Full Grade Separation Group 1) Cloverleaf Interchange
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fec Railroad Grade Separation Feasibility Study
FEC RAILROAD GRADE SEPARATION FEASIBILITY STUDY EXECUTIVE SUMMARY The Martin Metropolitan Planning Organization (MPO) initiated this feasibility study to identify, evaluate and plan for potential roadway and non-motorized pedestrian/bicycle grade separations along the Florida East Coast Rail Line (FEC) through Martin County. The study has been performed in phases including: Tier 1: Perform an initial assessment of all the mainline rail at grade crossings (25) in Martin County and identify 10 roadway candidate crossings for potential grade separation. Review adjacent land uses between crossings and known areas of pedestrian trespassing on the rail corridor to identify 5 candidate locations for non-motorized crossings. Tier 2: Perform detailed evaluation and rank the roadway and non-motorized candidates for the need and justification to implement grade separations. Tier 3: Prepare concepts and assess the feasibility and impacts of grade separations at 4 potential crossing locations: o Conceptual plans for up to 2 crossings for roadway grade separation, and o Conceptual plans for up to 2 crossings for non-motorized uses Assess the impacts and cost-benefit of the concepts developed for this study. The final results include concepts, costs and benefits developed for an Indian Street/Dixie Highway elevated roadway crossing, a Monterey Road/Dixie Highway depressed roadway crossing, a Railroad Avenue to Commerce Boulevard elevated pedestrian/bicycle grade separation and a Downtown Stuart elevated pedestrian/bicycle grade crossing. Each concept is provided below from south to north by roadway and non-motorized category. Note 11x17 sheets are provided in Chapter 4, Figures 18 to 21. Potential Indian Street / Dixie Highway Elevated Roadway Grade Crossing over the FEC Railroad E - 1 FEC RAILROAD GRADE SEPARATION FEASIBILITY STUDY Potential Monterey Rd/Dixie Highway Depressed Roadway Grade Crossing over the FEC RR Potential Railroad Ave. -
UAV Lidar Point Cloud Segmentation of a Stack
1 UAV LiDAR Point Cloud Segmentation of A Stack Interchange with Deep Neural Networks Weikai Tan, Student Member, IEEE, Dedong Zhang, Lingfei Ma, Ying Li, Lanying Wang, and Jonathan Li, Senior Member, IEEE Abstract—Stack interchanges are essential components of capturing the complicated structure of interchanges due to transportation systems. Mobile laser scanning (MLS) systems limitations of flying altitudes or road surfaces [4]. Unmanned have been widely used in road infrastructure mapping, but accu- aerial vehicle (UAV) is a thriving platform for various sensors, rate mapping of complicated multi-layer stack interchanges are still challenging. This study examined the point clouds collected including Light Detection and Ranging (LiDAR) systems, by a new Unmanned Aerial Vehicle (UAV) Light Detection and with the flexibility of data collection. However, there are Ranging (LiDAR) system to perform the semantic segmentation more uncertainties in point clouds collected by UAV systems, task of a stack interchange. An end-to-end supervised 3D deep such as point registration and calibration, due to less stable learning framework was proposed to classify the point clouds. moving positions than aeroplanes and cars. To capture features The proposed method has proven to capture 3D features in complicated interchange scenarios with stacked convolution and from the massive amounts of unordered and unstructured the result achieved over 93% classification accuracy. In addition, point clouds, deep learning methods have outperformed con- the new low-cost semi-solid-state LiDAR sensor Livox Mid- ventional threshold-based methods and methods using hand- 40 featuring a incommensurable rosette scanning pattern has crafted features in recent years [5]. -
Grade Separations Info Sheet: February 2020 5
GO Expansion Update Grade Separations Info Sheet: February 2020 5 Metrolinx is increasing its services as part of the GO Expansion program, which will increase train frequency and the number of trains on the GO rail network. To increase traffic flow and transit capacity , Metrolinx has identified the need to build a number of grade separations. This Info Sheet describes: • What is a grade separation? • Why are grade separations needed? What are the benefits? • What is involved in designing a grade Rendering of a road underpass separation? • What is involved in building a grade separation? What is a grade separation? • How will Metrolinx design, build, and address effects of grade separation? A grade separation is a tunnel or a bridge that allows a • Why doesn’t Metrolinx move tracks instead road or rail line to travel over or under the other, without of the road? the need for vehicles travelling on the road to stop. If the road is lowered below the rail line, it is called rail over road, while if it is raised above the rail line, it is called What are the benefits of grade road over rail. separations? Why are grade separations needed? • Improved traffic flow and elimination of the potential for conflicts between trains Although each rail line is different, trains may run as little and vehicles; as one or two times per hour on some Metrolinx • Increased on-time performance and corridors. This means that each road crossing may need operational reliability; to be temporarily closed about once or twice an hour to • Better connections and crossings for let the trains pass. -
