A New Source of Industrially Important Enzyme Systems

Total Page:16

File Type:pdf, Size:1020Kb

A New Source of Industrially Important Enzyme Systems JSM Central Biotechnology & Biomedical Engineering Special Issue on Industrial Biotechnology-Made in Germany: The path from policies to sustainable energy, commodity and specialty products Edited by: Dr. Thomas Brück Professor of Industrial Biocatalysis, Dept. of Chemistry, Technische Universität München (TUM), Germany Research Article *Corresponding authors Prof. Dr. Garabed Antranikian, Institute of Technical Microbiology, Hamburg University of technology, The Psychrophile Shewanella Kasernenstr, 12, 21073 Hamburg, Germany, Tel: 4904042878311; Fax: 49040428782582; Email: arctica sp. Nov: A New Source Prof. Dr. Thomas Brück, Department of Chemistry, Industrial Biocatalysis, Technical University of Munich, Lichtenbergstr, 4, 85748 Garching, Germany, Tel: of Industrially Important 4908928913253; Fax: 4908928913255; Email: Submitted: 19 March 2014 Enzyme Systems Accepted: 12 May 2014 Qoura, F.1, Brück, T.2* and Antranikian, G.3* Published: 14 May 2014 1Department of Chemistry, Industrial Biocatalysis, Technical University of Munich, Germany ISSN: 2333-7117 2Department of Chemistry, Industrial Biocatalysis, Technical University of Munich, Germany Copyright 3 Institute of Technical Microbiology, Hamburg University of technology, Germany © 2014 Qoura et al. Keywords OPEN ACCESS Spitsbergen; Psychrophile; Shewanella arctica; Industrial enzymes Abstract A new psychrophilic, strictly aerobic bacterium, strain 40-3, was isolated from seawater samples collected at Spitsbergen in the Arctic. The cells are gram negative, straight or curved rod shaped and non-spore forming (2-3 µm long and 0.4-0.6 µm wide). Colonies on agar medium are slightly orange, circular, smooth and convex. 40-3 strain grows optimally over the temperature range of 10-15 °C and a pH range of 7-8 in media containing 8 to 9 % NaCl (w/v). Growth occurs with α cyclo-dextrin, dextrin, tween 80, N-acetyl-D-glucosamine, α-D-glucose, maltose, sucrose, methyl pyruvate, D,L-lactitate, succiniate , bromo succinic acid, inosine, esculin ferric citrate, L-arabinose, potassium gluconate, malic acid and trisodium citrate. In the presence of glucose H2S was produced and nitrates are reduced to nitrites. The fatty acid methyl ester (FAME) are composed of 17.89 % straight chain saturated FAMEs, 14,85 % terminally branched saturated FAMEs and 17.73 % monounsaturated FAMEs. The DNA base ratio is 48 mol % G + C. Phylogenetic analysis reveals as close relationship to Shewanella putrefaciens with 99 % 16S rDNA composition identity and 50 % DNA- DNA similarity. The phylogenetic evidence, together with phenotypic characteristics, show that this psychrophilic strain constitute a novel species of the genus Shewanella. The name Shewanella arctica is proposed. Interestingly, when grown on glucose as a carbon source Shewanella arctica produced numerous industrially important enzyme systems including amylase, pullulanase, protease, ornithine decarboxylase, alkaline phospatase, esterase (C4), lipase (C8), leucine arylamidase, valine arylamidase, naphthol-AS-BI-phosphohydrolase and N-acetyl-β– glucosaminidase. Due to the functional new physochrophilic Shewanella strainresource for the isolation of new enzyme system, which may operate at low reaction thereby increasing the energy efficiency of industrial processes. ABBREVIATION Recently, a comprehensive study of the phylogenetic FAME: Fatty Acid Methyl Ester INTRODUCTION thisrelationships study a noveland taxonomy psychrophilic of the bacterium genus provided was isolated an improved from seawaterapproach samplesfor identification obtained offrom newly the isolatedarea of Spitsbergen,wild strains [6].in the In Recently, increasing attention has been directed to cold- Arctic. The novel isolate was found to be similar to, but distinct adapted microorganisms able to grow at/or close to the from in a number of characteristics, a previously described genus, freezing point of water, namely psychrophiles [1]. Cold adapted Shewanella microorganisms are found in both permanently and temporarily isolated strain demonstrated that the represent is a novel specie cold habitats, which comprise more than 80 % of the Earth’s of the genus. Taxonomic Shewanella and, and physiological we propose analysisthe name of Shewanella the newly biosphere. The genus MacDonell and Colwell 1985 Shewanella arctica sp. nov. For the species