The Biodiversity of Saline Lagoons in the Uists with Notes on the Morphological and Molecular Identification of Hydrobiidae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ventrosia Maritima (Milaschewitsch, 1916) and V. Ventrosa (Montagu
Folia Malacol. 22(1): 61–67 http://dx.doi.org/10.12657/folmal.022.006 VENTROSIA MARITIMA (MILASCHEWITSCH, 1916) AND V. VENTROSA (MONTAGU, 1803) IN GREECE: MOLECULAR DATA AS A SOURCE OF INFORMATION ABOUT SPECIES RANGES WITHIN THE HYDROBIINAE (CAENOGASTROPODA: TRUNCATELLOIDEA) MAGDALENA SZAROWSKA, ANDRZEJ FALNIOWSKI Department of Malacology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Cracow, Poland (e-mail: [email protected]) ABSTRACT: Using molecular data (DNA sequences of mitochondrial COI and nuclear ribosomal 18SrRNA genes), we describe the occurrence of two species of Ventrosia Radoman, 1977: V. ventrosa (Montagu, 1803) and V. maritima (Milaschewitsch, 1916) in Greece. These species are found at two disjunct localities: V. ventrosa at the west coast of Peloponnese (Ionian Sea) and V. maritima on Milos Island in the Cyclades (Aegean Sea). Our findings expand the known ranges of both species: we provide the first molecularly confirmed record of V. ventrosa in Greece, and extend the range of the presumably Pontic V. maritima nearly 500 km SSW into the Aegean Sea. Our data confirm the species distinctness of V. maritima. KEY WORDS: Truncatelloidea, COI, 18S rRNA, shell, Ventrosia, species distinctness, species range INTRODUCTION Data on the Greek Hydrobiinae, inhabiting brack- flock of species that are not differentiated morpho- ish waters, are less than scarce. SCHÜTT (1980) did logically or ecologically. Thus, at a species level in not list any species belonging to this subfamily in the Hydrobiinae, molecular characters are inevita- his monograph on the Greek Hydrobiidae. Although bly necessary to distinguish a taxon (e.g. WILKE & MUUS (1963, 1967) demonstrated that the mor- DAVIS 2000, WILKE & FALNIOWSKI 2001, WILKE & phology of the penis and the head pigmentation PFENNIGER 2002). -
Fresh- and Brackish-Water Cold-Tolerant Species of Southern Europe: Migrants from the Paratethys That Colonized the Arctic
water Review Fresh- and Brackish-Water Cold-Tolerant Species of Southern Europe: Migrants from the Paratethys That Colonized the Arctic Valentina S. Artamonova 1, Ivan N. Bolotov 2,3,4, Maxim V. Vinarski 4 and Alexander A. Makhrov 1,4,* 1 A. N. Severtzov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia; [email protected] 2 Laboratory of Molecular Ecology and Phylogenetics, Northern Arctic Federal University, 163002 Arkhangelsk, Russia; [email protected] 3 Federal Center for Integrated Arctic Research, Russian Academy of Sciences, 163000 Arkhangelsk, Russia 4 Laboratory of Macroecology & Biogeography of Invertebrates, Saint Petersburg State University, 199034 Saint Petersburg, Russia; [email protected] * Correspondence: [email protected] Abstract: Analysis of zoogeographic, paleogeographic, and molecular data has shown that the ancestors of many fresh- and brackish-water cold-tolerant hydrobionts of the Mediterranean region and the Danube River basin likely originated in East Asia or Central Asia. The fish genera Gasterosteus, Hucho, Oxynoemacheilus, Salmo, and Schizothorax are examples of these groups among vertebrates, and the genera Magnibursatus (Trematoda), Margaritifera, Potomida, Microcondylaea, Leguminaia, Unio (Mollusca), and Phagocata (Planaria), among invertebrates. There is reason to believe that their ancestors spread to Europe through the Paratethys (or the proto-Paratethys basin that preceded it), where intense speciation took place and new genera of aquatic organisms arose. Some of the forms that originated in the Paratethys colonized the Mediterranean, and overwhelming data indicate that Citation: Artamonova, V.S.; Bolotov, representatives of the genera Salmo, Caspiomyzon, and Ecrobia migrated during the Miocene from I.N.; Vinarski, M.V.; Makhrov, A.A. -