(LTA) Evaluation of the Baton Rouge Urban Renewal and Mobility Plan
Louisiana Transportation Authority (LTA) Evaluation of the Baton Rouge Urban Renewal and Mobility Plan (BUMP) to Develop the Project as a Public Private Partnership (P3) October 20, 2015 – Final (With Redactions) TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................ 1 Proposal Overview .................................................................................................................... 1 Construction Cost...................................................................................................................... 1 Tolling ....................................................................................................................................... 1 Traffic and Revenue (T&R) ...................................................................................................... 2 Feasibility .................................................................................................................................. 2 Findings..................................................................................................................................... 3 1.0 CHAPTER ONE – State & Federal Legislation Summary ................................................... 4 1.1 Louisiana State Legislation .............................................................................................. 4 1.2 Federal Legislation .......................................................................................................... -
Spaghetti Junction Final Report, Vanderbilt Senior Design 2020
Spaghetti Junction Final Report, Vanderbilt Senior Design 2020 Brooks Davis, Jacob Ferguson, Will Braeuner Table of Contents I. Introduction………………………………………………………………………………..3 II. Significance………………………………………………………………………………..4 III. Preliminary Research……………………………………………………………………...6 A. Pedestrian Travel………..……………………………………………...…………6 B. Bicycle Travel……………………………………………………………………..7 C. Automobile Travel………………………………………………………………...8 D. Public Transport…………………………………………………………………...9 IV. Design Goals……………………………………………………………………………..10 V. Design Results & Recommendations……………………………………………………10 VI. Further Research & Final Thoughts……...……………………………………………....14 VII. References………………………………………………………………………………..15 VIII. Appendices A. Traffic Projections……………………………………………………………….17 B. Spaghetti Junction Redesigned…………………………………………………..18 C. Visualizing Woodland Street…………………………………...………………..20 D. Visualizing Main Street………………………………………………………….22 E. Revised Schedule………………………………………………………………...23 2 I. Introduction: Nashville, like many other cities, is experiencing rapid growth and must address increasing demands on current transportation resources. As a result, it is important for Nashville to use its existing traffic networks in the most efficient and effective manner. East Nashville’s intersection of Ellington Parkway, I-24, Main St, Spring St, and Dickerson Pike, nicknamed “Spaghetti Junction,” consumes over 85 acres of space with interchanges and unusable land. This is nearly equivalent to Atlanta’s Tom Moreland Interchange or L.A.’s Pregerson Interchange, the -
Leveraging Industrial Heritage in Waterfront Redevelopment
University of Pennsylvania ScholarlyCommons Theses (Historic Preservation) Graduate Program in Historic Preservation 2010 From Dockyard to Esplanade: Leveraging Industrial Heritage in Waterfront Redevelopment Jayne O. Spector University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/hp_theses Part of the Historic Preservation and Conservation Commons Spector, Jayne O., "From Dockyard to Esplanade: Leveraging Industrial Heritage in Waterfront Redevelopment" (2010). Theses (Historic Preservation). 150. https://repository.upenn.edu/hp_theses/150 Suggested Citation: Spector, Jayne O. (2010). "From Dockyard to Esplanade: Leveraging Industrial Heritage in Waterfront Redevelopment." (Masters Thesis). University of Pennsylvania, Philadelphia, PA. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/hp_theses/150 For more information, please contact [email protected]. From Dockyard to Esplanade: Leveraging Industrial Heritage in Waterfront Redevelopment Abstract The outcomes of preserving and incorporating industrial building fabric and related infrastructure, such as railways, docks and cranes, in redeveloped waterfront sites have yet to be fully understood by planners, preservationists, public administrators or developers. Case studies of Pittsburgh, Baltimore, Philadelphia/ Camden, Dublin, Glasgow, examine the industrial history, redevelopment planning and approach to preservation and adaptive reuse in each locale. The effects of contested industrial histories, -
Considerations for High Occupancy Vehicle (HOV) Lane to High Occupancy Toll (HOT) Lane Conversions Guidebook
