Making the Infoset Extensible
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Describing Media Content of Binary Data in XML W3C Working Group Note 2 May 2005
Table of Contents Describing Media Content of Binary Data in XML W3C Working Group Note 2 May 2005 This version: http://www.w3.org/TR/2005/NOTE-xml-media-types-20050502 Latest version: http://www.w3.org/TR/xml-media-types Previous version: http://www.w3.org/TR/2004/WD-xml-media-types-20041102 Editors: Anish Karmarkar, Oracle Ümit Yalçınalp, SAP (formerly of Oracle) Copyright © 2005 W3C ® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply. > >Abstract This document addresses the need to indicate the content-type associated with binary element content in an XML document and the need to specify, in XML Schema, the expected content-type(s) associated with binary element content. It is expected that the additional information about the content-type will be used for optimizing the handling of binary data that is part of a Web services message. Status of this Document This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/. This document is a W3C Working Group Note. This document includes the resolution of the comments received on the Last Call Working Draft previously published. The comments on this document and their resolution can be found in the Web Services Description Working Group’s issues list and in the section C Change Log [p.11] . A diff-marked version against the previous version of this document is available. -
XML Specifications Growth of the Web
Web Services Standards Overview Dependencies Messaging Specifications SOAP 1.1 SOAP 1.2 Interoperability Business Process Specifications Management Specifications Presentation SOAP Message Transmission Optimization Mechanism WS-Notification the trademarks of their respective owners. of their respective the trademarks Management Using Web Management Of WS-BaseNotification Issues Business Process Execution WS-Choreography Model Web Service Choreography Web Service Choreography WS-Management Specifications Services (WSDM-MUWS) Web Services (WSDM-MOWS) Language for Web Services 1.1 Overview Interface Description Language AMD, Dell, Intel, Microsoft and Sun WS-Topics (BPEL4WS) · 1.1 · BEA Systems, IBM, (WSCI) · 1.0 · W3C 1.0 1.0 1.0 · W3C (CDL4WS) · 1.0 · W3C Microsystems Microsoft, SAP, Sun Microsystems, SAP, BEA Systems WS-BrokeredNotification Working Draft Candidate Recommendation OASIS OASIS Published Specification Web Services for Remote Security Resource Basic Profile Siebel Systems · OASIS-Standard and Intalio · Note OASIS-Standard OASIS-Standard Metadata Portlets (WSRP) WS-Addressing – Core 1.1 ̆ ̆ ̆ ̆ ̆ ̆ ̆ 2.0 WS-I Business Process Execution Language for Web Services WS-Choreography Model Overview defines the format Web Service Choreography Interface (WSCI) describes Web Service Choreography Description Language Web Service Distributed Management: Management Using Web Service Distributed Management: Management Of WS-Management describes a general SOAP-based WS-Addressing – WSDL Binding 1.1(BPEL4WS) provides a language for the formal -
What Is XML Schema?
72076_FM 3/22/02 10:39 AM Page i XML Schema Essentials R. Allen Wyke Andrew Watt Wiley Computer Publishing John Wiley & Sons, Inc. 72076_AppB 3/22/02 10:47 AM Page 378 72076_FM 3/22/02 10:39 AM Page i XML Schema Essentials R. Allen Wyke Andrew Watt Wiley Computer Publishing John Wiley & Sons, Inc. 72076_FM 3/22/02 10:39 AM Page ii Publisher: Robert Ipsen Editor: Cary Sullivan Developmental Editor: Scott Amerman Associate Managing Editor: Penny Linskey Associate New Media Editor: Brian Snapp Text Design & Composition: D&G Limited, LLC Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration. This book is printed on acid-free paper. Copyright © 2002 by R. Allen Wyke and Andrew Watt. All rights reserved. Published by John Wiley & Sons, Inc. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copy- right Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850- 6008, E-Mail: PERMREQ @ WILEY.COM. -
Command Injection in XML Signatures and Encryption Bradley W
Command Injection in XML Signatures and Encryption Bradley W. Hill Information Security Partners, July 12, 2007 [email protected] Abstract. The XML Digital Signature1 (XMLDSIG) and XML Encryption2 (XMLENC) standards are complex protocols for securing XML and other content. Among its complexities, the XMLDSIG standard specifies various “Transform” algorithms to identify, manipulate and canonicalize signed content and key material. Unfortunately, the defined transforms have not been rigorously constrained to prevent their use as attack vectors, and denial of service or even arbitrary code execution are probable in implementations that have not specifically guarded against such risks. Attacks against the processing application can be