North American Hydrobiidae (Gastropoda: Rissoacea): Redescription and Systematic Relationships of Tryonia Stimpson, 1865 and Pyrgulopsis Call and Pilsbry, 1886
THE NAUTILUS 101(1):25-32, 1987 Page 25 . North American Hydrobiidae (Gastropoda: Rissoacea): Redescription and Systematic Relationships of Tryonia Stimpson, 1865 and Pyrgulopsis Call and Pilsbry, 1886 Robert Hershler Fred G. Thompson Department of Invertebrate Zoology Florida State Museum National Museum of Natural History University of Florida Smithsonian Institution Gainesville, FL 32611, USA Washington, DC 20560, USA ABSTRACT scribed) in the Southwest. Taylor (1966) placed Tryonia in the Littoridininae Taylor, 1966 on the basis of its Anatomical details are provided for the type species of Tryonia turreted shell and glandular penial lobes. It is clear from Stimpson, 1865, Pyrgulopsis Call and Pilsbry, 1886, Fonteli- cella Gregg and Taylor, 1965, and Microamnicola Gregg and the initial descriptions and subsequent studies illustrat- Taylor, 1965, in an effort to resolve the systematic relationships ing the penis (Russell, 1971: fig. 4; Taylor, 1983:16-25) of these taxa, which represent most of the generic-level groups that Fontelicella and its subgenera, Natricola Gregg and of Hydrobiidae in southwestern North America. Based on these Taylor, 1965 and Microamnicola Gregg and Taylor, 1965 and other data presented either herein or in the literature, belong to the Nymphophilinae Taylor, 1966 (see Hyalopyrgus Thompson, 1968 is assigned to Tryonia; and Thompson, 1979). While the type species of Pyrgulop- Fontelicella, Microamnicola, Nat ricola Gregg and Taylor, 1965, sis, P. nevadensis (Stearns, 1883), has not received an- Marstonia F. C. Baker, 1926, and Mexistiobia Hershler, 1985 atomical study, the penes of several eastern species have are allocated to Pyrgulopsis. been examined by Thompson (1977), who suggested that The ranges of both Tryonia and Pyrgulopsis include parts the genus may be a nymphophiline. -
BASTERIA, 101-113, 1998 Hydrobia (Draparnaud, 1805) (Gastropoda
BASTERIA, Vol 61: 101-113, 1998 Note on the occurrence of Hydrobia acuta (Draparnaud, 1805) (Gastropoda, Prosobranchia: Hydrobiidae) in western Europe, with special reference to a record from S. Brittany, France D.F. Hoeksema Watertoren 28, 4336 KC Middelburg, The Netherlands In August 1992 samples of living Hydrobia acuta (Draparnaud, 1805) have been collected in the Baie de Quiberon (Morbihan, France). The identification is elucidated. Giusti & Pezzoli (1984) and Giusti, Manganelli& Schembri (1995) suggested that Hydrobia minoricensis (Paladilhe, of H. The features ofthe 1875) and Hydrobia neglecta Muus, 1963, are junior synomyms acuta. material from Quiberon support these suggestions: it will be demonstrated that H. minoricensis and H. neglecta fit completely in the conception of H. acuta. H. acuta, well known from the be also distributed in and northwestern Mediterranean, appears to widely western Europe. Key words: Gastropoda,Prosobranchia, Hydrobiidae,Hydrobia acuta, distribution, France. Europe. INTRODUCTION In favoured localities often hydrobiid species are very abundant, occurring in dense populations. Some species prefer fresh water, others brackish or sea-water habitats. in the distributionof Although salinity preferences play a part determining each