The International Society for Computational Biology 10Th Anniversary Lawrence Hunter, Russ B

Total Page:16

File Type:pdf, Size:1020Kb

The International Society for Computational Biology 10Th Anniversary Lawrence Hunter, Russ B Message from ISCB The International Society for Computational Biology 10th Anniversary Lawrence Hunter, Russ B. Altman, Philip E. Bourne* Introduction training programs in bioinformatics or significant part of the original computational biology. By 1996, motivation for founding the Society PLoS Computational Biology is the however, high throughput molecular was to provide a stable financial home official journal of the International biology and the attendant need for for the ISMB conference. The first few Society for Computational Biology informatics had clearly arrived. In conferences were sufficiently successful (ISCB), a partnership that was formed addition to the founding of ISCB, 1996 to create a financial nest egg that was during the Journal’s conception in saw the sequencing of the first genome used each year to start the process of 2005. With ISCB being the only of a free-living organism (yeast) and planning and executing the next year’s international body representing Affymetrix’s release of its first meeting. Initially, relatively modest computational biologists, it made commercial DNA chip. checks were cut and sent from one perfect sense for PLoS Computational The hot topics in bioinformatics organizer to another informally. As the Biology to be closely affiliated. The circa 1996, at least as reflected by the size of these checks increased, the Society had to take more of a chance conference on Intelligent Systems for organizers (and their home than similar societies, choosing to step Molecular Biology (ISMB) at institutions) became increasingly away from an existing financially Washington University in St. Louis, uncomfortable exchanging them beneficial subscription journal to align included issues which have largely been informally, and decided that they with an open access publication as a solved (such as gene finding or needed an organization—thus, ISCB. matter of principle. To our knowledge, sequence assembly), as well as ones The basic rules and goals for ISCB ISCB was the first major international which have proven richer than all were hashed out in an unforgettable scientific society to do so. expectations (such as ontological late-night dinner on the beaches of Now, as PLoS Computational Biology foundations for knowledge models). Halkidiki, Greece, at ISMB ’97. Not reaches its two-year mark, ISCB Although not yet as global as the surprisingly, the idea of an simultaneously celebrates its tenth current Society, attendees in 1996 organization brought much more than anniversary, having formed officially came from Canada, Denmark, the convenience of a bank account for on June 18, 1997. We early presidents Germany, Japan, the United Kingdom, the conferences. There were formative of ISCB reflect on the state of and the United States. ISMB ’96 discussions about advocacy, education, computational biology ten years ago, attendees also included all of the travel support, and other activities. how far we have come since, and what presidents of ISCB so far. However, the role of conferences thought-provoking future challenges By the time the Society was founded, remained central. It was clear that the might lie ahead with regard to bioinformatics was gaining notice in ISMB meeting was the primary innovations in publishing technologies. the broader scientific community. In ‘‘product’’ of the new society. That June of 1996, Science published a ‘‘News dinner also paved the way for the The State of Computational and Comment’’ piece entitled ‘‘Hot Biology at the Founding of ISCB Property: Biologists Who Compute’’ It’s hard to imagine how much the suggesting that competition among drug companies and other industrial computational bioscience world has Citation: Hunter L, Altman RB, Bourne PE (2007) The changed in just ten years. In 1996, there concerns for the relatively few people International Society for Computational Biology 10th skilled in bioinformatics was so intense anniversary. PLoS Comput Biol 3(6): e135. doi:10. was no journal that had the word 1371/journal.pcbi.0030135 ‘‘bioinformatics’’ in its name, GenBank that universities would not be able to attract enough faculty to teach the field Copyright: Ó 2007 Hunter et al. This is an open- contained fewer than 200,000 DNA access article distributed under the terms of the sequences (core genomic DNA/RNA, to new students. While perhaps not Creative Commons Attribution License, which quite as dire as all that, in 1996 there permits unrestricted use, distribution, and excluding mitochondria, ESTs, etc.), reproduction in any medium, provided the original and the National Institutes of Health were fewer than half a dozen training author and source are credited. programs that offered a Ph.D. in (NIH) had yet to fund any institutional Lawrence Hunter is the Founder of ISCB, and he bioinformatics or computational served as President from 1997 to 2000. Russ B. biology. Altman served as ISCB President from 2000 to 2001. Philip E. Bourne served as ISCB President from 2002 to 2003, and is currently Editor in Chief of PLoS ISCB Conferences: Join the Computational Biology. Leaders in Your Field * To whom correspondence should be addressed. E- mail: [email protected]. (General queries about More than most scientific societies, ISCB