embedded in the KeyInfo portion of a signature, making them inherently unauthenticated, or in the SignedInfo block. Although tampering with the SignedInfo should be detectable, a defective implied order of operations in the specification may still allow unauthenticated attacks here. The ability to execute arbitrary code and perform file system operations with a malicious, invalid signature has been confirmed by the researcher in at least two independent XMLDSIG implementations, and other implementations may be similarly vulnerable. This paper describes the vulnerabilities in detail and offers advice for remediation. The most damaging attack is also likely to apply in other contexts where XSLT is accepted as input, and should be considered by all implementers of complex XML processing systems. Categories and Subject Descriptors Primary Classification: K.6.5 Security and Protection Subject: Invasive software Unauthorized access Authentication Additional Classification: D.2.3 Coding Tools and Techniques (REVISED) Subject: Standards D.2.1 Requirements/Specifications (D.3.1) Subject: Languages Tools General Terms: Security, Reliability, Verification, and Design. -
Describing Media Content of Binary Data in XML W3C Working Group Note 4 May 2005
Table of Contents Describing Media Content of Binary Data in XML W3C Working Group Note 4 May 2005 This version: http://www.w3.org/TR/2005/NOTE-xml-media-types-20050504 Latest version: http://www.w3.org/TR/xml-media-types Previous version: http://www.w3.org/TR/2005/NOTE-xml-media-types-20050502 Editors: Anish Karmarkar, Oracle Ümit Yalçınalp, SAP Copyright © 2005 W3C ® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply. > >Abstract This document addresses the need to indicate the content-type associated with binary element content in an XML document and the need to specify, in XML Schema, the expected content-type(s) associated with binary element content. It is expected that the additional information about the content-type will be used for optimizing the handling of binary data that is part of a Web services message. Status of this Document This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/. This document is a W3C Working Group Note. This document includes the resolution of the comments received on the Last Call Working Draft previously published. The comments on this document and their resolution can be found in the Web Services Description Working Group’s issues list. There is no technical difference between this document and the 2 May 2005 version; the acknowledgement section has been updated to thank external contributors. -
Introduction to Scalable Vector Graphics
Introduction to Scalable Vector Graphics Presented by developerWorks, your source for great tutorials ibm.com/developerWorks Table of Contents If you're viewing this document online, you can click any of the topics below to link directly to that section. 1. Introduction.............................................................. 2 2. What is SVG?........................................................... 4 3. Basic shapes............................................................ 10 4. Definitions and groups................................................. 16 5. Painting .................................................................. 21 6. Coordinates and transformations.................................... 32 7. Paths ..................................................................... 38 8. Text ....................................................................... 46 9. Animation and interactivity............................................ 51 10. Summary............................................................... 55 Introduction to Scalable Vector Graphics Page 1 of 56 ibm.com/developerWorks Presented by developerWorks, your source for great tutorials Section 1. Introduction Should I take this tutorial? This tutorial assists developers who want to understand the concepts behind Scalable Vector Graphics (SVG) in order to build them, either as static documents, or as dynamically generated content. XML experience is not required, but a familiarity with at least one tagging language (such as HTML) will be useful. For basic XML -
XML Information Set