species, most species show a broad tolerance as regards the degree of salinity. Frequently one live in the habitat with Some hydrobiid species may same another. hydrobiid species often dealt with are in publications on marine species as well in those on non-marine Cachia Giusti species (e.g. et al., 1996, and et al., 1995). Many hydrobiid species are widely distributed, but often in genetically isolated populations; probably due to dif- ferent circumstances ecological the species may show a considerablevariability, especially as to the dimensions and the shape of the shell and to the pigmentation of the body. -
WMSDB - Worldwide Mollusc Species Data Base
WMSDB - Worldwide Mollusc Species Data Base Family: TURBINIDAE Author: Claudio Galli - [email protected] (updated 07/set/2015) Class: GASTROPODA --- Clade: VETIGASTROPODA-TROCHOIDEA ------ Family: TURBINIDAE Rafinesque, 1815 (Sea) - Alphabetic order - when first name is in bold the species has images Taxa=681, Genus=26, Subgenus=17, Species=203, Subspecies=23, Synonyms=411, Images=168 abyssorum , Bolma henica abyssorum M.M. Schepman, 1908 aculeata , Guildfordia aculeata S. Kosuge, 1979 aculeatus , Turbo aculeatus T. Allan, 1818 - syn of: Epitonium muricatum (A. Risso, 1826) acutangulus, Turbo acutangulus C. Linnaeus, 1758 acutus , Turbo acutus E. Donovan, 1804 - syn of: Turbonilla acuta (E. Donovan, 1804) aegyptius , Turbo aegyptius J.F. Gmelin, 1791 - syn of: Rubritrochus declivis (P. Forsskål in C. Niebuhr, 1775) aereus , Turbo aereus J. Adams, 1797 - syn of: Rissoa parva (E.M. Da Costa, 1778) aethiops , Turbo aethiops J.F. Gmelin, 1791 - syn of: Diloma aethiops (J.F. Gmelin, 1791) agonistes , Turbo agonistes W.H. Dall & W.H. Ochsner, 1928 - syn of: Turbo scitulus (W.H. Dall, 1919) albidus , Turbo albidus F. Kanmacher, 1798 - syn of: Graphis albida (F. Kanmacher, 1798) albocinctus , Turbo albocinctus J.H.F. Link, 1807 - syn of: Littorina saxatilis (A.G. Olivi, 1792) albofasciatus , Turbo albofasciatus L. Bozzetti, 1994 albofasciatus , Marmarostoma albofasciatus L. Bozzetti, 1994 - syn of: Turbo albofasciatus L. Bozzetti, 1994 albulus , Turbo albulus O. Fabricius, 1780 - syn of: Menestho albula (O. Fabricius, 1780) albus , Turbo albus J. Adams, 1797 - syn of: Rissoa parva (E.M. Da Costa, 1778) albus, Turbo albus T. Pennant, 1777 amabilis , Turbo amabilis H. Ozaki, 1954 - syn of: Bolma guttata (A. Adams, 1863) americanum , Lithopoma americanum (J.F. -
Research at National Museums Scotland
Scottish Saline Lagoons: Looking Under the Surface Katherine Whyte @katey_whyte #SalineLagoons Lab Work Fieldwork Nature My job... Sharing my Outreach Research Species Identification Saline Lagoons Coastal water bodies that have a restricted connection to the sea. Saline Lagoons Coastal water bodies that have a restricted connection to the sea. FRESHWATER BRACKISH SALINE The Lagoon Spectrum Saline Lagoons in Scotland 106 sites 3,000 hectares From: Chambers et al., 2015 Saline Lagoons in Scotland Easdale Quarries (6) Easdale Lagoon, Seil Easdale Quarry, Seil Loch Caithlim, Seil Leth-fhonn (off Loch Don), Mull Loch a’ Chumhainn, Dervaig, Mull Craiglin Lagoon, Loch Sween Dubh Loch, Loch Fyne Disrupted water flow Climate change Threats Coastal erosion Invasive species Pollution Saline Lagoon Legislation EC Habitats Directive (1992) Annex I: Priority Habitat UK Biodiversity Action Plan (1999, 2007): Priority Habitat UK Post-2010 Biodiversity Framework (2012) 2020 Challenge for Scotland’s Biodiversity (2013) EC Water Framework Directive (2000) Water Environment and Water Services (Scotland) Act 2003 SACs, SSSIs, SPAs Lagoon Specialists Lagoon Specialists: Isopods Idotea