should be directed to B. J. Morrison McKay at ISCB is closely tied to its conferences. A [email protected].) PLoS Computational Biology | www.ploscompbiol.org0950 June 2007 | Volume 3 | Issue 6 | e135 current relationship between ISCB and to build a nest egg. Even when times are Society, its conference, and PLoS two of the other premier meetings in hard, meetings provide a critical Computational Biology are an important computational biology: Research in lifeline for essential scientific strength for all of us, and invite you to Computational Molecular Biology communication and are difficult for ISMB/ECCB 2007 in Vienna to see this (RECOMB) and the Pacific Symposium practicing scientists to skip. A high- synergy first hand. on Biocomputing (PSB), many of whose quality meeting is much more likely to organizers were present on that Greek yield value to the individual scientist in ISCB and PLoS Computational beach. terms of ideas, scouting the Biology: Leaders in Open Access In subsequent years, the Society has competition, and offering collaborative Publishing formed alliances with other opportunities than a personal journal conferences as well, most notably the subscription. ISCB has changed a great deal in the European Conference on ISCB’s conference strategy also aims ten years since it began—but so has Computational Biology (ECCB) and the at creating a truly global community scientific publishing. Societies and Asia Pacific Bioinformatics Network’s for bioinformatics and computational journals are often intimately linked, as International Conference on biology. ISCB conference venues have the American Chemical Society is with Bioinformatics (InCoB). When ISMB is included not only North American and the Journal of the American Chemical held in Europe, as it will be this European sites, but also Hawaii, Society, although of course there are summer, ISMB and ECCB are held Australia, Japan, and, most recently, both societies and journals without jointly. More recently, ISCB has begun Brazil. The policies of moving the such links. The current relationship organizing smaller regional or specialty conference around the world in a between ISCB and the Public Library of meetings such as the Rocky Mountain regular, judicious manner have allowed Science through PLoS Computational Bioinformatics Conference. the field to promote its importance and Biology falls somewhere in the middle. Merging the conference cultures of vitality in multiple venues. There is Both ISCB and PLoS exist as separate molecular biology (where conferences sometimes a cost in terms of total organizations, and they formed a provide an unpublished way to share attendance figures. These must partnership through a letter of recent research results and speakers certainly be strategically considered in agreement. In reality, this means each are largely invited) and computer light of our financial dependence on disseminating the work done by the science (where conferences are the meetings, but the benefits of engaging other. It would be easy to stop there, primary publication venue for new new regions and new groups of but the relationship is much more than results, and speaking slots are based on scientists are quite significant. that. With such a partnership, the peer-reviewed submissions) has not Finally, the ISCB conferences play an Journal becomes a collective voice for always been easy. Today’s meetings are important role with respect to the scientific community it represents. a remarkable blend that offers a publication. More than any other PLoS Computational Biology should snapshot of the latest, most important biological meeting, ISCB conference represent the best work and interests of results, is published in Medline- proceedings are an important part of ISCB members. indexed proceedings, and balances the archival literature in The need for a relationship between invited and reviewed talks. bioinformatics and computational ISCB and journals was recognized early. This really makes perfect sense— biology. These proceedings are peer- In 1998, Russ Altman forged a bioinformatics and computational reviewed at a level rivaling some relationship with Oxford University biology are fundamentally journals, and some are indexed in Press (OUP), establishing the journal collaborative, interdisciplinary fields Medline and PubMed. References
Recommended publications
  • Proquest Dissertations
    Automated learning of protein involvement in pathogenesis using integrated queries Eithon Cadag A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2009 Program Authorized to Offer Degree: Department of Medical Education and Biomedical Informatics UMI Number: 3394276 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI Dissertation Publishing UMI 3394276 Copyright 2010 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. uest ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 University of Washington Graduate School This is to certify that I have examined this copy of a doctoral dissertation by Eithon Cadag and have found that it is complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made. Chair of the Supervisory Committee: Reading Committee: (SjLt KJ. £U*t~ Peter Tgffczy-Hornoch In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree at the University of Washington, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of this dissertation is allowable only for scholarly purposes, consistent with "fair use" as prescribed in the U.S.