represented by the strain 40- comprises a ubiquitous group of gram negative, aerobic and 3. Further, the isolated Shewanella strain secreted numerous . This genus comprises -Proteobacteria industrially relevant enzyme systems including hydrolyases more than 25 species inhabiting a wide range of environments facultatively anaerobic δ such, as amylase, protease and, esterases and lipases. Enzymes derived from physchiphilic organism have the potential to and freshwater, cold water and sediments of the deep sea [2-6]. operate at low temperatures thereby improving the energy Duringincluding the spoiled last decade, food, oil the field bacteria wastes, of thisredox genus interfaces have received in marine a physochophilic enzymes have shown the propensity to operate metabolic bioremediation of halogenated organic pollutants [7], efficiency of biotechnological process [10-12]. Further, many destructivesignificant amount souring of of attention crude petroleum due to their [8] importantand the dissimilatory roles in co- mesophilic organism [13,14]. More recently, various Shewanella over a wider temperature profile than those derived from reductionCite this article: of magnesium Qoura F, Brueck and iron T, Antranikian oxides [9]. G (2014) The Psychrophile Shewanella arctica sp. Nov: A New Source of Industrially Important Enzyme Systems. JSM Biotechnol Bioeng 2(1): 1026. Qoura et al. (2014) Email: (and) Central sp. were inoculated with the new strain cells suspension (cells were relevant enzyme systems [15-17]. Therefore, the enzymes systems have beenthat can flagged be produced as excellent using sources the current for novel bacterial industrially strain nm) and incubated at 15 °C overnight. have potential use in the biofuels and food (amylase, lipase) as resuspended in NaCl 0.85 % (w/v) medium to a final OD of 0.5 well as the chemical industry (pullulanase, alkaline phospatase, leucine arylamidase, valine arylamidase). A large number of carbon source were tested: α cyclo- MATERIALS AND METHODS acid,dextrin, succinic dextrin, acid, Tween bromo 80, succinic Tween 40,acid, N-acetyl-D-glucosamine, inosine, esculin ferric citrate,α-D-glucose, L-arabinose, maltose, potassium sucrose, gluconate, methylpyruvate, malic acid, trisodiumD,L-lactic Sample collection, media and culturing conditions Seawater samples were collected in 1998 during an acid, D-arabitol, cellobiose, L-erythol, D-fructose, L-fructose, citrate, glycogen, N-acetyl-D-galacto-samine, adonitol, capric to the laboratory at temperature between 2 to 10 °C. A 1 ml expedition at Spitsbergen, Norway. Samples were transported D-galactose, gentiobiose, m-inositol, α-D-lactose, lactulose, turanose,D-mannitol, Xylitol, D-mannose, mono-methyl D-mellobiose, succinate, β-methyl-D-glucose, acetic acid, cis- basalvolume medium of liquid supplemented sample was with incubated a solution in ofa complexdifferent marinecarbon aconiticD-psicose, acid, D-raffinose, citric acid,L-rhamnose, formic acid,D-sorbitol, D-galactonic D-trehalose, acid sources.liquid medium. The basal The medium complex contained marine (volume medium g lconsisted-1 of a lactone, D-galacturonic acid, D-gluconic acid, D-glucosaminic g; KCl 0.77 g; CaCl2 2O 0.02 g; MgSO4 2 4Cl 1.0 ): NaClg; 10-fold 28.13 concentration trace x2Helement solution (DSM x7H 141)O 0.5 1 g;ml; NH 10-fold acid, D-glucuronic acid, α-hydroxy-butyric acid, β-hydroxy- g; iron-ammonium-citrate 0.02 g; yeast extract 0.5 butyric acid, γ-hydroxy-butyric acid, p-hydroxyphenylacetic 2PO4 2.3 acid, itaconic acid, α-keto butyric acid, α-keto glutaric acid, 2 4 2 D-saccharic acid, seabacic acid, succinamic acid, glucuronamide, concentration-1 vitamin solution (DSM 141) 1 ml; KH α-keto valeric acid, malonic acid, propionic acid, quinic acid, (volume g l 2 alaninamide, D-alanine, L-alanine, L-alanyl-glycine, L-asparagine, g; Na HPO x2H O 2.9 g. The carbon source mixture solution 0.5 g; DL-malate 0.5 g; D-mannitol 0.5 g and glucose 2 g. The L-aspartic acid, L-glutamic acid, glycyl-L-aspartic acid, glycyl- ): NA-acetate 0.5 g; Na -succinate 0.5 g; Na-pyruvate out at 4 °C for about 4-7 days, before growth and colonies on L-ornithine, L-phenyl-alanine, L-proline, L-pyroglutamic acid, agarfinal platespH of thewere complex observed. medium Colonies was were 7. Incubation selected onwas the carried basis L-glutamic acid, L-histidine, hydroxy L-proline, L-leucine, of morphological differences. For the isolation of a pure culture, acid, urocanic acid, uridine, thymidine, phenylthylamine, serial