How to Count Chromosomes in a Cell: an Overview of Current and Novel Technologies

Total Page:16

File Type:pdf, Size:1020Kb

How to Count Chromosomes in a Cell: an Overview of Current and Novel Technologies Prospects & Overviews How to count chromosomes in a cell: An overview of current and novel technologies Bjorn Bakker, Hilda van den Bos, Peter M. Lansdorp and Floris Foijerà Aneuploidy, an aberrant number of chromosomes in a cell, Introduction is a feature of several syndromes associated with cognitive and developmental defects. In addition, aneuploidy is A brief history of aneuploidy considered a hallmark of cancer cells and has been During each cell division, all chromosomes are duplicated and Methods, Models & Techniques suggested to play a role in neurodegenerative disease. To distributed equally over the two emerging daughter cells. better understand the relationship between aneuploidy Various checkpoints help to ensure that chromosome segrega- and disease, various methods to measure the chromo- tion occurs accurately during the cell cycle. When errors occur during mitosis, cells can end up with an abnormal number of some numbers in cells have been developed, each with chromosomes, a state called aneuploidy. The relationship their own advantages and limitations. While some methods between aneuploidy and disease was first proposed early in the rely on dividing cells and thus bias aneuploidy rates to that 20th century by Theodor Boveri. By injecting multiple sperm population, other, more unbiased methods can only detect cells into sea urchin embryos, he showed that an increased the average aneuploidy rates in a cell population, cloaking chromosome content can result in abnormal development or death [1–3]. From the mid-20th century on, a large number of cell-to-cell heterogeneity. Furthermore, some techniques assays have been developed to quantify aneuploidy, which are more prone to technical artefacts, which can result in allowed linking various human syndromes and diseases to over- or underestimation of aneuploidy rates. In this aneuploidy. review, we provide an overview of several ‘‘traditional’’ Most systemic aneuploidies for human autosomes are karyotyping methods as well as the latest high throughput incompatible with embryonic development, and those that next generation sequencing karyotyping protocols with are viable (trisomies for chromosomes 13, 18, and 21) all result in a wide range of developmental and cognitive defects. The most their respective advantages and disadvantages. well-known aneuploidy-related syndrome is Down’s syndrome, which was first linked to a trisomy for chromosome 21 in 1959 [4]. Keywords: One year later, Edward’s syndrome (trisomy 18) and Patau’s .aneuploidy; chromosomal instability; karyotyping; next syndrome (trisomy 13) were uncovered as congenital syndromes generation sequencing caused by chromosomal copy number changes [5, 6]. Collec- tively, these syndromes demonstrate the severe consequences of DOI 10.1002/bies.201400218 an additional chromosome at the organismal level. European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands Aneuploidy accelerates cancer *Corresponding author: Cancer cells frequently exhibit errors in chromosome segrega- Floris Foijer E-mail: [email protected] tion, resulting in chromosomal imbalances [7]. In fact, roughly two out of three human tumors display aneuploidy [8, 9], and Abbreviations: genomic instability is considered to be a major enabling CGH, comparative genomic hybridization; CNV, copy number variation; FISH, characteristic of malignant transformation [10]. Paradoxically, fluorescence in situ hybridization; MCB, multicolor banding; M-FISH, multiplex FISH; SAC, spindle assembly checkpoint; SKY, spectral studies in aneuploid yeast strains and mouse embryonic karyotyping. fibroblasts have shown that aneuploidy reduces cell fitness 570 www.bioessays-journal.com Bioessays 37: 570–577, ß 2015 WILEY Periodicals, Inc. ....Prospects & Overviews B. Bakker et al. and leads to growth defects, as well as metabolic and aggregates and thus neurodegeneration. However, most of proteotoxic stresses [11–13]. It is therefore remarkable that these studies relied on noisy techniques to quantify aneuploidy aneuploid cancer cells can proliferate in vivo despite aneu- in post-mitotic cells (e.g. in situ interphase FISH), which might Methods, Models & Techniques ploidy-induced stress [14], and this suggests that aneuploid have resulted in over- or underestimation