chelipes Lekanesphaera hookeri Lagoon Specialists: Isopods Lagoon Specialists: Isopods Idotea chelipes Idotea chelipes Lagoon Specialists: Isopods Idotea chelipes Idotea chelipes Idotea baltica Lagoon Specialists: Isopods Idotea chelipes Lagoon Specialists: Isopods Patella vulgata Lagoon Specialists: Isopods Chthamalus Patella vulgata stellatus Lagoon Specialists: Isopods Chthamalus Idotea chelipes Patella vulgata stellatus Lagoon Specialists: Isopods Lekanesphaera hookeri Lagoon Specialists: Isopods Idotea chelipes Lekanesphaera hookeri Lagoon Specialists: Mudsnails Ecrobia ventrosa Hydrobia acuta neglecta Mudsnail Identification Lagoon Specialists: Cockles Cerastoderma glaucum Lagoon Specialists: Cockles Lagoon cockle Common cockle (Cerastoderma glaucum) (Cerastoderma edule) Shell edge forms Shell edge forms 2 contact points 1 contact point with a needle. -
Invertebrate Animals (Metazoa: Invertebrata) of the Atanasovsko Lake, Bulgaria
Historia naturalis bulgarica, 22: 45-71, 2015 Invertebrate Animals (Metazoa: Invertebrata) of the Atanasovsko Lake, Bulgaria Zdravko Hubenov, Lyubomir Kenderov, Ivan Pandourski Abstract: The role of the Atanasovsko Lake for storage and protection of the specific faunistic diversity, characteristic of the hyper-saline lakes of the Bulgarian seaside is presented. The fauna of the lake and surrounding waters is reviewed, the taxonomic diversity and some zoogeographical and ecological features of the invertebrates are analyzed. The lake system includes from freshwater to hyper-saline basins with fast changing environment. A total of 6 types, 10 classes, 35 orders, 82 families and 157 species are known from the Atanasovsko Lake and the surrounding basins. They include 56 species (35.7%) marine and marine-brackish forms and 101 species (64.3%) brackish-freshwater, freshwater and terrestrial forms, connected with water. For the first time, 23 species in this study are established (12 marine, 1 brackish and 10 freshwater). The marine and marine- brackish species have 4 types of ranges – Cosmopolitan, Atlantic-Indian, Atlantic-Pacific and Atlantic. The Atlantic (66.1%) and Cosmopolitan (23.2%) ranges that include 80% of the species, predominate. Most of the fauna (over 60%) has an Atlantic-Mediterranean origin and represents an impoverished Atlantic-Mediterranean fauna. The freshwater-brackish, freshwater and terrestrial forms, connected with water, that have been established from the Atanasovsko Lake, have 2 main types of ranges – species, distributed in the Palaearctic and beyond it and species, distributed only in the Palaearctic. The representatives of the first type (52.4%) predomi- nate. They are related to the typical marine coastal habitats, optimal for the development of certain species. -
Spatial Variability in Recruitment of an Infaunal Bivalve
Spatial Variability in Recruitment of an Infaunal Bivalve: Experimental Effects of Predator Exclusion on the Softshell Clam (Mya arenaria L.) along Three Tidal Estuaries in Southern Maine, USA Author(s): Brian F. Beal, Chad R. Coffin, Sara F. Randall, Clint A. Goodenow Jr., Kyle E. Pepperman, Bennett W. Ellis, Cody B. Jourdet and George C. Protopopescu Source: Journal of Shellfish Research, 37(1):1-27. Published By: National Shellfisheries Association https://doi.org/10.2983/035.037.0101 URL: http://www.bioone.org/doi/full/10.2983/035.037.0101 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Shellfish Research, Vol. 37, No. 1, 1–27, 2018. SPATIAL VARIABILITY IN RECRUITMENT OF AN INFAUNAL BIVALVE: EXPERIMENTAL EFFECTS OF PREDATOR EXCLUSION ON THE SOFTSHELL CLAM (MYA ARENARIA L.) ALONG THREE TIDAL ESTUARIES IN SOUTHERN MAINE, USA 1,2 3 2 3 BRIAN F. -