dilution and plating techniques were applied. The pure putrescine,D-serine, L-serine, 2-aminoethanol, L-threonine, 2,3-butanediol,D,L-carnitine, γ-aminoglycerol, butyric D,L agar plates at 15 °C for 4 days. phenylacetic acid. isolates were routinely cultivated on complex marine medium α-glycerol phosphate, glucose 1-phosphate, glucose 6-phosphate, Cellular characterization Screening for enzyme production Gram staining test was performed by staining cells using the The ability of the new strain to produce: alkaline phospatase, arginine dihydrolase, esterase (C4), esterase lipase (C8), for up to 6 days in medium containing no carbon source other lipase, leucine arylamidase, valine arylamidase, cystine
Recommended publications
  • CUED Phd and Mphil Thesis Classes
    High-throughput Experimental and Computational Studies of Bacterial Evolution Lars Barquist Queens' College University of Cambridge A thesis submitted for the degree of Doctor of Philosophy 23 August 2013 Arrakis teaches the attitude of the knife { chopping off what's incomplete and saying: \Now it's complete because it's ended here." Collected Sayings of Muad'dib Declaration High-throughput Experimental and Computational Studies of Bacterial Evolution The work presented in this dissertation was carried out at the Wellcome Trust Sanger Institute between October 2009 and August 2013. This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation does not exceed the limit of 60,000 words as specified by the Faculty of Biology Degree Committee. This dissertation has been typeset in 12pt Computer Modern font using LATEX according to the specifications set by the Board of Graduate Studies and the Faculty of Biology Degree Committee. No part of this dissertation or anything substantially similar has been or is being submitted for any other qualification at any other university. Acknowledgements I have been tremendously fortunate to spend the past four years on the Wellcome Trust Genome Campus at the Sanger Institute and the European Bioinformatics Institute. I would like to thank foremost my main collaborators on the studies described in this thesis: Paul Gardner and Gemma Langridge. Their contributions and support have been invaluable. I would also like to thank my supervisor, Alex Bateman, for giving me the freedom to pursue a wide range of projects during my time in his group and for advice.
    [Show full text]
  • Actes Congrès MICROBIOD 1
    Actes du congrès international "Biotechnologie microbienne au service du développement" (MICROBIOD) Marrakech, MAROC 02-05 Novembre 2009 "Ce travail est publié avec le soutien du Ministère de l'Education Nationale, de l'Enseignement Supérieur, de la Formation des Cadres et de la Recherche Scientifique et du CNRST". MICROBIONA Edition www.ucam.ac.ma/microbiona 1 1 Mot du Comité d'organisation Cher (e) membre de MICROBIONA Cher(e) Participant(e), Sous le Haut Patronage de sa Majesté le Roi Mohammed VI, l'Association MICROBIONA et la Faculté des Sciences Semlalia, Université Cadi Ayyad, organisent du 02 au 05 Novembre 2009, en collaboration avec la Société Française de Microbiologie, le Pôle de Compétences Eau et Environnement et l'Incubateur Universitaire de Marrakech, le congrès international "Biotechnologie microbienne au service du développement" (MICROBIOD). Cette manifestation scientifique spécialisée permettra la rencontre de chercheurs de renommée internationale dans le domaine de la biotechnologie microbienne. Le congrès MICROBIOD est une opportunité pour les participants de mettre en relief l’importance socio-économique et environnementale de la valorisation et l’application de nouvelles techniques de biotechnologie microbienne dans divers domaines appliquées au développement et la gestion durable des ressources, à savoir l’agriculture, l'alimentation, l'environnement, la santé, l’industrie agro-alimentaire et le traitement et recyclage des eaux et des déchets par voie microbienne. Ce congrès sera également l’occasion pour les enseignants-chercheurs et les étudiants-chercheurs marocains d’actualiser leurs connaissances dans le domaine des biotechnologies microbiennes, qui serviront à l’amélioration de leurs recherches et enseignements. Le congrès MICROBIOD sera également l’occasion pour certains de nos collaborateurs étrangers de contribuer de près à la formation de nos étudiants en biotechnologie microbienne et ceci par la discussion des protocoles de travail, des méthodes d’analyse et des résultats obtenus.