Office of Operations 21st Century Operations Using 21st Century Technology Considerations for High Occupancy Vehicle (HOV) Lane to High Occupancy Toll (HOT) Lane Conversions Guidebook U.S. Department of Transportation Federal Highway Administration June 2007 Considerations for High Occupancy Vehicle (HOV) to High Occupancy Toll (HOT) Lanes Conversions Guidebook Prepared for the HOV Pooled-Fund Study and the U.S. Department of Transportation Federal Highway Administration Prepared by HNTB Booz Allen Hamilton Inc. 8283 Greensboro Drive McLean, VA 22102 Under contract to Federal Highway Administration (FHWA) June 2007 Notice This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or the use thereof. The contents of this Report reflect the views of the contractor, who is responsible for the accu- racy of the data presented herein. The contents do not necessarily reflect the official policy of the Department of Transportation. This Report does not constitute a standard, specification, or regulation. The United States Government does not endorse products or manufacturers named herein. Trade or manufacturers’ names appear herein only because they are considered essential to the objective of this document. Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA-HOP-08-034 4. Title and Subtitle 5. Report Date Consideration for High Occupancy Vehicle (HOV) to High Occupancy Toll June 2007 (HOT) Lanes Study 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Martin Sas, HNTB. Susan Carlson, HNTB Eugene Kim, Ph.D., Booz Allen Hamilton Inc. -
Barrier Versus Buffer Separated Managed Lanes
EMERGING ISSUES: BARRIER VERSUS BUFFER SEPARATED MANAGED LANES PREPARED FOR PREPARED BY Georgia Department of Transportation HNTB Corporation Office of Planning 3715 Northside Parkway 600 West Peachtree Street NW 400 Northcreek, Suite 600 Atlanta, GA 30308 Atlanta, GA 30327 Phone: (404) 631-1796 Phone: (404) 946-5708 Fax: (404) 631-1804 Fax: (404) 841-2820 Contact: Michelle Caldwell Contact: Andrew C. Smith, AICP January 2010 c Georgia Department of Transportation FINAL Barrier Versus Buffer Separated Managed Lanes January 2010 Atlanta Regional Managed Lane System Plan Technical Memorandum 17B: Advantages and Disadvantages of Barrier Versus Buffer Separated Managed Lanes Prepared for: Georgia Department of Transportation One Georgia Center, Suite 2700 600 West Peachtree Street NW Atlanta, Georgia 30308 Prepared by: HNTB Corporation Atlanta Regional Managed Lane System Plan Georgia Department of Transportation, Office of Planning FINAL Barrier Versus Buffer Separated Managed Lanes January 2010 ADVANTAGES AND DISADVANTAGES OF BARRIER VERSUS BUFFER SEPARATED MANAGED LANES WHITE PAPER Introduction The purpose of this white paper is to explore the advantages and disadvantages associated with the separation of managed lanes from the general purpose lanes by means of a barrier or buffer system. A number of factors contribute to the selection of a buffer or barrier system including issues of design specifications, costs, access, safety, congestion pricing operations, enforcement and public perception. The advantages and disadvantages of barrier and buffer separated managed lanes facilities are fully elaborated on in the sections below. Each corridor within Atlanta should decide for itself, based on its current and projected needs, operational guidelines and ultimate goals, which system, or combination thereof, works best for their area. -
Study of a Highly Effective and Affordable Highway Interchange - ITL Interchange
Available online at www.CivileJournal.org Civil Engineering Journal Vol. 6, No. 4, April, 2020 Technical Note Study of a Highly Effective and Affordable Highway Interchange - ITL Interchange Goran Jovanović a*, Rafko Atelšek b* a MSc, Civil Engineer, Appia Company for Design, Research and Engineering d.o.o. (Appia d.o.o), Ljubljana, Slovenia. b BSc, EE, Appia Company for Design, Research and Engineering d.o.o. (Appia d.o.o.), Ljubljana, Slovenia. Received 26 December 2019; Accepted 01 March 2020 Abstract In this paper we present a new solution for the highway interchange, which represents the best compromise between the traffic capacity, the land area used and construction cost. The difference between the known and the new design solution is in the implementation of the opposite directional ramps which are widely separated in the area of the interchange. In the middle, between the directional ramps, some space is created for the left directional ramps. Interchange should be used for four-way highway interchanges or other heavy traffic roads junction in order to increase the capacity and traffic safety at the crossing point. It has no conflict points. ITL Interchange left directional ramps is much shorter than all other known solutions for interchanges. The interchange is built in two levels. These two facts significantly lower the cost of construction. The study compares different types of interchanges. We made a geometric comparison and performance measures. In geometric comparison, the greatest advantages of the ITL interchange are the shortest overall roadway length and the shortest overpasses length. Therefore, such an interchange is advantageous in terms of construction and maintenance costs. -
NDOT Roadside Vegetation Establishment and Management