of the actual cancer cells somehow adjust their physiology to cope with the aneuploidy in neurons. Therefore, improved methods to detrimental consequences of aneuploidy. measure the number of chromosomes in non-dividing cells While structural genomic rearrangements (local amplifi- are a necessity to further substantiate the role of aneuploidy in cations/deletions and translocations) in cancer have been neurodegenerative disease. studied in great detail, we only begin to understand the precise role of whole-chromosome aberrations [15]. One disease that links cancer to aneuploidy is the mosaic Accurate karyotyping tools are needed variegated aneuploidy syndrome (MVA). MVA is caused by mutations in the spindle assembly checkpoint (SAC) gene As argued above, accurate karyotyping is a crucial tool to BUB1B. The SAC monitors kinetochore–microtubule attach- better understand the role of aneuploidy in disease. While ment during metaphase, and blocks anaphase onset until all various karyotyping methods have been developed since the chromosomes are properly aligned and attached to micro- late 1950s, their accuracy and reliability differ. Importantly, tubules, thus preventing chromosome missegregation and each karyotyping method is limited as to which cytogenetic consequent aneuploidy [16]. MVA patients are indeed abnormalities can be detected, and in which cell type (e.g. characterized by random aneuploidies, suffer from devel- proliferating vs. post-mitotic). Furthermore, each method is opmental and cognitive defects [17, 18], and are significantly prone to its own technical and biological artefacts that need to more likely to develop pediatric cancers, including rhabdo- be considered. Importantly, few platforms exist that allow for myosarcoma, Wilms tumor, and leukemia [17]. quantifying full karyotypes of non-dividing cells, a type of Mouse models, in which chromosomal instability (CIN) measurement that is becoming increasingly more important in was provoked in vivo by inactivation of SAC genes (reviewed studying the relationship between chromosomal instability extensively elsewhere [19–21]), have been instrumental in and disease. In this review we provide an overview of the most better understanding the link between aneuploidy and cancer. common cytogenetic techniques, along with a number of new Briefly summarized, CIN results in four major phenotypes: (i) methods, and their associated applications and limitations. embryonic lethality when the SAC is fully alleviated in the The first important consideration when selecting a whole organism; (ii) weak tumor predisposition when SAC protocol for karyotyping is the type of cells to be assessed: genes are heterozygously inactivated; (iii) tumor suppression dividing cells or non-dividing cells. While essentially all in some tumor predisposed backgrounds (e.g. knockout of cytogenetic methods can be used to quantify chromosome tumor suppressor genes or exposure to carcinogens); and (iv) copy numbers, some are either restricted to detection of only a premature aging [19–21]. These phenotypes even differ few chromosomes per cell, reducing the resolution of the between in vivo cell lineages: for instance, the basal layer analysis, or fail to detect some types of karyotypic abnormal- in mouse epidermis copes much better with CIN than the hair ities (e.g. balanced translocations), which we will further follicle stem cells that reside in the same tissue [22]. While, discuss below. The detection limits of all of the addressed these data indicate that CIN is an important accelerating factor methods are summarized in Figure 1. in cancer, the next challenge will be to understand how CIN contributes to malignant transformation. For this, we need to faithfully quantify the dynamics of chromosome missegrega- Tools to detect chromosome copy tion in individual tumors, analyses that will heavily depend numbers in dividing cells on improved cytogenetic tools, the topic of this review. Traditional karyotyping and fluorescence in situ hybridization (FISH) Aneuploidy might lead to neurodegeneration Traditional metaphase spread-based karyotyping requires Various studies have suggested that aneuploidy is not unique to cycling cells [33]. For this, cells are arrested in metaphase, cancer cells. For instance, a large fraction of normal mouse [23] using spindle assembly checkpoint poisons such as colcemid, and human [24–26] neurons appear to be aneuploid. Strikingly, to simplify chromosome counting. Cells are then