    [Show full text]
  • Molecular Biology for Computer Scientists
    CHAPTER 1 Molecular Biology for Computer Scientists Lawrence Hunter “Computers are to biology what mathematics is to physics.” — Harold Morowitz One of the major challenges for computer scientists who wish to work in the domain of molecular biology is becoming conversant with the daunting intri- cacies of existing biological knowledge and its extensive technical vocabu- lary. Questions about the origin, function, and structure of living systems have been pursued by nearly all cultures throughout history, and the work of the last two generations has been particularly fruitful. The knowledge of liv- ing systems resulting from this research is far too detailed and complex for any one human to comprehend. An entire scientific career can be based in the study of a single biomolecule. Nevertheless, in the following pages, I attempt to provide enough background for a computer scientist to understand much of the biology discussed in this book. This chapter provides the briefest of overviews; I can only begin to convey the depth, variety, complexity and stunning beauty of the universe of living things. Much of what follows is not about molecular biology per se. In order to 2ARTIFICIAL INTELLIGENCE & MOLECULAR BIOLOGY explain what the molecules are doing, it is often necessary to use concepts involving, for example, cells, embryological development, or evolution. Bi- ology is frustratingly holistic. Events at one level can effect and be affected by events at very different levels of scale or time. Digesting a survey of the basic background material is a prerequisite for understanding the significance of the molecular biology that is described elsewhere in the book.
    [Show full text]
  • Ontology-Based Methods for Analyzing Life Science Data
    Habilitation a` Diriger des Recherches pr´esent´ee par Olivier Dameron Ontology-based methods for analyzing life science data Soutenue publiquement le 11 janvier 2016 devant le jury compos´ede Anita Burgun Professeur, Universit´eRen´eDescartes Paris Examinatrice Marie-Dominique Devignes Charg´eede recherches CNRS, LORIA Nancy Examinatrice Michel Dumontier Associate professor, Stanford University USA Rapporteur Christine Froidevaux Professeur, Universit´eParis Sud Rapporteure Fabien Gandon Directeur de recherches, Inria Sophia-Antipolis Rapporteur Anne Siegel Directrice de recherches CNRS, IRISA Rennes Examinatrice Alexandre Termier Professeur, Universit´ede Rennes 1 Examinateur 2 Contents 1 Introduction 9 1.1 Context ......................................... 10 1.2 Challenges . 11 1.3 Summary of the contributions . 14 1.4 Organization of the manuscript . 18 2 Reasoning based on hierarchies 21 2.1 Principle......................................... 21 2.1.1 RDF for describing data . 21 2.1.2 RDFS for describing types . 24 2.1.3 RDFS entailments . 26 2.1.4 Typical uses of RDFS entailments in life science . 26 2.1.5 Synthesis . 30 2.2 Case study: integrating diseases and pathways . 31 2.2.1 Context . 31 2.2.2 Objective . 32 2.2.3 Linking pathways and diseases using GO, KO and SNOMED-CT . 32 2.2.4 Querying associated diseases and pathways . 33 2.3 Methodology: Web services composition . 39 2.3.1 Context . 39 2.3.2 Objective . 40 2.3.3 Semantic compatibility of services parameters . 40 2.3.4 Algorithm for pairing services parameters . 40 2.4 Application: ontology-based query expansion with GO2PUB . 43 2.4.1 Context . 43 2.4.2 Objective .
