammatory properties. As the enzyme also catalyzes the keto-aldo isomerization of galactose to tagatose as a minor side reaction, the purity of talose was found to decrease over time. After process optimization, 23 g/L of talose could be obtained with a product purity of 86% and a yield of 8.5% (starting from 4 g (24 mmol) of galactose). However, higher purities and concentrations can be reached by decreasing and increasing the reaction time, respectively. In addition, two engineering attempts have also been performed.
    [Show full text]