    [Show full text]
  • Supporting Information
    Supporting Information Lozupone et al. 10.1073/pnas.0807339105 SI Methods nococcus, and Eubacterium grouped with members of other Determining the Environmental Distribution of Sequenced Genomes. named genera with high bootstrap support (Fig. 1A). One To obtain information on the lifestyle of the isolate and its reported member of the Bacteroidetes (Bacteroides capillosus) source, we looked at descriptive information from NCBI grouped firmly within the Firmicutes. This taxonomic error was (www.ncbi.nlm.nih.gov/genomes/lproks.cgi) and other related not surprising because gut isolates have often been classified as publications. We also determined which 16S rRNA-based envi- Bacteroides based on an obligate anaerobe, Gram-negative, ronmental surveys of microbial assemblages deposited near- nonsporulating phenotype alone (6, 7). A more recent 16S identical sequences in GenBank. We first downloaded the gbenv rRNA-based analysis of the genus Clostridium defined phylo- files from the NCBI ftp site on December 31, 2007, and used genetically related clusters (4, 5), and these designations were them to create a BLAST database. These files contain GenBank supported in our phylogenetic analysis of the Clostridium species in the HGMI pipeline. We thus designated these Clostridium records for the ENV database, a component of the nonredun- species, along with the species from other named genera that dant nucleotide database (nt) where 16S rRNA environmental cluster with them in bootstrap supported nodes, as being within survey data are deposited. GenBank records for hits with Ͼ98% these clusters. sequence identity over 400 bp to the 16S rRNA sequence of each of the 67 genomes were parsed to get a list of study titles Annotation of GTs and GHs.
    [Show full text]
  • Arxiv:2105.11503V2 [Physics.Bio-Ph] 26 May 2021 3.1 Geometry and Swimming Speeds of the Cells
    The Bank Of Swimming Organisms at the Micron Scale (BOSO-Micro) Marcos F. Velho Rodrigues1, Maciej Lisicki2, Eric Lauga1,* 1 Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom. 2 Faculty of Physics, University of Warsaw, Warsaw, Poland. *Email: [email protected] Abstract Unicellular microscopic organisms living in aqueous environments outnumber all other creatures on Earth. A large proportion of them are able to self-propel in fluids with a vast diversity of swimming gaits and motility patterns. In this paper we present a biophysical survey of the available experimental data produced to date on the characteristics of motile behaviour in unicellular microswimmers. We assemble from the available literature empirical data on the motility of four broad categories of organisms: bacteria (and archaea), flagellated eukaryotes, spermatozoa and ciliates. Whenever possible, we gather the following biological, morphological, kinematic and dynamical parameters: species, geometry and size of the organisms, swimming speeds, actuation frequencies, actuation amplitudes, number of flagella and properties of the surrounding fluid. We then organise the data using the established fluid mechanics principles for propulsion at low Reynolds number. Specifically, we use theoretical biophysical models for the locomotion of cells within the same taxonomic groups of organisms as a means of rationalising the raw material we have assembled, while demonstrating the variability for organisms of different species within the same group. The material gathered in our work is an attempt to summarise the available experimental data in the field, providing a convenient and practical reference point for future studies. Contents 1 Introduction 2 2 Methods 4 2.1 Propulsion at low Reynolds number .