    [Show full text]
  • Biocuration 2016 - Posters
    Biocuration 2016 - Posters Source: http://www.sib.swiss/events/biocuration2016/posters 1 RAM: A standards-based database for extracting and analyzing disease-specified concepts from the multitude of biomedical resources Jinmeng Jia and Tieliu Shi Each year, millions of people around world suffer from the consequence of the misdiagnosis and ineffective treatment of various disease, especially those intractable diseases and rare diseases. Integration of various data related to human diseases help us not only for identifying drug targets, connecting genetic variations of phenotypes and understanding molecular pathways relevant to novel treatment, but also for coupling clinical care and biomedical researches. To this end, we built the Rare disease Annotation & Medicine (RAM) standards-based database which can provide reference to map and extract disease-specified information from multitude of biomedical resources such as free text articles in MEDLINE and Electronic Medical Records (EMRs). RAM integrates disease-specified concepts from ICD-9, ICD-10, SNOMED-CT and MeSH (http://www.nlm.nih.gov/mesh/MBrowser.html) extracted from the Unified Medical Language System (UMLS) based on the UMLS Concept Unique Identifiers for each Disease Term. We also integrated phenotypes from OMIM for each disease term, which link underlying mechanisms and clinical observation. Moreover, we used disease-manifestation (D-M) pairs from existing biomedical ontologies as prior knowledge to automatically recognize D-M-specific syntactic patterns from full text articles in MEDLINE. Considering that most of the record-based disease information in public databases are textual format, we extracted disease terms and their related biomedical descriptive phrases from Online Mendelian Inheritance in Man (OMIM), National Organization for Rare Disorders (NORD) and Orphanet using UMLS Thesaurus.
    [Show full text]
  • Scalable Approaches for Auditing the Completeness of Biomedical Ontologies
    University of Kentucky UKnowledge Theses and Dissertations--Computer Science Computer Science 2021 Scalable Approaches for Auditing the Completeness of Biomedical Ontologies Fengbo Zheng University of Kentucky, [email protected] Author ORCID Identifier: https://orcid.org/0000-0001-5902-0186 Digital Object Identifier: https://doi.org/10.13023/etd.2021.128 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Zheng, Fengbo, "Scalable Approaches for Auditing the Completeness of Biomedical Ontologies" (2021). Theses and Dissertations--Computer Science. 105. https://uknowledge.uky.edu/cs_etds/105 This Doctoral Dissertation is brought to you for free and open access by the Computer Science at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Development and Application of Ligand-Based Cheminformatics Tools for Drug Discovery from Natural Products
    Development and application of ligand-based cheminformatics tools for drug discovery from natural products Entwicklung und Anwendung von ligandenbasierten Cheminformatik-Programmen für die Identifizierung von Arzneimitteln aus Naturstoffen INAUGURALDISSERTATION zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Albert-Ludwigs-Universität Freiburg im Breisgau vorgelegt von Kiran Kumar Telukunta aus Hyderabad, Indien Juli 2018 Dekan: Prof. Dr. Manfred Jung Universität Freiburg Institut für Pharmazeutische Wissenschaften Chemische Epigenetik Albertstraße 25 79104 Freiburg Vorsitzender: Prof. Dr. Stefan Weber des Promotionsausschusses Universität Freiburg Institut für Physikalische Chemie Physikalishe Chemie Albertstraße 21 79104 Freiburg Referent: Prof. Dr. Stefan Günther Universität Freiburg Institut für Pharmazeutische Wissenschaften Pharmazeutische Bioinformatik Hermann-Herder-Straße 9 79104 Freiburg Korreferent: Prof. Dr. Rolf Backofen Universität Freiburg Institut für Informatik Lehrstuhl für Bioinformatik Georges-Köhler-Allee 106 79110 Freiburg Drittprüfer: Prof. Dr. Andreas Bechthold Universität Freiburg Institut für Pharmazeutische Wissenschaften Pharmazeutische Biologie und Biotechnologie Stefan-Meier-Straße 19 79104 Freiburg Prüfungsdatum: 30 Aug 2018 Eidesstattliche Erklärung Hiermit erkläre ich, dass ich diese Arbeit allein und ausschließlich unter Nutzung der direkt oder sinngemäß gekennzeichneten Zitate geschrieben habe. Weiterhin versichere ich, dass diese Arbeit in keinem anderen Prüfungsverfahren eingereicht