NDOT Roadside Vegetation Establishment and Management This document supersedes previous versions of this document and NDOT’s Chemical Usage Guidelines, Seeding Handbook and Mowing Guidelines. 2021 Table of Contents Page No. Document Development .................................................................................................................... 1 Introduction ............................................................................................................................................... 3 Roadside Stabilization Practices .................................................................................................. 7 Protected Plant Species and Sensitive Resources in the Right of Way ................. 9 Seeding ....................................................................................................................................................... 11 Appendix: Suggested Seed Mixtures for Nebraska Roadsides ......................... 23-33 Installing and Maintaining Sod ....................................................................................................... 35 Planting and Maintaining Trees ..................................................................................................... 37 Managing Roadside Vegetation .................................................................................................... 41 Part 1 – NDOT Protocol for Integrated Vegetation Management ...................... 41 Part 2 – Compliance with the Pesticide Use General Permit .............................. -
HOV Degradation Report and Action Plan (2018)
STATE OF CALIFORNIA—CALIFORNIA STATE TRANSPORTATION AGENCY GAVIN NEWSOM, Governor DEPARTMENT OF TRANSPORTATION DIVISION OF TRAFFIC OPERATIONS P.O. BOX 942873, MS–36 SACRAMENTO, CA 94273–0001 Making Conservation PHONE (916) 654-2366 a California Way of Life. FAX (916) 653-6080 TTY 711 www.dot.ca.gov September 28, 2020 Mr. Maiser Khaled Director, Technical Services Federal Highway Administration California Division 650 Capitol Mall, Suite 4-100 Sacramento, CA 95814-4708 Dear Mr. Khaled: Enclosed is the 2018 California High-Occupancy Vehicle Facilities Degradation Report and Action Plan (2018 HOV Report and Action Plan) prepared by the California Department of Transportation (Caltrans) as required by U.S.C. Title 23 §166. Caltrans appreciates the collaboration and partnership from the Federal Highway Administration as an active member of the Managed Lane Working Group (Working Group). The Working Group develops and supports the implementation of strategies to optimize the performance of the HOV facilities. Caltrans is committed to implement the strategies presented by the Working Group and make progress toward bringing degraded HOV facilities into compliance with federal performance standards. Caltrans has already initiated various minor and major infrastructure projects to improve the performance of HOV facilities. Some projects were underway in 2018, while others will begin within the next one to three years. Caltrans will assess the feasibility of implementing additional strategies presented by the Working Group and make good faith efforts to improve the performance of degraded HOV facilities. If you have any questions regarding the 2018 HOV Report and Action Plan, please contact Joe Rouse, Managed Lane Functional Manager, Office of Mobility Programs, at (916) 952-6436, or by e-mail at <[email protected]>. -
Tensar® Grade Separation Solutions
Tensar® Grade Separation SoLUTIONs Tensar® Geogrids We provide innovative Tensar’s Grade Separation Solutions owe their engineered, economical solutions long-term performance and durability to high strength Tensar® Uniaxial (UX) Geogrids. Due to for grade change requirements their stiff interlocking capabilities, these geogrids stand the test of time, performing better than other in the residential, commercial commercially available geosynthetics. For more information on our patented soil reinforcement and transportation markets. systems, please visit www.tensar-international.com. Proven Solutions and Technologies > Tensar International (TI) is the leading developer and Our expertise focuses primarily on the following fields manufacturer of high-performance products and of grade separation systems: engineered solutions. Our manufacturing facilities enable • ARES® Modular Panel Walls us to satisfy and exceed customer needs by providing a wide range of geosynthetic solutions for your common • ARES Full-Height Panel Walls earthwork problems. • Mesa® Segmental Retaining Walls By providing innovative application technologies and • SierraScape® Stone-Faced Wire Formed Walls specialized technical services, we supplement our products with value-enhancing alternatives to traditional • SierraScape® Vegetated-Faced Wire Formed Walls materials and practices used in earthwork construction. • Sierra® Steepened Slopes Together, these products, technologies and services ® constitute engineered systems that serve a variety • Tensar Temporary Walls of commercial and industrial markets. For over 25 years, Tensar International has been Simply put, we are a full service provider of specialty providing economical solutions for the most challenging products and engineering services and offer grade change requirements. We are committed to economical solutions to common infrastructure serving our client’s global interests by providing and site development needs.