incubated in these aneuploid neurons seem to be fully functional, because a hypotonic solution followed by fixation. The fixed cells they are integrated into the brain circuitry and can be are then dropped onto a microscope slide to spread the activated [27]. While the levels of aneuploidy in healthy brain chromosomes, and stained with Giemsa or DAPI to visualize are still under debate [28–30], aneuploidy in the brain could the chromosomes. This protocol allows for the detection of play a role in neurodegeneration [31]. For instance, patients whole chromosome copy number gains and losses, large suffering from Alzheimer’s Disease (AD) exhibit frequent copy amplifications, insertions, deletions, inversions, transloca-
Recommended publications
  • The Role of Model Organisms in the History of Mitosis Research
    Downloaded from http://cshperspectives.cshlp.org/ on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press The Role of Model Organisms in the History of Mitosis Research Mitsuhiro Yanagida Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan Correspondence: [email protected] Mitosis is a cell-cycle stage during which condensed chromosomes migrate to the middle of the cell and segregate into two daughter nuclei before cytokinesis (cell division) with the aid of a dynamic mitotic spindle. The history of mitosis research is quite long, commencing well before the discovery of DNA as the repository of genetic information. However, great and rapid progress has been made since the introduction of recombinant DNA technology and discovery of universal cell-cycle control. A large number of conserved eukaryotic genes required for the progression from early to late mitotic stages have been discovered, confirm- ing that DNA replication and mitosis are the two main events in the cell-division cycle. In this article, a historical overview of mitosis is given, emphasizing the importance of diverse model organisms that have been used to solve fundamental questions about mitosis. Onko Chisin—An attempt to discover new truths by checkpoint [SAC]), then metaphase (in which studying the past through scrutiny of the old. the chromosomes are aligned in the middle of cell), anaphase A (in which identical sister chro- matids comprising individual chromosomes LARGE SALAMANDER CHROMOSOMES separate and move toward opposite poles of ENABLED THE FIRST DESCRIPTION the cell), anaphase B (in which the spindle elon- OF MITOSIS gates as the chromosomes approach the poles), itosis means “thread” in Greek.
    [Show full text]
  • Centrosome Abnormalities in Cancer Cells and Tissue
    Centrosome abnormalities in cancer cells and tissue Heide Schatten,* Maureen Ripple,** Ron Balczon,*** and Meghan Taylor* *Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO 65211 ** University of Wisconsin Comprehensive Cancer Center, Department of Medicine, Environmental Toxicology Center, and the William S. Middleton Veterans Administration Hospital, University of Wisconsin, Madison, WI 53792 *** Department of Structural and Cellular Biology, The University of South Alabama, Mobile, AL 36688 This paper addresses cancer as a disease characterized by uncontrolled cell divisions in which the molecular controls for cytoskeletal regulation are bypassed. The focus of our studies are on centrosomes, microtubule-organizing cell organelles which are crucial for the organization of the mitotic apparatus during mitosis and cell division (1). The importance of centrosomes during normal cell division had been recognized by the classical cytologist Theodor Boveri (2) who also recognized that centrosome abnormalities are observed during cancer (3). Following up on these studies, we analyzed centrosome structure and function in the prostate cancer cell lines LNCaP and DU145 (45) as well as in fresh and archived prostate cancer tissue. Cancer cells and tissue was compared with normal human foreskin fibroblast (HFF) cells. The goal of these studies was to investigate the organization and the structural behavior of centrosomes in cancer and normal cells. Transmission electron microscopy of whole cells revealed centrosome and spindle abnormalities resulting in tri- and multipolar spindles in LNCaP and DU145 cells during mitosis which was not observed in normal HFF cells. Figure 1 depicts one section through a DU145 prostate cancer ceil with abnormal mitosis. Tri- and multipolar spindles are the result of centrosome instability which will lead to imbalances in chromosome distribution.