    [Show full text]
  • Pacific Symposium on Biocomputing 2008
    PACIFIC SYMPOSIUM ON BIOCOMPUTING 2008 This year, PSB returns to its most common venue, the Fairmont Orchid on the Big Island of Hawaii. We are now in our thirteenth year, and had a record number of both proposed sessions (we accepted 9) as well as submissions to the conference this year (150). Many sessions at PSB have a lifetime of approximately three years. The first year is a test of the interest in the field, and the ability to attract a critical mass of papers. With success, the second year is usually a larger, more competitive session. The third (and rarely fourth years) usually come as the subdiscipline is recognized at the general biocomputing meetings such as ISMB, RECOMB and others, and often this is when the PSB organizers conclude that their work is done, and the session can be “retired.” PSB aficionados will notice new sessions this year in next-generation sequencing, tiling array analysis, multiscale modeling, small regulatory RNAs, and other areas. The richness of exciting new areas has led us to have more total sessions, and thus the average session size is smaller. We consider this an experiment, and look forward to seeing how it goes. We would like to thank our keynote speakers. Dr. Andrew McCulloch, Professor and Chair, Department of Bioengineering, University of California, San Diego, will talk about “Systems biology and multi-scale modeling of the heart.” Our keynote in the area of Ethical, Legal and Social implications of technology will be John Dupre, Director of Egenis (ESRC Centre for Genomics in Society) and Professor of Philosophy of Science, University of Exeter.
    [Show full text]
  • 2016 National Library of Medicine Informatics Training Confernece
    National Library of Medicine Informatics Training Conference June 27-28, 2016 The Ohio State University The Ohio Union Columbus, Ohio TABLE OF CONTENTS Agenda ..................................................................................................................................................... 1 Day 1 in Detail ......................................................................................................................................... 1 Day 2 in Detail ......................................................................................................................................... 6 Attendee and Presenter Information Full Training Conference Attendee and Presenters List ......................................................................... 9 Administrative Contacts for Each Program ............................................................................................. 13 Plenary/Focus Session Presentations List ................................................................................................ 14 Poster Presentations List ......................................................................................................................... 15 Open Mic Presentations List .................................................................................................................... 17 Abstracts for Presentations and Posters ....................................................................................... 19 Plenary Sessions (Days 1 and 2) Day 1 Plenary Session #1 ......................................................................................................................