Species Distinction and Speciation in Hydrobioid Gastropoda: Truncatelloidea)
Andrzej Falniowski, Archiv Zool Stud 2018, 1: 003 DOI: 10.24966/AZS-7779/100003 HSOA Archives of Zoological Studies Review inhabit brackish water habitats, some other rivers and lakes, but vast Species Distinction and majority are stygobiont, inhabiting springs, caves and interstitial hab- itats. Nearly nothing is known about the biology and ecology of those Speciation in Hydrobioid stygobionts. Much more than 1,000 nominal species have been de- Mollusca: Caeno- scribed (Figure 1). However, the real number of species is not known, Gastropods ( in fact. Not only because of many species to be discovered in the fu- gastropoda ture, but mostly since there are no reliable criteria, how to distinguish : Truncatelloidea) a species within the group. Andrzej Falniowski* Department of Malacology, Institute of Zoology and Biomedical Research, Jagiellonian University, Poland Abstract Hydrobioids, known earlier as the family Hydrobiidae, represent a set of truncatelloidean families whose members are minute, world- wide distributed snails inhabiting mostly springs and interstitial wa- ters. More than 1,000 nominal species bear simple plesiomorphic shells, whose variability is high and overlapping between the taxa, and the soft part morphology and anatomy of the group is simplified because of miniaturization, and unified, as a result of necessary ad- aptations to the life in freshwater habitats (osmoregulation, internal fertilization and eggs rich in yolk and within the capsules). The ad- aptations arose parallel, thus represent homoplasies. All the above facts make it necessary to use molecular markers in species dis- crimination, although this should be done carefully, considering ge- netic distances calibrated at low taxonomic level. There is common Figure 1: Shells of some of the European representatives of Truncatelloidea: A believe in crucial place of isolation as a factor shaping speciation in - Ecrobia, B - Pyrgula, C-D - Dianella, E - Adrioinsulana, F - Pseudamnicola, G long-lasting completely isolated habitats. -
Folia Malacologica
FOLIA Folia Malacol. 23(4): 263–271 MALACOLOGICA ISSN 1506-7629 The Association of Polish Malacologists Faculty of Biology, Adam Mickiewicz University Bogucki Wydawnictwo Naukowe Poznań, December 2015 http://dx.doi.org/10.12657/folmal.023.022 TANOUSIA ZRMANJAE (BRUSINA, 1866) (CAENOGASTROPODA: TRUNCATELLOIDEA: HYDROBIIDAE): A LIVING FOSSIL Luboš BERAN1, SEBASTIAN HOFMAN2, ANDRZEJ FALNIOWSKI3* 1Nature Conservation Agency of the Czech Republic, Regional Office Kokořínsko – Máchův kraj Protected Landscape Area Administration, Česká 149, CZ 276 01 Mělník, Czech Republic 2Department of Comparative Anatomy, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30- 387 Cracow, Poland 3Department of Malacology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Cracow, Poland (e-mail: [email protected]) * corresponding author ABSTRACT: A living population of Tanousia zrmanjae (Brusina, 1866) was found in the mid section of the Zrmanja River in Croatia. The species, found only in the freshwater part of the river, had been regarded as possibly extinct. A few collected specimens were used for this study. Morphological data confirm the previous descriptions and drawings while molecular data place Tanousia within the family Hydrobiidae, subfamily Sadlerianinae Szarowska, 2006. Two different sister-clade relationships were inferred from two molecular markers. Fossil Tanousia, represented probably by several species, are known from interglacial deposits of the late Early Pleistocene to the early Middle Pleistocene -