    [Show full text]
  • Chromosomal Theory and Genetic Linkage
    362 Chapter 13 | Modern Understandings of Inheritance 13.1 | Chromosomal Theory and Genetic Linkage By the end of this section, you will be able to do the following: • Discuss Sutton’s Chromosomal Theory of Inheritance • Describe genetic linkage • Explain the process of homologous recombination, or crossing over • Describe chromosome creation • Calculate the distances between three genes on a chromosome using a three-point test cross Long before scientists visualized chromosomes under a microscope, the father of modern genetics, Gregor Mendel, began studying heredity in 1843. With improved microscopic techniques during the late 1800s, cell biologists could stain and visualize subcellular structures with dyes and observe their actions during cell division and meiosis. With each mitotic division, chromosomes replicated, condensed from an amorphous (no constant shape) nuclear mass into distinct X-shaped bodies (pairs of identical sister chromatids), and migrated to separate cellular poles. Chromosomal Theory of Inheritance The speculation that chromosomes might be the key to understanding heredity led several scientists to examine Mendel’s publications and reevaluate his model in terms of chromosome behavior during mitosis and meiosis. In 1902, Theodor Boveri observed that proper sea urchin embryonic development does not occur unless chromosomes are present. That same year, Walter Sutton observed chromosome separation into daughter cells during meiosis (Figure 13.2). Together, these observations led to the Chromosomal Theory of Inheritance, which identified chromosomes as the genetic material responsible for Mendelian inheritance. Figure 13.2 (a) Walter Sutton and (b) Theodor Boveri developed the Chromosomal Theory of Inheritance, which states that chromosomes carry the unit of heredity (genes).
    [Show full text]
  • Introduction
    Oncogene (2002) 21, 6140 – 6145 ª 2002 Nature Publishing Group All rights reserved 0950 – 9232/02 $25.00 www.nature.com/onc Introduction Kenji Fukasawa*,1 1Department of Cell Biology, University of Cincinnati College of Medicine, PO Box 670521, Cincinnati, Ohio, OH 45267-0521, USA Oncogene (2002) 21, 6140 – 6145. doi:10.1038/sj.onc. Centrosomes have recently attracted considerable 1205771 attention primarily because of their potential impor- tance in carcinogenesis. Chromosome instability is a hallmark of virtually all solid cancers, being a Keywords: centrosome; cancer; chromosome instability formidable force that drives multi-step carcinogenesis: either loss or gain of a single chromosome can simultaneously introduce multiple mutations, which are responsible for acquisition of further malignant The centrosome of animal cells is a small non- phenotypes. The presence of more than two centro- membranous organelle, and is often associated with somes in a cell results in the formation of defective the nuclear membrane. It is composed of a pair of mitotic spindles directed by multiple spindle poles, centrioles and a surrounding electron dense matrix of which in turn increases the chromosome segregation protein aggregates referred to as the pericentriolar errors. This potential role of centrosomes in chromo- material (PCM) (Figure 1, also see Figure 1 in Dutertre some instability, hence in cancer development, is by et al., 2002). Each centriole is cylindrical in shape and no means a new-sprung idea. It was initially built with the nine sets of triplet microtubules. The two proposed by Theodor Boveri (1914). In his book, centrioles are paired in close proximity at one end, and The Origin of Malignant Tumors, he wrote, ‘malig- positioned vertical to each other.
    [Show full text]
  • Chromosomal-Theory.Pdf
    DNA Is The Stuff Of Life Phil McClean Septemeber 2005 The research of Gregor Mendel dramatically changed our perception of heredity. His conclusion that a trait was controlled by a particulate factor suggested that some physical entity existed that controlled heredity. Mendel’s 1st Law, the law of segregation, suggested the factor was somehow reduced when it was passed onto what we know now is the gamete. We also know that this reduction event occurs during meiosis. Mendel’s 2nd Law, the law of independent assortment, implied that each trait was controlled by a unique factor. As significant as the discoveries of Mendel were, they did not consider the actual physical entity that controls heredity. A separate set of conclusions, many based on simple empirical scientific observation, lead to the eventual determination that these factors reside on chromosomes, and that DNA was the heredity material. Genes Reside on Chromosomes From 1879-1892, Flemming, Strasburger, Waldeyer, van Beneden, and Weismann made significant contributions to our concepts of chromosomes. Flemming (1882) observed structures in the nucleus of salamanders that bound dye, and these structures had a string like appearance. He termed the structures chromatin (or colored substance). He also developed the concept of cell division that he later termed mitosis. The universality of this discovery is attributed to Strasburger who discovered the same process in plants. Waldeyer, in 1888, called the structures that divided during mitosis chromosomes (or colored bodies). Weismann made the very critical observation that sperm and egg cells contain exactly half the number of chromosomes. van Beneden further observed that when a sperm cell fertilizes an egg, the result is the diploid chromosome number found in cells that undergo mitosis.