    [Show full text]
  • Pacific Symposium on Biocomputing 2020 January 3-7, 2020 Big Island of Hawaii
    Pacific Symposium on Biocomputing 2020 January 3-7, 2020 Big Island of Hawaii Program Book PACIFIC SYMPOSIUM ON BIOCOMPUTING 2020 Big Island of Hawaii, January 3-7, 2020 Welcome to PSB 2020! We have prepared this program book to give you quick access to information you need for PSB 2020. Enclosed you will find: • Logistics information • Medical services information • Full conference schedule (see website for the latest version) • Agendas for workshops and JBrowse demo • Call for Session and Workshop Proposals for PSB 2021 • Poster/abstract titles and author index • Participant list The latest conference materials are available online at http://psb.stanford.edu/conference-materials/. PSB 2020 gratefully acknowledges the support of the Cleveland Institute for Computational Biology; UPenn Institute for Biomedical Informatics; Variant Bio; Penn Center for Precision Medicine, Penn Medicine; Cipherome; Translational Bioinformatics Conference (TBC); the National Institutes of Health (NIH); and the International Society for Computational Biology (ISCB). If you or your institution are interested in sponsoring, PSB, please contact Tiffany Murray at [email protected] If you have any questions, the PSB registration staff (Tiffany Murray, Kasey Miller, BJ Morrison-McKay, and Cindy Paulazzo) are happy to help you. Aloha! Russ Altman Keith Dunker Larry Hunter Teri Klein Maryln Ritchie The PSB 2020 Organizers PACIFIC SYMPOSIUM ON BIOCOMPUTING 2020 Big Island of Hawaii, January 3-7, 2020 SPEAKER INFORMATION Oral presentations of accepted proceedings papers will take place in Salon 2 & 3. Speakers are allotted 10 minutes for presentation and 5 minutes for questions for a total of 15 minutes. Instructions for uploading talks were sent to authors with oral presentations.
    [Show full text]
  • I S C B N E W S L E T T
    ISCB NEWSLETTER FOCUS ISSUE {contents} President’s Letter 2 Member Involvement Encouraged Register for ISMB 2002 3 Registration and Tutorial Update Host ISMB 2004 or 2005 3 David Baker 4 2002 Overton Prize Recipient Overton Endowment 4 ISMB 2002 Committees 4 ISMB 2002 Opportunities 5 Sponsor and Exhibitor Benefits Best Paper Award by SGI 5 ISMB 2002 SIGs 6 New Program for 2002 ISMB Goes Down Under 7 Planning Underway for 2003 Hot Jobs! Top Companies! 8 ISMB 2002 Job Fair ISCB Board Nominations 8 Bioinformatics Pioneers 9 ISMB 2002 Keynote Speakers Invited Editorial 10 Anna Tramontano: Bioinformatics in Europe Software Recommendations11 ISCB Software Statement volume 5. issue 2. summer 2002 Community Development 12 ISCB’s Regional Affiliates Program ISCB Staff Introduction 12 Fellowship Recipients 13 Awardees at RECOMB 2002 Events and Opportunities 14 Bioinformatics events world wide INTERNATIONAL SOCIETY FOR COMPUTATIONAL BIOLOGY A NOTE FROM ISCB PRESIDENT This newsletter is packed with information on development and dissemination of bioinfor- the ISMB2002 conference. With over 200 matics. Issues arise from recommendations paper submissions and over 500 poster submis- made by the Society’s committees, Board of sions, the conference promises to be a scientific Directors, and membership at large. Important feast. On behalf of the ISCB’s Directors, staff, issues are defined as motions and are discussed EXECUTIVE COMMITTEE and membership, I would like to thank the by the Board of Directors on a bi-monthly Philip E. Bourne, Ph.D., President organizing committee, local organizing com- teleconference. Motions that pass are enacted Michael Gribskov, Ph.D., mittee, and program committee for their hard by the Executive Committee which also serves Vice President work preparing for the conference.