    [Show full text]
  • Diversity and Evolution of Bacterial Bioluminescence Genes in the Global Ocean Thomas Vannier, Pascal Hingamp, Floriane Turrel, Lisa Tanet, Magali Lescot, Y
    Diversity and evolution of bacterial bioluminescence genes in the global ocean Thomas Vannier, Pascal Hingamp, Floriane Turrel, Lisa Tanet, Magali Lescot, Y. Timsit To cite this version: Thomas Vannier, Pascal Hingamp, Floriane Turrel, Lisa Tanet, Magali Lescot, et al.. Diversity and evolution of bacterial bioluminescence genes in the global ocean. NAR Genomics and Bioinformatics, Oxford University Press, 2020, 2 (2), 10.1093/nargab/lqaa018. hal-02514159 HAL Id: hal-02514159 https://hal.archives-ouvertes.fr/hal-02514159 Submitted on 21 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Published online 14 March 2020 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 2 1 doi: 10.1093/nargab/lqaa018 Diversity and evolution of bacterial bioluminescence genes in the global ocean Thomas Vannier 1,2,*, Pascal Hingamp1,2, Floriane Turrel1, Lisa Tanet1, Magali Lescot 1,2,* and Youri Timsit 1,2,* 1Aix Marseille Univ, Universite´ de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France and 2Research / Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022 Tara GOSEE, 3 rue Michel-Ange, Downloaded from https://academic.oup.com/nargab/article-abstract/2/2/lqaa018/5805306 by guest on 21 March 2020 75016 Paris, France Received October 21, 2019; Revised February 14, 2020; Editorial Decision March 02, 2020; Accepted March 06, 2020 ABSTRACT ganisms and is particularly widespread in marine species (7–9).
    [Show full text]
  • Genomic Encyclopedia of Sugar Utilization Pathways in The
    Rodionov et al. BMC Genomics 2010, 11:494 http://www.biomedcentral.com/1471-2164/11/494 RESEARCH ARTICLE Open Access Genomic encyclopedia of sugar utilization pathways in the Shewanella genus Dmitry A Rodionov1,2, Chen Yang1,3, Xiaoqing Li1, Irina A Rodionova1, Yanbing Wang4, Anna Y Obraztsova4,7, Olga P Zagnitko5, Ross Overbeek5, Margaret F Romine6, Samantha Reed6, James K Fredrickson6, Kenneth H Nealson4,7, Andrei L Osterman1,5* Abstract Background: Carbohydrates are a primary source of carbon and energy for many bacteria. Accurate projection of known carbohydrate catabolic pathways across diverse bacteria with complete genomes constitutes a substantial challenge due to frequent variations in components of these pathways. To address a practically and fundamentally important challenge of reconstruction of carbohydrate utilization machinery in any microorganism directly from its genomic sequence, we combined a subsystems-based comparative genomic approach with experimental validation of selected bioinformatic predictions by a combination of biochemical, genetic and physiological experiments. Results: We applied this integrated approach to systematically map carbohydrate utilization pathways in 19 genomes from the Shewanella genus. The obtained genomic encyclopedia of sugar utilization includes ~170 protein families (mostly metabolic enzymes, transporters and transcriptional regulators) spanning 17 distinct pathways with a mosaic distribution across Shewanella species providing insights into their ecophysiology and adaptive evolution. Phenotypic
    [Show full text]
  • Bacterial Community Structure in a Sympagic Habitat Expanding with Global Warming: Brackish Ice Brine at 85€“90 °N
    The ISME Journal (2019) 13:316–333 https://doi.org/10.1038/s41396-018-0268-9 ARTICLE Bacterial community structure in a sympagic habitat expanding with global warming: brackish ice brine at 85–90 °N 1,11 1,2 3 4 5,8 Beatriz Fernández-Gómez ● Beatriz Díez ● Martin F. Polz ● José Ignacio Arroyo ● Fernando D. Alfaro ● 1 1 2,6 5 4,7 Germán Marchandon ● Cynthia Sanhueza ● Laura Farías ● Nicole Trefault ● Pablo A. Marquet ● 8,9 10 10 Marco A. Molina-Montenegro ● Peter Sylvander ● Pauline Snoeijs-Leijonmalm Received: 12 February 2018 / Revised: 11 June 2018 / Accepted: 24 July 2018 / Published online: 18 September 2018 © International Society for Microbial Ecology 2018 Abstract Larger volumes of sea ice have been thawing in the Central Arctic Ocean (CAO) during the last decades than during the past 800,000 years. Brackish brine (fed by meltwater inside the ice) is an expanding sympagic habitat in summer all over the CAO. We report for the first time the structure of bacterial communities in this brine. They are composed of psychrophilic extremophiles, many of them related to phylotypes known from Arctic and Antarctic regions. Community structure displayed strong habitat segregation between brackish ice brine (IB; salinity 2.4–9.6) and immediate sub-ice seawater (SW; – 1234567890();,: 1234567890();,: salinity 33.3 34.9), expressed at all taxonomic levels (class to genus), by dominant phylotypes as well as by the rare biosphere, and with specialists dominating IB and generalists SW. The dominant phylotypes in IB were related to Candidatus Aquiluna and Flavobacterium, those in SW to Balneatrix and ZD0405, and those shared between the habitats to Halomonas, Polaribacter and Shewanella.