    [Show full text]
  • Theodor and Marcella Boveri : Chromosomes and Cytoplasm in Heredity and Development Satzinger, Helga 2008
    Repositorium für die Geschlechterforschung Theodor and Marcella Boveri : chromosomes and cytoplasm in heredity and development Satzinger, Helga 2008 https://doi.org/10.25595/151 Veröffentlichungsversion / published version Zeitschriftenartikel / journal article Empfohlene Zitierung / Suggested Citation: Satzinger, Helga: Theodor and Marcella Boveri : chromosomes and cytoplasm in heredity and development, in: Nature reviews : Genetics, Jg. 9 (2008) Nr. 3, 231-238. DOI: https://doi.org/10.25595/151. Erstmalig hier erschienen / Initial publication here: https://doi.org/10.1038/nrg2311 Nutzungsbedingungen: Terms of use: Dieser Text wird unter einer CC BY 4.0 Lizenz (Namensnennung) This document is made available under a CC BY 4.0 License zur Verfügung gestellt. Nähere Auskünfte zu dieser Lizenz finden (Attribution). For more information see: Sie hier: https://creativecommons.org/licenses/by/4.0/deed.en https://creativecommons.org/licenses/by/4.0/deed.de www.genderopen.de PERspECtiVES passion for botany and music. The young SERIE S O N H I S TORICAL PROFILE S — T IME L INE Boveri, as passionate as his parents about arts and music, was destined to become Theodor and Marcella Boveri: an engineer or architect, to which end he attended the Realgymnasium — a school focusing on sciences and mathematics. In chromosomes and cytoplasm in 1881 he enrolled at the University of Munich, Germany, beginning with courses in history, heredity and development philosophy and classical languages. However, after one term he changed to anatomy, became Helga Satzinger an assistant to the anatomist Carl von Kupffer and eventually finished his doctoral disserta- Abstract | The chromosome theory of heredity, developed in 1902–1904, became tion on nerve fibres under Kupffer’s supervi- one of the foundation stones of twentieth-century genetics.
    [Show full text]
  • The Consequences of Tetraploidy and Aneuploidy
    Commentary 3859 The consequences of tetraploidy and aneuploidy Zuzana Storchova* and Christian Kuffer Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany *Author for correspondence (e-mail: [email protected]) Accepted 16 October 2008 Journal of Cell Science 121, 3859-3866 Published by The Company of Biologists 2008 doi:10.1242/jcs.039537 Summary Polyploidy, an increased number of chromosome sets, is a stable aneuploidy are commonly observed in cancers. Recently, surprisingly common phenomenon in nature, particularly in it has been proposed that an increased number of chromosome plants and fungi. In humans, polyploidy often occurs in specific sets can promote cell transformation and give rise to an tissues as part of terminal differentiation. Changes in ploidy aneuploid tumor. Here, we review how tetraploidy can occur can also result from pathophysiological events that are caused and describe the cellular responses to increased ploidy. by viral-induced cell fusion or erroneous cell division. Furthermore, we discuss how the specific physiological changes Tetraploidization can initiate chromosomal instability (CIN), that are triggered by polyploidization might be used as novel probably owing to supernumerary centrosomes and the doubled targets for cancer therapy. chromosome mass. CIN, in turn, might persist or soon give way to a stably propagating but aneuploid karyotype. Both CIN and Key words: Aneuploidy, Chromosomal instability, Tetraploidy Introduction aneuploidy (Chi and Jeang, 2007; Kops et al., 2005), but an Most malignant tumors have been found to have an abnormal alternative and more radical mechanism might exist in which karyotype with multiple structural and numerical aberrations of inherently instable tetraploid cells can evolve into tumorigenic chromosomes – so-called ‘aneuploidy’.