XML Information Set XML Information Set W3C Recommendation 24 October 2001 This version: http://www.w3.org/TR/2001/REC-xml-infoset-20011024 Latest version: http://www.w3.org/TR/xml-infoset Previous version: http://www.w3.org/TR/2001/PR-xml-infoset-20010810 Editors: John Cowan, [email protected] Richard Tobin, [email protected] Copyright ©1999, 2000, 2001 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark, document use and software licensing rules apply. Abstract This specification provides a set of definitions for use in other specifications that need to refer to the information in an XML document. Status of this Document This section describes the status of this document at the time of its publication. Other documents may supersede this document. The latest status of this document series is maintained at the W3C. This is the W3C Recommendation of the XML Information Set. This document has been reviewed by W3C Members and other interested parties and has been endorsed by the Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited as a normative reference from another document. W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the file:///C|/Documents%20and%20Settings/immdca01/Desktop/xml-infoset.html (1 of 16) [8/12/2002 10:38:58 AM] XML Information Set Web. This document has been produced by the W3C XML Core Working Group as part of the XML Activity in the W3C Architecture Domain. -
Progressive Imagery with Scalable Vector Graphics -..:: VCG Rostock
Progressive imagery with scalable vector graphics Georg Fuchsa, Heidrun Schumanna, and Ren´eRosenbaumb aUniversity of Rostock, Institute for Computer Science, 18051 Rostock, Germany; bUC Davis, Institute of Data Analysis & Visualization, Davis, CA 95616 U.S.A. ABSTRACT Vector graphics can be scaled without loss of quality, making them suitable for mobile image communication where a given graphics must be typically represented in high quality for a wide range of screen resolutions. One problem is that file size increases rapidly as content becomes more detailed, which can reduce response times and efficiency in mobile settings. Analog issues for large raster imagery have been overcome using progressive refinement schemes. Similar ideas have already been applied to vector graphics, but an implementation that is compliant to a major and widely adopted standard is still missing. In this publication we show how to provide progressive refinement schemes based on the extendable Scalable Vector Graphics (SVG) standard. We propose two strategies: decomposition of the original SVG and incremental transmission using (1) several linked files and (2) element-wise streaming of a single file. The publication discusses how both strategies are employed in mobile image communication scenarios where the user can interactively define RoIs for prioritized image communication, and reports initial results we obtained from a prototypically implemented client/server setup. Keywords: Progression, Progressive refinement, Scalable Vector Graphics, SVG, Mobile image communication 1. INTRODUCTION Vector graphics use graphic primitives such as points, lines, curves, and polygons to represent image contents. As those primitives are defined by means of geometric coordinates that are independent of actual pixel resolutions, vector graphics can be scaled without loss of quality. -
SVG Exploiting Browsers Without Image Parsing Bugs
SVG Exploiting Browsers without Image Parsing Bugs Rennie deGraaf iSEC Partners 07 August 2014 Rennie deGraaf (iSEC Partners) SVG Security BH USA 2014 1 / 55 Outline 1 A brief introduction to SVG What is SVG? Using SVG with HTML SVG features 2 Attacking SVG Attack surface Security model Security model violations 3 Content Security Policy A brief introduction CSP Violations 4 Conclusion Rennie deGraaf (iSEC Partners) SVG Security BH USA 2014 2 / 55 A brief introduction to SVG What is SVG? What is SVG? Scalable Vector Graphics XML-based W3C (http://www.w3.org/TR/SVG/) Development started in 1999 Current version is 1.1, published in 2011 Version 2.0 is in development First browser with native support was Konqueror in 2004; IE was the last major browser to add native SVG support (in 2011) Rennie deGraaf (iSEC Partners) SVG Security BH USA 2014 3 / 55 A brief introduction to SVG What is SVG? A simple example Source code <? xml v e r s i o n = ” 1 . 0 ” encoding = ”UTF-8” standalone = ” no ” ? > <svg xmlns = ” h t t p : // www. w3 . org / 2 0 0 0 / svg ” width = ” 68 ” h e i g h t = ” 68 ” viewBox = ”-34 -34 68 68 ” v e r s i o n = ” 1 . 1 ” > < c i r c l e cx = ” 0 ” cy = ” 0 ” r = ” 24 ” f i l l = ”#c8c8c8 ” / > < / svg > Rennie deGraaf (iSEC Partners) SVG Security BH USA 2014 4 / 55 A brief introduction to SVG What is SVG? A simple example As rendered Rennie deGraaf (iSEC Partners) SVG Security BH USA 2014 5 / 55 A brief introduction to SVG What is SVG? A simple example I am not an artist. -
XBRL and the Semantic