    [Show full text]
  • Fe(II) Fe(III)
    Southern Illinois University Carbondale OpenSIUC Publications Department of Microbiology 2006 Microbes Pumping Iron: Anaerobic Microbial Iron Oxidation and Reduction Karrie A. Weber University of California - Berkeley Laurie A. Achenbach Southern Illinois University Carbondale, [email protected] John D. Coates University of California - Berkeley Follow this and additional works at: https://opensiuc.lib.siu.edu/micro_pubs Published in Nature Reviews Microbiology 4, 752-764 (October 2006), http://dx.doi.org/10.1038/ nrmicro1490. This Article is brought to you for free and open access by the Department of Microbiology at OpenSIUC. It has been accepted for inclusion in Publications by an authorized administrator of OpenSIUC. For more information, please contact [email protected]. 1 Microbes Pumping Iron: 2 Anaerobic Microbial Iron Oxidation and Reduction 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Karrie A. Weber1, Laurie A. Achenbach2, and John D. Coates1* 18 19 20 21 22 23 1Department of Plant and Microbial Biology 24 271 Koshland Hall 25 University of California, Berkeley 26 Berkeley, CA 94720 27 28 29 2Department of Microbiology 30 Southern Illinois University 31 Carbondale, IL 62901 32 33 34 35 Corresponding Author 36 Tel: (510) 643-8455 37 Fax: (510) 642-4995 38 e-mail: [email protected] 39 1 1 Abstract 2 Iron (Fe) has long been a recognized physiological requirement for life, yet its role for a 3 broad diversity of microorganisms persisting in water, soils, and sediments extends well-beyond 4 a nutritional necessity. Microorganisms from within both the domain Archaea and Bacteria are 5 capable of metabolically exploiting the favorable redox potential between the Fe(III)/Fe(II) 6 couple.
    [Show full text]
  • From Genotype to Phenotype: Inferring Relationships Between Microbial Traits and Genomic Components
    From genotype to phenotype: inferring relationships between microbial traits and genomic components Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Heinrich-Heine-Universit¨atD¨usseldorf vorgelegt von Aaron Weimann aus Oberhausen D¨usseldorf,29.08.16 aus dem Institut f¨urInformatik der Heinrich-Heine-Universit¨atD¨usseldorf Gedruckt mit der Genehmigung der Mathemathisch-Naturwissenschaftlichen Fakult¨atder Heinrich-Heine-Universit¨atD¨usseldorf Referent: Prof. Dr. Alice C. McHardy Koreferent: Prof. Dr. Martin J. Lercher Tag der m¨undlichen Pr¨ufung: 24.02.17 Selbststandigkeitserkl¨ arung¨ Hiermit erkl¨areich, dass ich die vorliegende Dissertation eigenst¨andigund ohne fremde Hilfe angefertig habe. Arbeiten Dritter wurden entsprechend zitiert. Diese Dissertation wurde bisher in dieser oder ¨ahnlicher Form noch bei keiner anderen Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche un- ternommen. D¨usseldorf,den . ... ... ... (Aaron Weimann) Statement of authorship I hereby certify that this dissertation is the result of my own work. No other person's work has been used without due acknowledgement. This dissertation has not been submitted in the same or similar form to other institutions. I have not previously failed a doctoral examination procedure. Summary Bacteria live in almost any imaginable environment, from the most extreme envi- ronments (e.g. in hydrothermal vents) to the bovine and human gastrointestinal tract. By adapting to such diverse environments, they have developed a large arsenal of enzymes involved in a wide variety of biochemical reactions. While some such enzymes support our digestion or can be used for the optimization of biotechnological processes, others may be harmful { e.g. mediating the roles of bacteria in human diseases.