    [Show full text]
  • Simulation and Graph Mining Tools for Improving Gene Mapping Efficiency
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Helsingin yliopiston digitaalinen arkisto DEPARTMENT OF COMPUTER SCIENCE SERIES OF PUBLICATIONS A REPORT A-2011-3 Simulation and graph mining tools for improving gene mapping efficiency Petteri Hintsanen To be presented, with the permission of the Faculty of Science of the University of Helsinki, for public criticism in Auditorium XIV (Univer- sity Main Building, Unioninkatu 34) on 30 September 2011 at twelve o’clock noon. UNIVERSITY OF HELSINKI FINLAND Supervisor Hannu Toivonen, University of Helsinki, Finland Pre-examiners Tapio Salakoski, University of Turku, Finland Janne Nikkila,¨ University of Helsinki, Finland Opponent Michael Berthold, Universitat¨ Konstanz, Germany Custos Hannu Toivonen, University of Helsinki, Finland Contact information Department of Computer Science P.O. Box 68 (Gustaf Hallstr¨ omin¨ katu 2b) FI-00014 University of Helsinki Finland Email address: [email protected].fi URL: http://www.cs.Helsinki.fi/ Telephone: +358 9 1911, telefax: +358 9 191 51120 Copyright c 2011 Petteri Hintsanen ISSN 1238-8645 ISBN 978-952-10-7139-3 (paperback) ISBN 978-952-10-7140-9 (PDF) Computing Reviews (1998) Classification: G.2.2, G.3, H.2.5, H.2.8, J.3 Helsinki 2011 Helsinki University Print Simulation and graph mining tools for improving gene mapping efficiency Petteri Hintsanen Department of Computer Science P.O. Box 68, FI-00014 University of Helsinki, Finland petteri.hintsanen@iki.fi http://iki.fi/petterih PhD Thesis, Series of Publications A, Report A-2011-3 Helsinki, September 2011, 136 pages ISSN 1238-8645 ISBN 978-952-10-7139-3 (paperback) ISBN 978-952-10-7140-9 (PDF) Abstract Gene mapping is a systematic search for genes that affect observable character- istics of an organism.
    [Show full text]
  • Emidio Capriotti Phd CURRICULUM VITÆ
    Emidio Capriotti PhD CURRICULUM VITÆ Name: Emidio Capriotti Nationality: Italian Date of birth: February, 1973 Place of birth: Roma, Italy Languages: Italian, English, Spanish Positions Oct 2019 Associate Professor: Department of Pharmacy and Biotechnology (FaBiT). University of Bologna, Bologna, Italy 2016-2019 Senior Assistant Professor (RTD type B): Department of Pharmacy and Biotechnology (FaBiT) and Department of Biological, Geological, and Environmental Sciences (BiGeA). University of Bologna, Bologna, Italy. 2015-2016 Junior Group Leader: Institute of Mathematical Modeling of Biological Systems, University of Düsseldorf, Düsseldorf, Germany 2012-2015 Assistant Professor: Division of Informatics, Department of Pathology, University of Alabama at Birmingham (UAB), Birmingham (AL), USA. 2011-2012 Marie-Curie IOF: Contracted Researcher at the Department of Mathematics and Computer Science, University of Balearic Islands (UIB), Palma de Mallorca, Spain. 2009-2011 Marie-Curie IOF: Postdoctoral Researcher at the Helix Group, Department of Bioengineering, Stanford University, Stanford (CA), USA. 2006-2009 Postdoctoral Researcher in the Structural Genomics Group at Department of Bioinformatics and Genetics, Prince Felipe Research Center (CIPF) Valencia, Spain. 2004-2006 Contract researcher at Department of Biology, University of Bologna, Bologna, Italy. 2001-2003 Ph.D student in Physical Sciences at University of Bologna, Bologna, Italy. Education Sep 2004 Master in Bioinformatics (first level) University of Bologna, Bologna (Italy). Jun 2004 Ph.D. in Physical Sciences University of Bologna, Bologna (Italy). Jul 1999 Laurea (B.S.) Degree in Physical Sciences, score 106/110 University of Bologna, Bologna (Italy). Visiting Jun 2012 – Jul 2012 Prof. Frederic Rousseau and Prof. Joost Schymkowitz, VIB Switch Laboratory, KU Leuven, Leuven (Belgium) May 2009 Prof.
    [Show full text]