    [Show full text]
  • Developing the Chromosome Theory
    Developing the Chromosome Theory By: Clare O'Connor, Ph.D. (Biology Department, Boston College) & Ilona Miko, Ph.D. (Write Science Right) © 2008 Nature Education Citation: O'Connor, C. & Miko, I. (2008) Developing the chromosome theory. Nature Education 1(1) Scientists were able to identify chromosomes under the microscope as early as the 19th century. But what did it take for them to figure out how important chromosomes really are? The second half of the nineteenth century was a time of remarkable advances in genetic research. As early as the 1860s, Gregor Mendel and Charles Darwin began to explore possible mechanisms of heredity. Then, over the next few decades, Walther Flemming, Theodor Boveri, and Walter Sutton made a series of significant discoveries involving chromosomes, including what these structures looked like, how they moved during mitosis, and what role they likely played in the transmission of genetic characteristics. However, it wasn't until the work of Thomas Hunt Morgan in the early twentieth century that researchers were finally able to directly link the inheritance of genetic traits to the behavior of chromosomes, thereby providing concrete evidence for what became known as the chromosome theory of heredity. Early Breakthroughs: Mendel and Darwin Propose Mechanisms of Heredity The year 1865 was marked by two profound biological breakthroughs: Mendel's publication of his experiments in plant hybridization, and Darwin's provisional hypothesis of pangenesis. Although neither man had any direct evidence for the theories he proposed, Mendel speculated that cells contained some type of factor that carried traits from one generation to the next, while Darwin proposed that traits could be passed down via units he termed "gemmules," which he believed traveled from every body part to the sexual organs, where they were stored (Benson, 2001).
    [Show full text]
  • Meta-Analysis of Cancer Triploidy: Rearrangements of Genome Complements in Male Human Tumors Are Characterized by XXY Karyotypes
    G C A T T A C G G C A T genes Article Meta-Analysis of Cancer Triploidy: Rearrangements of Genome Complements in Male Human Tumors Are Characterized by XXY Karyotypes Ninel M. Vainshelbaum 1,2, Pawel Zayakin 1 , Regina Kleina 3, Alessandro Giuliani 4 and Jekaterina Erenpreisa 1,* 1 Cancer Research Division, Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia 2 Faculty of Biology, The University of Latvia, LV-1586 Riga, Latvia 3 Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia 4 Environment and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy * Correspondence: [email protected] Received: 5 April 2019; Accepted: 9 August 2019; Published: 13 August 2019 Abstract: Triploidy in cancer is associated with poor prognosis, but its origins remain unclear. Here, we attempted to differentiate between random chromosomal and whole-genome origins of cancer triploidy. In silico meta-analysis was performed on 15 male malignant and five benign tumor cohorts (2928 karyotypes) extracted from the Mitelman Database, comparing their ploidy and combinations of sex chromosomes. A distinct near-triploid fraction was observed in all malignant tumor types, and was especially high in seminoma. For all tumor types, X-chromosome doubling, predominantly observed as XXY, correlated strongly with the near-triploid state (r 0.9, p < 0.001), negatively correlated ≈ with near-diploidy, and did not correlate with near-tetraploidy. A smaller near-triploid component with a doubled X-chromosome was also present in three of the five benign tumor types, especially notable in colon adenoma. Principal component analysis revealed a non-random correlation structure shaping the X-chromosome disomy distribution across all tumor types.
    [Show full text]
  • The Impact of the Zoological Station in Naples on Developmental Physiology
    [nt.J. Dc,.. BioJ.~II: 103-111 (19961 IOJ The impact of the Zoological Station in Naples on developmental physiology IRMGARD MULLER' Faculty of Medicine, University of Bochum, Bochum, Germany Foundation and special status of the Zoological sale of preserved animal specimens, and the foundation of three Station serial publications (Mitteilungen aus der Zoologischen Station Neapel/Pubblicazioni delia Stazione Zoologica di Napoli; The hislory of the Zoological Slation in Naples and the biog- Zoologische Jahresberichte; Fauna und Flora des Goltes von raphy of its founder Anton Dohrn (1840-1909) has been Neapel) and the establishment of a public aquarium. Dohrn, described in detail on several occasions (Heuss. 1962; Kuhn, consumed by his scientific mission, indeed succeeded in gaining 1950; Muller, 1975a, 1976; Partsch, 1980); it suffices therefore the material and intellectual support from the heads of all impor- to introduce only the essential elements of this early model of tant European states, which made it possible to realize his pro- international collaboration in the natural sciences. jects for decades. The special status, which Oohrn provided in Anton Dohrn, the founder of the first marine biological this manner for the Zoological Station, among other scientific research institute studied medicine and zoology in Konigsberg, institutions of the 19th century, and explained its high efficiency Bonn, Berlin. Breslau and obtained his "habilitation" (venia leg- during the tounding years, was based on the fact that it was both endi) in Jena 1868, Motivated by his long-time friend and teacher an international organization in its scientific participants and Ernst Haeckel (1834-1919), Dohrn initially worked on phyloge- funding, as well as typically German with regard to its structure netic problems and published numerous papers on the genealo- and conception.