    [Show full text]
  • Diversity and Evolution of Bacterial
    Published online 14 March 2020 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 2 1 doi: 10.1093/nargab/lqaa018 Diversity and evolution of bacterial bioluminescence genes in the global ocean Thomas Vannier 1,2,*, Pascal Hingamp1,2, Floriane Turrel1, Lisa Tanet1, Magali Lescot 1,2,* and Youri Timsit 1,2,* 1Aix Marseille Univ, Universite´ de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France and 2Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France Received October 21, 2019; Revised February 14, 2020; Editorial Decision March 02, 2020; Accepted March 06, 2020 ABSTRACT ganisms and is particularly widespread in marine species (7–9). The luciferase enzymes that catalyze the emission Although bioluminescent bacteria are the most abun- of photons have evolved independently over 30 times, by dant and widely distributed of all light-emitting or- convergence from non-luminescent enzymes (10,11). Al- ganisms, the biological role and evolutionary history though bioluminescent bacteria are the most abundant and of bacterial luminescence are still shrouded in mys- widely distributed of all light-emitting organisms (7,12), tery. Bioluminescence has so far been observed in certain functional and evolutionary aspects of bacterial lu- the genomes of three families of Gammaproteobac- minescence still remain enigmatic, such as its biological role teria in the form of canonical lux operons that adopt which remains a matter of debate (13). Early on biolumines- the CDAB(F)E(G) gene order. LuxA and luxB encode cence was proposed to have evolved from ancient oxygen- the two subunits of bacterial luciferase responsi- detoxifying mechanisms (14–16).
    [Show full text]
  • Draft Genomic Sequence of a Chromate- and Sulfate-Reducing
    Xia et al. Standards in Genomic Sciences (2016) 11:48 DOI 10.1186/s40793-016-0169-3 SHORT GENOME REPORT Open Access Draft genomic sequence of a chromate- and sulfate-reducing Alishewanella strain with the ability to bioremediate Cr and Cd contamination Xian Xia1, Jiahong Li1, Shuijiao Liao1,2, Gaoting Zhou1,2, Hui Wang1, Liqiong Li1, Biao Xu1 and Gejiao Wang1* Abstract Alishewanella sp. WH16-1 (= CCTCC M201507) is a facultative anaerobic, motile, Gram-negative, rod-shaped bacterium isolated from soil of a copper and iron mine. This strain efficiently reduces chromate (Cr6+) to the much 3+ 2− 2− 2− 2+ less toxic Cr . In addition, it reduces sulfate (SO4 )toS . The S could react with Cd to generate precipitated CdS. Thus, strain WH16-1 shows a great potential to bioremediate Cr and Cd contaimination. Here we describe the features of this organism, together with the draft genome and comparative genomic results among strain WH16-1 and other Alishewanella strains. The genome comprises 3,488,867 bp, 50.4 % G + C content, 3,132 protein-coding genes and 80 RNA genes. Both putative chromate- and sulfate-reducing genes are identified. Keywords: Alishewanella, Chromate-reducing bacterium, Sulfate-reducing bacterium, Cadmium, Chromium Abbreviation: PGAP, Prokaryotic Genome Annotation Pipeline Introduction Alishewanella sp. WH16-1 was isolated from mining The genus Alishewanella was established by Vogel et al., soil in 2009. This strain could resist to multiple heavy in 2000 with Alishewanella fetalis as the type species. It metals. During cultivation, it could efficiently reduce the belongs to the family Alteromonadaceae of the class toxic chromate (Cr6+) to the much less toxic and less 3+ 2− Gammaproteobacteria [1].
    [Show full text]
  • Caractérisation De L'influence De Facteurs Environnementaux Sur L'écologie Microbienne Du Jambon Cuit Tranché
    Caractérisation de l’influence de facteurs environnementaux sur l’écologie microbienne du jambon cuit tranché. Marine Zagdoun To cite this version: Marine Zagdoun. Caractérisation de l’influence de facteurs environnementaux sur l’écologie microbi- enne du jambon cuit tranché.. Biologie moléculaire. Université Paris-Saclay, 2020. Français. NNT : 2020UPASA003. tel-03270836 HAL Id: tel-03270836 https://pastel.archives-ouvertes.fr/tel-03270836 Submitted on 25 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Caractérisation de l’influence de facteurs environnementaux sur l’écologie microbienne du jambon cuit tranché Thèse de doctorat de l’Université Paris-Saclay École doctorale n°581, Agriculture Alimentation Biologie Environnement Santé (ABIES) Spécialité de doctorat : Biologie moléculaire et cellulaire Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France AgroParisTech Thèse présentée et soutenue à Jouy-en-Josas, le 27 février 2020, par Marine ZAGDOUN Composition du Jury Henry-Eric SPINNLER Président
    [Show full text]