Turritella Communis (Risso, 1826)
ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ ΤΟΜΕΑΣ ΓΕΝΙΚΗΣ ΘΑΛΑΣΣΙΑΣ ΓΕΩΛΟΓΙΑΣ ΚΑΙ ΓΕΩΔΥΝΑΜΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΘΑΛΑΣΣΙΑΣ ΓΕΩΛΟΓΙΑΣ ΚΑΙ ΦΥΣΙΚΗΣ ΩΚΕΑΝΟΓΡΑΦΙΑΣ ΜΙΚΡΟΠΑΛΑΙΟΝΤΟΛΟΓΙΚΕΣ ΑΝΑΛΥΣΕΙΣ ΘΑΛΑΣΣΙΩΝ ΙΖΗΜΑΤΩΝ ΤΟΥ ΑΜΒΡΑΚΙΚΟΥ ΚΟΛΠΟΥ Μεταπτυχιακή Φοιτήτρια Αρκαδιανού Μαρία Επιβλέπουσα Καθηγήτρια: Γεραγά Μαρία Τριμελής Επιτροπή: Γεραγά Μαρία Παπαθεοδώρου Γεώργιος Ηλιόπουλος Γεώργιος 0 Πάτρα, 2019 Αφιερώνεται στην οικογένειά μου που με στηρίζει σε κάθε νέο ξεκίνημα σε κάθε απόφαση… Ευχαριστίες… Θα ήθελα να ευχαριστήσω τους καθηγητές Γεραγά Μαρία και Παπαθεοδώρου Γεώργιο που μου έδωσαν τη δυνατότητα να εκπονήσω τη διπλωματική μου εργασία στον τομέα της Περιβαλλοντικής Ωκεανογραφίας δείχνοντάς μου εμπιστοσύνη και προσφέροντάς μου πολύτιμη βοήθεια. Τον καθηγητή μου Ηλιόπουλο Γεώργιο και την Δρ. Παπαδοπούλου Πηνελόπη για την πολύτιμη βοήθεια τους, την καθοδήγηση, τις χρήσιμες συμβουλές και τη στήριξη. Την Υποψήφια Διδάκτορα Τσώνη Μαρία για τις συμβουλές της στο χειρισμό ορισμένων λογισμικών. Την Υποψήφια Διδάκτορα Πρανδέκου Αμαλία για τις συμβουλές της. Τον φίλο μου Ανδρέα για τη στήριξη και την υπομονή του. Τέλος, θέλω να εκφράσω ένα μεγάλο ευχαριστώ στην οικογένειά μου που με στήριξε με κάθε τρόπο σε όλη τη διάρκεια των σπουδών μου και υπήρξαν σημαντικοί αρωγοί όλα αυτά τα χρόνια. 1 Ευχαριστίες……………………………………………………………………………………………………….....................1 ΕΙΣΑΓΩΓΗ………………………………………………………………………………………………………………………………3 Σκοπός…………………………………………………………………………………………………..................3 1. ΠΕΡΙΟΧΗ ΜΕΛΕΤΗΣ………………………………………………………………………………………………3 1.1Γενικά …………………………………………………………………………………………………………………3 -
Redescription of Marstonia Comalensis (Pilsbry & Ferriss, 1906), a Poorly Known and Possibly Threatened Freshwater Gastropod from the Edwards Plateau Region (Texas)
A peer-reviewed open-access journal ZooKeys Redescription77: 1–16 (2011) of Marstonia comalensis (Pilsbry & Ferriss, 1906), a poorly known and... 1 doi: 10.3897/zookeys.77.935 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research Redescription of Marstonia comalensis (Pilsbry & Ferriss, 1906), a poorly known and possibly threatened freshwater gastropod from the Edwards Plateau region (Texas) Robert Hershler1, Hsiu-Ping Liu2 1 Department of Invertebrate Zoology, Smithsonian Institution, P.O. Box 37012, Washington, D.C. 20013- 7012, USA 2 Department of Biology, Metropolitan State College of Denver, Denver, CO 80217, USA Corresponding author : Robert Hershler ( [email protected] ) Academic editor: Anatoly Schileyko | Received 2 June 2010 | Accepted 13 January 2011 | Published 26 January 2011 Citation: Hershler R, Liu H-P (2011) Redescription of Marstonia comalensis (Pilsbry & Ferriss, 1906), a poorly known and possibly threatened freshwater gastropod from the Edwards Plateau region (Texas). ZooKeys 77 : 1 – 16 . doi: 10.3897/ zookeys.77.935 Abstract Marstonia comalensis, a poorly known nymphophiline gastropod (originally described from Comal Creek, Texas) that has often been confused with Cincinnatia integra, is re-described and the generic placement of this species, which was recently allocated to Marstonia based on unpublished evidence, is confi rmed by anatomical study. Marstonia comalensis is a large congener having an ovate-conic, openly umbilicate shell and penis having a short fi lament and oblique, squarish lobe bearing a narrow gland along its distal edge. It is well diff erentiated morphologically from congeners having similar shells and penes and is also geneti- cally divergent relative to those congeners that have been sequenced (mtCOI divergence 3.0–8.5%).