How can we exploit XBRL and Semantic Web technologies to realize the opportunities? Track 3: Case Studies in XBRL Solutions 19th XBRL International Conference, Paris, 23rd June 2009 Dave Raggett <[email protected]> W3C Fellow – Financial data & Semantic Web Member – XBRL INT Technical Standards Board With some slides from Diane Mueller, JustSystems 1 Outline XBRL: adding semantics to business reports World Wide Adoption of XBRL Users and use cases for XBRL Realizing the potential Feeding the Semantic Web ◦ XBRL, XLink, RDF, Turtle, SPARQL, OWL ◦ Web APIs, Smart Searches, Web Scale Queries ◦ Findings June 2009 2 So What is XBRL? eXtensible Business Reporting Language ◦ a freely available electronic language for financial reporting. ◦ based on XML, XML Schema and XLink ◦ based on accepted financial reporting standards and practices to transport financial reports across all software, platforms and technologies Business reporting includes, but is not limited to: ◦ financial statements, ◦ financial and non-financial information ◦ general ledger transactions ◦ regulatory filings such as annual and quarterly financial statements. “XBRL allows software vendors, programmers and end users who adopt it as a specification to enhance the creation, exchange, and comparison of business reporting information” from xbrl.org June 2009 3 Not just a number XBRL binds each reported fact to a concept in a reporting taxonomy e.g. US GAAP, IFRS ◦ Each concept can be bound to a description and its definition in the accounting literature Hierarchy of Terse label, EN Currency, amount Reporting period concepts Impairment of goodwill: $M21 3 months to 2009-04-30 Description Impairment of goodwill: Loss recognized during the period that results from the write-down of goodwill after comparing the implied fair value of reporting unit goodwill with the carrying amount of that goodwill. -
Extended Link Visualization with DHTML: the Web As an Open Hypermedia System
Extended Link Visualization with DHTML: The Web as an Open Hypermedia System Glenn Oberholzer and Erik Wilde Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology, Z¨urich TIK Report 125 January 2002 Abstract The World Wide Web is by far the most successful hypermedia system, its name often being used synonymously for the Internet. However, it is based on a rather restricted hy- permedia model with limited linking functionality. Even though underlying systems may provide a richer data model, there is still the question of how to present this informa- tion in a Web-based interface in an easily understandable way. Assuming an underlying system similar to Topic Maps, which allows storing, managing, and categorizing meta data and links, we propose a presentation of extended links. We try to provide a usable way for users to handle the additional functionality. The mechanism is based on already available technologies like DHTML. It is one facet of our approach to make the Web more interconnected and to work towards a more richly and openly linked Web. Keywords: Electronic publishing (020), Graphic design (029), Hypermedia (036), Internet (045), World Wide Web (084), XLink, Linkbases, DHTML 1 Introduction Compared to many other hypermedia systems [24,11,16], the linking capabilities of the World Wide Web are rather limited. It only makes use of a few concepts of hypermedia. In recent years, however, new recommendations issued by the W3C like XML [3], XLink [10], and XPointer [9], or ISO/IEC’s Topic Maps [19] have tried to overcome this shortcoming. Due to the popularity of the Web, efforts have to be made to integrate and improve the current system with more sophisticated hypermedia concepts. -
Information Technology - Object Management Group XML Metadata Interchange (XMI)
ISO/IEC 19509:2014(E) Date: April 2014 Information technology - Object Management Group XML Metadata Interchange (XMI) formal/2014-04-06 This version has been formally published by ISO as the 2014 edition standard: ISO/IEC 19509. ISO/IEC 19509:2014(E) Table of Contents 1 Scope ................................................................................................. 1 2 Conformance ...................................................................................... 1 2.1 General ....................................................................................................1 2.2 Required Compliance ...............................................................................1 2.2.1 XMI Schema Compliance ................................................................................. 1 2.2.2 XMI Document Compliance .............................................................................. 1 2.2.3 Software Compliance ....................................................................................... 2 2.3 Optional Compliance Points .....................................................................2 2.3.1 XMI Extension and Differences Compliance .................................................... 2 3 Normative References ........................................................................ 2 4 Terms and Definitions ......................................................................... 3 5 Symbols .............................................................................................. 3 6 Additional