    [Show full text]
  • Chromosome Theory of Cancer
    J Med Genet: first published as 10.1136/jmg.22.6.431 on 1 December 1985. Downloaded from Journal of Medical Genetics, 1985, 22, 431-440 Marcella O'Grady Boveri (1865-1950) and the chromosome theory of cancer VICTOR A McKUSICK From the Department ofMedicine, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, Maryland 21205, USA. SUMMARY Born into a Boston Irish family, Marcella Imelda O'Grady was the first woman graduate in biology from MIT (1885) where she came under the influence of two recent PhD graduates of Johns Hopkins University, William Townsend Sedgwick and Edmund Beecher Wilson. She taught science at Bryn Mawr School for girls in Baltimore 1885 to 1887 and was teaching assistant with E B Wilson at Bryn Mawr College for women in Bryn Mawr, Pennsylvania, 1887 to 1889. From 1889 to 1896 she headed the Department of Biology at Vassar College for women in Poughkeepsie, New York. On the recommendation of E B Wilson (who from the first edition in 1896 dedicated his famous book The cell in development and inheritance to Boveri) Marcella went to Wurzburg to spend a sabbatical with Boveri. One year later she married Boveri and during the next 18 years until Boveri's untimely death in 1915 she was her husband's close scientific collaborator, especially in his work at the marine zoological stations in Naples and Villefranche, France. She also acquired (from Freiburg) the doctorate she had unsuccessfully attempted to get at Johns Hopkins. Marcella returned to the United States in 1926 copyright. and headed the Biology Department at Albertus Magnus College in New Haven.
    [Show full text]
  • Cytogenetics and the Evolution of Medical Genetics Malcolm A
    August 2008 ⅐ Vol. 10 ⅐ No. 8 review Cytogenetics and the evolution of medical genetics Malcolm A. Ferguson-Smith, MBChB, FRCPath, FRS Interest in cytogenetics may be traced to the development of the chromosomal theory of inheritance that emerged from efforts to provide the basis for Darwin’s theory “On the origin of species by means of natural selection.” Despite their fundamental place in biology, chromosomes and genetics had little impact on medical practice until the 1960s. The discovery that a chromosomal defect caused Down syndrome was the spark responsible for the emergence of medical genetics as a clinical discipline. Prenatal diagnosis of trisomies, biochemical disorders, and neural tube defects became possible and hence the proliferation of genetic counseling clinics. Maternal serum screening for neural tube defects and Down syndrome followed, taking the new discipline into social medicine. Safe amniocentesis needed ultrasound, and ultrasound soon found other applications in obstetrics, including scanning for fetal malformations. Progress in medical genetics demanded a gene map, and cytogeneticists initiated the mapping workshops that led to the human genome project and the complete sequence of the human genome. As a result, conventional karyotyping has been augmented by molecular cytogenetics, and molecular karyotyping has been achieved by microarrays. Genetic diagnosis at the level of the DNA sequence is with us at last. It has been a remarkable journey from disease phenotype to karyotype to genotype, and it has taken Ͻ50 years. Our mission now is to ensure that the recent advances such as prenatal screening, microarrays, and noninvasive prenatal diagnosis are available to our patients. History shows that it is by increased use that costs are reduced and better methods discovered.
    [Show full text]